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Abstract

We establish the uniform almost sure convergence of the partitioning estimate, which is a histogram-like
mean regression function estimate, under ergodic conditions for a stationary and unbounded process.
The main application of our results concerns time series analysis and prediction in the Markov processes
case.
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1. Introduction

Let Z, = {Xit Yi), i = 1, 2 , . . . , be a strictly stationary sequence of IRd x Kp-valued
random vectors {d, p > 1). We denote by X\ a random variable (rv) having the same
distribution as the Z,'s, i > 1, and similarly for Yx and the Yt's. Let p(-) be an
integrable Borel real-valued function defined on W and set *(*) = E [p(Y{) | Xj =
x], x e Rrf, the conditional mean function of p{Yx) given X{ = x.

The function *(•), which includes the regression function r(x) = E (yt | X\ = x)
as a special case, can be estimated by a partitioning estimate in the following way. To
simplify the notations, we begin with the case where the X's are K-valued. Let • • • <
*_2 < x-i < x0 < x{ < x2 < •• • be a partition of the real line into equal intervals of
length an. For definiteness, we specify each interval to be right closed and left open.
Let Kn be a nonnegative integer, we denote Vn — [xr

n, x
r
n
+l[ = [(r — \)/Kn, r/Kn[ with

r € {... - 2, - 1 ,0 , 1, 2 , . . . } . For eachx e R, let Vn{x) be the interval containing x.
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The quantity V(x)

(1.1) *«(*)

is estimated

0

Naamane Laib

by

if E"=1 /{X, 6

otherwise.

[2]

Here I {A} denotes the indicator function of the set A.
The partitioning estimate is useful in time series analysis. It has been used among

others by Diebolt and Laib [10] to construct nonparametric tests for nonlinear au-
toregressive processes. It has been recently studied by Carbonez et al. [5] under
random censoring. Results on weak and strong universal consistency in the indepen-
dent and identically distributed case are obtained by Devroye and Gyorfi [9], Gyorfi
[14], Gordon and Olshen [11, 12].

The consistency of partitioning and kernel estimates has been considered by many
authors, under a variety of mixing conditions, such as strong mixing (a-mixing),
^-mixing, uniform mixing (^-mixing). See, for instance, Yakowitz [34], Gyorfi and
Masry [17], Tran [30], Roussas [29], Laib [22] and Bosq [3]. The monograph by
Gyorfi et al. [18] gives a large coverage of the literature in nonparametric inference
for dependent series.

Our aim in this paper is to prove the uniform almost sure convergence of the
partitioning estimate, which is a histogram-like mean regression function, under very
weak assumptions on the dependence structure of the vector of random variable
Z = (X, Y). These results allow us to construct nonparametric predictors when
{X,; i e Z) is a real Markovian process of finite order.

The originality of our result is in the very weak dependence structure imposed
on the observation process {X,; i e Z}, which is only assumed ergodic. This type
of dependence has not been investigated much before. The ergodicity condition is
very general, it is less restrictive than any mixing condition (a-mixing, ^-mixing,
p-mixing, . . . : see, for example, Ash and Gardner [2, p. 120] and Rosenblatt [28]).
It is the minimal condition that one may expect when dealing with problems such as
the strong law of large numbers or consistency of functional estimators. For example,
the ARMA processes are not 0-mixing in general and some linear processes are not
a-mixing (see, Pham and Tran [26]). The following example illustrates the theory.
Let (£,) be the first-order autoregressive process defined by

(1.2) ?,- = 2?'-i+€«-' i € l '

where the e,'s are independent symmetric Bernoulli random variables taking values
— 1 and 1. This Markov process is ergodic. Its distribution is absolutely continuous
with respect to Lebesgue measure and does not satisfy the strong a-mixing condition,
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[3] Consistency of partitioning estimates 3

as it follows from Whithers [33, Theorem 5.2], see also Andrews [1]. However, it is
ergodic. To see this, it suffices (see, for instance, Breiman [4, p. 119]) to rewrite (1.2)
as a general linear process:

(1.3) ? , - = > ' a j € , . j w i t h a j = ' ~ ~~~J ~ l'

In the setting of ergodic observations, Gyorfi [13], Gyorfi and Masry [17], Yakowitz
[34] have obtained the L1 and L2 convergence for density estimates. Rosa [27] estab-
lished the convergence of the conditional median. Delecroix et al. [7] have studied the
mean uniform convergence and the almost sure convergence of a family of recursive
estimates of the density. Delecroix and Rosa [8] have studied the uniform almost
sure convergence of the kernel autoregression function estimate and its derivatives
for Markovian processes. The uniform almost sure convergence of kernel estimates
of the regression function and their robust versions have been established by Laib
and Ould-Sa'id [23]. Ould-Said [25] has studied a nonparametric predictor based on
estimation of the conditional mode function.

The paper is organized as follows. In Section 2, we list the assumptions that we
need. In Section 3, we give some preliminary results. In Section 4, we establish
Theorem 1, which states that yn(x) converges completely to W(x) as n -*• oo,
uniformly with respect to x in a fixed compact subset A of R. The difficulty arising
from the unboundedness of the function p ( ) is handled by a truncation argument
similar to those used by Mack and Silverman [24]. Generalization of this result to
the d-dimensional case is considered in Section 5. Finally, Section 6 is devoted to the
application of Theorem 1 to prediction of Markovian time series analysis.

2. Notation, definitions and assumptions

Throughout the paper, the following notations will be used: \\</>\\ = sup,gR \<p(t)\
denotes the sup-norm of the bounded function <j> : K —• 0&, <t>x(X) denotes I{X e
^,'OOh where I {A} is the indicator function of the set A, and an = /z(/n

r(;c)), where
H stands for the Lebesgue measure. The compact [a, b] = \^jZ"m ^ with mn =
[(b — a)/an] + 1 (where [t] is the integer part of t) will be denoted by A. The symbol
C will denote a generic positive constant, whose value may change from one part of
calculation to another.

DEFINITION. Let {si',; i > 1} be a nondecreasing sequence of a-fields and let
(X,; i e 2} be a sequence of random variables such that Z, is ^-measurable. The
sequence of real random variables {Z;} is called a martingale difference process with
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4 Naamane Laib [4]

respect to the a-fields s/t, if

E (X; | *J_.) = 0.

It is ergodic if it is stationary; and every invariant event has probability zero or one.
In the sequel we denote by ^ , = o((Xu YI), ... , (X,, Yt)) the CT-field generated by
(Z , ,y , ) , . . . ,(Xt,Y,).

Note that Gyorfi and Lugosi [16] have pointed out that the ergodic condition alone
is not sufficient to ensure the L1 consistency of kernel or histogram density estimates.
A complementary assumption is therefore needed. Gyorfi et al. [15] suppose that the
conditional distribution of Xm given ^ m = <J(X0, X_1 ; . . . ) (the cr-field generated
by the entire past of the process) is absolutely continuous almost surely, for some
positive integer m.

Following the work of these authors, we assume that:

(Al) For all i € N, the conditional density f x . ' " ' (•) of X, with respect to &,-\ and
the corresponding marginal density/(•) exist.
(A2) For all i e N, both densities / £ ' " ' (•) and / (•) belong to %(R), where %(R)

is the space of continuous functions going to zero at infinity.
(A3) The sequence {n~l X!"=i fx, ' (*)) converges uniformly in x t o / (x), that is

lim sup = 0.

We also need the following assumptions on the probability distribution of {Z}:
(A4) The random variables Z, = (X,-, Yj), i = 1,2,... , form a strictly stationary

ergodic sequence {Z,}.
(A5) There exists a compact subset A of R such that inf{f(x);x e A] > 0 and

sup{f(x);x e A) < oo.
(A6) p(-) is a real-valued Borel function defined on K such that E (\p(Y)\y) < oo

for some y > 1.
(A7) The conditional mean of p{Yt) given X, and « ,̂_i only depends on X,, that is,

for all i > 1, E (p(Y,) | #(X,)) = ¥(*,•), where Sf(X,-) = a(X,, ^i_,) .
(A8) The function *!>(•) is bounded on the real line.
(A9) ty(-) is a Cv(,-Lipschitzian function of order one for some 0 < c* < oo.

(A10) The sequence {an : n > 1} satisfies:

(i) an -> 0, nan —*• oo as n —> oo,
(ii) nan/ log n -»• oo as n ->• oo,

(iii) There exists fi 6 ]2b/y, l/3[, where b > 1 is a real number, such that
alnl~*fi/logn —>• oo as n —>• oo.
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[5] Consistency of partitioning estimates

3. Some preliminary results

The estimator defined in (1.1) can be written as *„(*) = gn(x)/fn(x), where

(3.1) gn(x) = — TpiYd^AXd, fn{x) = —

nan £f nan

For all/ieN, let hH(x) = (na.)"1 ZUiE [P(E)*, (X,0 I ^i_,] . Clearly,

(3.2) sup|vl/n(x)-vl/(^)| < (|inf/(*)|)~Tsup|a,(x)-AII(jc)|

sup |*«(JC) | sup |/«(JC) - /
A AxeA

The limiting behaviors of the terms in the right-hand side of (3.2) are given in the

following propositions.

PROPOSITION 1. Suppose that the assumptions (A6) and (A 10) hold. Then, we have

(3.3) lim sup !&,(*)-*„(*)! = 0 .

The proof of Proposition 1 is presented in Appendix I.

PROPOSITION 2. Suppose that (X,, Yt) satisfies the assumptions (A1)-(A5) and

(A7)-(A9). Then, we have

(3.4) lim sup \hn(x) - * ( * ) / ( J C ) | = 0.

PROOF. Decompose hn(x) — ^(x)f(x) as follows:

(3.5) hn(x) - *(*)/(*) = [hn(x) - *(*)/,,(*)] + [*(x)/n(x) - / (*)*(*) ]

with

We then have

hn(x) -
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= E

It follows from the properties of the conditional expectation and (A7) that

W,,n = E [E (piYWAX,) I 9(X,)) I ^ i - i ] - *(*) E [4>x(Xi) I ^

= E [4>AX,)

(*(«) -

Arc*)

since «^_i c Sf(X,-). Moreover, since *!>(•) is a c^-Lipschitzian function, we obtain
by (A5)

1 ^

n r
Ca"

1=1

+ C .

To treat the second member of the right-hand side of (3.5), observe that

!*(*)/„(*)- <

The last upper bounds being independent of x, it follows that

sup\hn(x)- ' *~~
XGA

4-

The result follows then from (2.1) since an —*• 0 as n -> oo.

PROPOSITION 3. Aiswme rtaf (A6) and (A 10) Ao/d. Then, we have

(3.6) lim sup |* B ( JC) | sup \fn(x) - f (x)\ = 0.

PROOF. Since the function p ( ) is not assumed to be bounded, write

D
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[7] Consistency of partitioning estimates

where

with

Now observe that {*B,I(JC) 7̂  0} c (J"=i { I P ( ^ ) I > n ^ } - Stationarity and Markov's
inequality imply, under (A6), that

P {*„.!(*) / 0} < nP [\p(Y0)\ > «"} < Cnl~^.

Borel-Cantelli's Lemma implies that P {iim{*n,i(j:) ^ 0}} = 0, since fly > 2, and
that P {!im{I*„(*)! < n"}) = 1. Consequently, for all 10 € lim{l*n(*)l < np) and
n > n0(co),

sup \Vn(x)\ sup \fn(x) - f (x)\ < np sup \fn(x)-f(x)\ almost surely.

The remainder of the proof is similar to the proof of Proposition 1 (it is a particular
case of Proposition 1, where we take p(y) = 1 for all y e Rp). •

4. Main result and concluding remarks

The main result of this paper is the following theorem, whose proof is a consequence
of the preliminary results established in Section 3.

THEOREM 1. Suppose that (Xt, Yi) satisfies the assumptions (Al)-(AIO). Then,
we have

(4.1) lim sup I*„(*) -*(*) 1 = 0 .
n-°°*(EA

PROOF. By (A5), supiEA/~1(^) is bounded. Taking the limits as n -»• 00, the
desired result follows then from Proposition 1, Proposition 2 and Proposition 3 . •

REMARKS. 1. Our theorem applies to many general situations. First, the ergodic
condition is very weak and is satisfied by many important time series. Second, our
approach removes the restriction that the time series is bounded.
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8 Naamane Laib [8]

2. Our result allows us to construct estimates of quantities including the estimate
of the regression function r(-) as a special case. Referring to the initial set-up of
real-valued random variables Zj,j > 1, one may estimate interesting quantities such
as (Z™+s | Z(_H+i,... , Z/), m > 0 and s > 0 both integers, or a function of a finite
number of Z's beyond the present Z,.

3. The condition (2.1) is obviously satisfied by ergodic processes with sufficiently
smooth densities (see, Gyorfi [13] and Gyorfi and Masry [17]).

4. We emphasize that without (A7) the partitioning estimate is not consistent Gyorfi
etal. [18, Theorem 2]. Note that the assumption (A7) holds when, for instance, we take
Yi — Xi+l and {X,} a Markov process. In particular, it holds in the case of a nonlinear
autoregressive process Xi+l = T(X,) + e,+1, where T(X,) = E(Xi+i | X, = x),
{e,} is an independent and identically distributed sequence with mean zero and unit
variance and the X, is independent of e,+i.

5. The Lipschitz condition imposed on * (•) is commonly introduced in parametric
regression estimation.

6. The assumptions (Al) and (A4) allow us to obtain the uniform convergence of
the bias term. For the variance term, under the ergodic condition we do not have any
exponential inequality at hand as we do for the independent and identically distributed
or mixing case. To treat the variance term, we have used an exponential type inequality
for martingale difference processes due to Laib [21] , in the proof of Proposition 1.

7. A crucial point, in this context, concerns the choice of an appropriate smoothing
parameter. The basic tools for data-driven bandwidth selection rules (see, for example,
Hart and View [19]) are based on asymptotic optimality properties usually derived
from inequalities on moments of sums of the underlying variables. As far as we know,
we do not have such inequalities for ergodic processes.

8. The results obtained under general ergodicity conditions are theoretically inter-
esting, since they are stated under such an unrestrictive dependence condition. But
they do not provide convergence rates (see, Krengel [20, p. 14]). There is no Law of
the Iterated Logarithm for the quantities in (2.1), which can go to zero at an arbitrary
rate.

5. Generalisation to the J-dimensional case

We briefly discuss a generalization of our result to the ^-dimensional case. Let
&n = [Anj ,j = 1, 2 , . . .} be a sequence of partitions of Rd into cubes of the form
Tli=dci^ijan> ci(kij + l)^n)» where the c,'s are reals, the kjj's are integers and an

is the bandwidth length. For a given x, let Anj (x) be the cube containing x. Take
the mean of p(^) 's for which the X,'s corresponding to the Yi's fall in Anj (x). The
partitioning estimate tyn(x) is defined by
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[9] Consistency of partitioning estimates

where ft (x) = (nad
n)-

1 £?= I p{Y,)I{X,€ AnJ(x)}mdfn(x) = (nad
ny

l £ ?
AnJ (x)}. We have the following result which extends Theorem 1 to the d-dimensional
case.

THEOREM 2. If all the assumptions mentioned in Theorem 1 hold with in addition
(A 10) strengthened to

(Al l ) - ( i ) ad
n ->• 0, nad

n ->• oo it as n -*• oo,

(All ) - ( i i ) nad
nl log n —> oo, as n ->• oo,

(All)-(iii) there exists fl 6 ]2b/y, l/3[, w/iere fc > 1 is a real number, such that
aldnl~3y/\ogn ->• oo, as n -> oo,

f/ie/x (4.1) still holds.

6. Application to prediction for Markov processes

The main application of our results concerns time series analysis and prediction
in the Markovian case. Let {Z,; i e 2} be a real-valued stationary process. Given
observations Z\,... , ZN, we wish to construct a predictor of ZN+l. For this purpose,
we choose a positive integer s and try to approximate

Z*N+l = E[p(ZN+i) | Zi, Z 2 , . . . , Z N -J + I , . . . , ZAT].

In the special case when {Z,; i e 1} is a real-valued Markovian process of order s,
we know that the real random variable ^>{ZN_s+i,... , ZN) is the best approximation
of ZN+1. If we take N > s, X, - ( Z , , . . . , Z,+,_,), E = p(Zi + , ) , ra = tf - J + 1,
we then obtain the previous scheme and define the predictor as ZN+i = WN(XN) with
respect to the loss function r] (•) defined by

-fr}(x) = / p(u)du.
J — oo

COROLLARY 1. Under the conditions of Theorem 1, if the process {Z,; i € Z} is
stationary and Markovian, then we have

ZN+\ ~ Z*N+l I{(ZN_s+i ZN) e IN(x)} — ^ 0 as n -> oo.

Appendix I

In order to establish Proposition 1, we need the following exponential type inequal-
ity due to Laib [21] for martingale difference processes.
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10 Naamane Laib [10]

LEMMA 1 (Laib [21]). Let {(Xn,&n); n > 1} be a martingale difference with
\Xt\ < b almost surely for all i > 1. Set Sn = £"=i X, and Mn = max!<t<n \Sk\.
Then, for all k > 0, we have

where h(x) — 2x~l [(1 + x) log(l + x) — x] is an increasing function.

PROOF OF PROPOSITION 1. Let

gn(X) - hn(x) = —

i, YJ = piY^AXd - E

where

In order to deal with large values of the function p (•), decompose <j>x (X,•, Y,,) as follows
^ ( X , , 1̂ -) = 0+(X,-, ^ ) + </>;(XM F;), where

>;(Xh Yd = p(Y,)I [\p(Yi)\ < n?) <bx(Xi)

- E [p(Yi)I {\p(Yi)\ < nfi} <DX

and

- E

Since

nan

we have for any e > 0 that

(AI.1) P {sup !*„(*)-AB0OI> < P {sup —
reA nan 1=1

1
+ P {sup —

*eA nan 1=1
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[11] Consistency of partitioning estimates 11

We now proceed to evaluate the probabilities on the right-hand side of (AI.l). We
begin with P{supieA(nan)~

[\ £ " = , 0X~(X,-, Yt)\ > e/2). Let xr be a point in / ; . We
have then

P {sup
1

nan

> e/2 \ < P I max
I I -mn<r<mn nan

Since for each fixed 1 < i < n and - w n < r < mn, (j>Xr(Xh Yt) is ^",-measurable and
E [0-(X,-, y;-) I ̂ i-t] = 0 almost surely, then {(0~(X-, y;), J2",)} forms a martingale
difference process. Furthermore, since \<f>~{Xi, Yt)\ < 2nfi = bn, we obtain with the
choice k — kn = cnan/2 in Lemma 1

(AI.2)

max
-m,<r<mn

< 4 W n e x P

Since ann
 p -> 0 as n -> oo, a Taylor expansion of order one of the function

x -*• h(x) around 0 shows that the right-hand side of (AI.2) is bounded by

32

It results from Borel-Cantelli's Lemma, (AlO)-(i) and A(10)-(iii) that

(AI.3) lim sup £• = 0.

Now we evaluate the probability in the second member of the right-hand side of (AI. 1).
We have

1

where

and

sup

In = sup

IIn = sup —
x€A nan

[p(Y,)I [\p(Y,)\ > n?} 4>x(Xt)

https://doi.org/10.1017/S1446788700000835 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000835


12 NaamaneLaib [12]

Observe that {In ^ 0 ) c U L I { I P ( ^ ) I > n^- We obtain* by the same arguments as
in the proof of Proposition 3,

(AI.4) P {lim{In ^ 0}} = 0 since py > 2.

Now, we give an estimate for E (| IIn |). Let a > 1 and b > 1 be conjugate exponents,
a~x + b'1 = 1 (a < y). Stationarity and Holder's inequality imply, under (A10)-(ii),
that

,1/6

< Ca-

logn

Hence, we obtain by Markov's inequality that for any e > 0,

P {IH.I > e } < Cnl-py/b/€logn.

Thus, X)«>i P {I Hn I > ^} < °o since fiy > 2b. Borel-Cantelli's Lemma yields

(AI.5) P{Irm"{|IL.|>e}}=0.

It follows from (AI.4) and (AI.5) that

(AI.6) lim sup
nan

a.s.= 0.

The proof of Proposition 1 results from (AI.3) and (AI.6). •
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