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1. Introduction . Let I be a closed (bounded) sub-interval of the real line �. A
function K of two complex variables will be called an A+ kernel on I × I , and we will
write K ∈ A+ (I), if

(i) there is an open neighbourhood G of I in � such that K is continuous on G × G,
(ii) K (z, w) = K (w, z), for all z, w ∈ G,

(iii) for each w ∈ G, the function z �−→ K (z, w) is analytic on G,
(iv) the compact symmetric integral operator TKI on L2 (I):

TKI f (s) =
∫

I
K (s, t) f (t) dt

(
f ∈ L2 (I) , s ∈ I

)
is positive in the sense that (TKI f, f ) ≥ 0, for all f ∈ L2 (I).

We are interested in identifying explicit kernels in A+ (I) and in finding asymptotic
estimates for their eigenvalues. In the examples we have in mind, K will be defined
in terms of real variables s, t; it will always be possible to extend K to a function of
complex variables by replacing s with z and t with w. For instance, one example we
shall study is

K (s, t) = 1
(s + t)α

, I = [a, b] ,

where α > 0 and 0 < a < b. Here K (z, w) is just the principal value of (z + w)−α, and
(i), (ii), (iii) are obviously true when G is the open right half-plane. We shall be able to
verify (iv) in due course.

It will always be assumed that the eigenvalues of TKI are ordered into a decreasing
sequence λ0 (TKI ) ≥ λ1 (TKI ) ≥ λ2 (TKI ) ≥ . . . tending to 0, with repetitions to account
for multiplicities. We shall write λn (TKI ) and λn (K, I) interchangeably for these
eigenvalues. Given two sequences (an) , (bn) of non-negative reals we shall write
an � bn when an = O (bn) and b = O (an). It is known [2] that if K ∈ A+ (I) then
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150 YÜKSEL SOYKAN

λn (K, I) = O (rn), for some r satisfying 0 < r < 1, but the estimates we shall give in
this paper will be of the sharper form λn (K, I) � ncrn, where c ∈ � and 0 < r < 1.

In [3] and [5] Little considered power series kernels, that is kernels of the form∑∞
n=0 ansntn, where an ≥ 0, for all n. Here we shall study Laplace transform kernels:

K (s, t) =
∫ ∞

0
ψ (u) e−u(s+t)du (s, t > 0) ,

where ψ is a locally integrable, non-negative function on (0,∞) and satisfies further
conditions to be given in Definition 1, below.

Our work is motivated in large measure by a classic paper of H. Widom [9]. In
that paper Widom studied integral operators on L2 (−1, 1) with kernels of the form
K (s, t) = ψ̂ (s − t), where ψ is a continuous, positive even function on � and ψ̂ is
the Fourier transform of ψ . Our results are closely analogous to Widom’s Theorem
II, though our methods are quite different from his. As in Widom’s Theorem II our
eigenvalue estimates are in terms of a parameter q = q (k) − the nome of Jacobi with
modulus k. It is defined for 0 < k < 1 by

q (k) = exp
(−πK ′/K

)
,

where

K =
∫ π/2

0

dθ

(1 − k2 sin2 θ )1/2
, K ′ =

∫ π/2

0

dθ

(1 − �2 sin2 θ )1/2

and � = (1 − k2)1/2. This parameter q (k) arises naturally in the theory of Jacobian
elliptic functions. In [3], it was associated with the problem of mapping an elliptic disc
conformally onto a circular disc. No prior knowledge of elliptic functions is needed
to understand the reasoning in this paper, though the reader should note that q is a
strictly increasing continuous function on the open interval (0, 1) and that

lim
k→0

q (k) = 0, lim
k→1

q (k) = 1.

Our main result will be derived from the following theorem, see Theorem 2 of [5].

THEOREM 1.1. Let K (s, t) = ∑∞
n=0 ansntn, where an > 0, for all n, and an � nc, for

some c ∈ �. If J = [α, β], where −1 < α < β < 1, then the integral operator TKJ on
L2 (J):

TKJf (s) =
∫

J
K (s, t) f (t) dt (f ∈ L2(J), s ∈ J)

is compact and positive and its eigenvalues satisfy

λn (K, J) � ncq
(

β − α

1 − αβ

)n

.

A Laplace transform kernel will be defined using a function ψ on (0,∞) satisfying
conditions analogous to those imposed on the sequence (an) above. For non-negative
functions φ,ψ on (0,∞) we will write φ (u) � ψ (u) as u → ∞ when there are constants
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M, m > 0 and u0 ≥ 0 such that

mφ (u) ≤ ψ (u) ≤ Mφ (u) (u ≥ u0) .

DEFINITION 1.1.
(i) A function ψ on (0,∞) will be said to be of class P (0,∞) if it is non-negative

and locally integrable and if, for all δ > 0,

ψ (u) = O (eδu) as u → ∞.

(ii) A function ψ will be said to be of class Pc (0,∞), where c ∈ �, if it is non-
negative and locally integrable and

ψ (u) � uc as u → ∞.

(iii) Given ψ ∈ P (0,∞) let Kψ denote the function

Kψ (s, t) =
∫ ∞

0
ψ (u) e−u(s+t)du (s, t > 0) .

(iv) Given ψ ∈ P (0,∞) and a closed interval I = [a, b], where 0 < a < b < ∞ let
TψI denote the integral operator on L2 (I) with kernel Kψ :

TψI f (s) =
∫

I
Kψ (s, t) f (t) dt (f ∈ L2(I), s ∈ I).

Clearly, Pc (0,∞) ⊆ P (0,∞), for all c ∈ �, and a ψ ∈ P (0,∞) belongs to at most
one Pc (0,∞). If ψ ∈ P (0,∞) its Laplace transform is analytic on the open right half-
plane G, and if I is as in (iv) then Kψ is continuous and real-symmetric on I × I , so
that TψI is a compact symmetric operator on L2 (I), Moreover, TψI will be positive,
for if f ∈ L2 (I) ,

〈
TψI f, f

〉 =
∫

I

∫
I

f (s)f (t)
∫ ∞

0
ψ (u) e−u(s+t)dudtds

=
∫ ∞

0
ψ (u)

∫
I

f (s)e−usds
∫

I
f (t) e−utdtdu (1.1)

=
∫ ∞

0
ψ (u)

∣∣∣∣
∫

I
f (t) e−utdt

∣∣∣∣2

du (1.2)

≥ 0.

Because 0 < a ≤ s, t ≤ b, for all s, t ∈ I it follows from Schwarz’s inequality that
the repeated integral in (1.1) is absolutely convergent. This is enough to justify changing
the order of integration as we have done here. In future, when we permute orders of
integration, justification will be possible using an argument similar to this one, and we
shall leave such details to the reader.

It is easy to see that if ψ, I are as in (iv) above then K ∈ A+ (I) as defined in the
opening remarks of this paper. For a simple example let α > 0 and put ψ (u) = uα−1, so
that ψ ∈ Pα−1 (0,∞). Here Kψ (s, t) = � (α) / (s + t)α. There is another example which,
though not satisfying the hypotheses of our theorem, is needed in the proof; this is the
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case in which ψ is the characteristic function of the interval (0, 1). Here ψ belongs to
P (0,∞), but not to any Pc (0,∞), and

Kψ (s, t) =
∫ 1

0
e−u(s+t)du = 1 − e−(s+t)

s + t
(s, t > 0). (1.3)

Both of these kernels define positive, compact integral operators on L2 (I). We can
now state our main result.

THEOREM 1.2. Let ψ ∈ Pc (0,∞), where c ∈ �, c > −1 and let I = [a, b], where
0 < a < b < ∞. If

Kψ (s, t) =
∫ ∞

0
ψ(u)e−u(s+t)du (s, t > 0)

and if TψI is the integral operator on L2 (I) with kernel Kψ :

TψI f (s) =
∫

I
Kψ (s, t) f (t) dt (f ∈ L2(I), s ∈ I)

then TψI is compact and positive and its eigenvalues satisfy

λn(TψI ) = λn(Kψ, I) � ncq
(

b − a
b + a

)n

.

There are other approaches than ours to the problems of behavior of eigenfunctions
of differential operators and integral operators as the resolvent operators for
differential operators (see [7]).

2. Preliminaries and reductions . If T is a compact positive operator on a Hilbert
space H then its eigenvalues λ0 (T) ≥ λ1 (T) ≥ λ2 (T) ≥ . . . can be determined by the
Courant–Weyl formula:

λn(T) = inf
dim E⊥=n

sup
f ∈E
‖f ‖=1

〈Tf, f 〉 (n ≥ 0). (2.1)

In the formula E denotes a closed sub-space of H and E⊥ is its orthogonal
complement (see Section 95 of [6], but note that we are using non-negative rather than
positive integers to label our eigenvalues). In the following lemma we collect together
various corollaries of (2.1) which we shall need in the proof of Theorem 1.2. They are
not new, but we give proofs for completeness in Section 4.

LEMMA 2.1. Let H be a Hilbert space and suppose that A, B are compact positive
operators on H and that R is a continuous symmetric operator on H of finite rank. Also
suppose that H1 is a Hilbert space, that S is a compact positive operator on H1 and that
V : H1 −→ H is a continuous operator.

(i) |λn (A) − λn (B)| ≤ ‖A − B‖ (n ≥ 0) .

(ii) λn (VSV∗) ≤ ‖V‖2 λn (S) (n ≥ 0) .

(iii) If, in addition, V is invertible then

λn (VSV∗) � λn (S) .
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(iv) If A + R ≥ 0 and rank R ≤ N < ∞ then

λn (A + R) ≤ λn−N (A) (n ≥ N) .

Having deferred the proof of this lemma we can now concentrate on integral
operators. We shall always assume, from now on, that I and J are (bounded) closed
sub-intervals of �. The term positive definite will be used for kernels while the term
positive will be reserved for operators. Thus the continuous, symmetric kernel K on
I × I will be called positive definite if and only if the integral operator TKI on L2 (I)
is positive, that is 〈TKI f, f 〉 ≥ 0, for all f ∈ I . In this case, for positive kernel K we will
write

K (s, t) ≥◦ 0 (s, t ∈ I) .

More generally, if L is another positive definite kernel on I × I we will write

K (s, t) ≥◦ L (s, t) (s, t ∈ I)

when TKI − TLI ≥ 0 in the operator sense. This notation was introduced in [4]. In
that paper, various inequalities associated with the pointwise product of continuous,
positive definite kernels was proved. The first result we require is actually a corollary of
proposition 2 of [4], but since the notation there is rather elaborate we offer a slightly
different direct proof.

LEMMA 2.2. Let K, L be continuous positive definite kernels on I × I.
(i) The pointwise product KL is positive definite.

(ii) Suppose that TLI = SS∗, where S is a compact operator mapping some Hilbert
space H into L2 (I), suppose that ρ ∈ H is non-zero and that σ = Sρ is continuous
then

K (s, t) L (s, t) ≥◦ μσ (s) K (s, t) σ (t) (s, t ∈ I) , (2.2)

where μ = 1/ ‖ρ‖2 .

Proof. First we show that (ii) implies (i). Now the kernel on the right-hand side of
(2.2) is positive definite. If we put H = L2 (I) , S = T1/2

LI and take any non-zero ρ we
see that (ii) implies (i).

To prove (ii) itself we first note that, for all f ∈ L2 (I) ,∥∥S∗f
∥∥2 − μ

∣∣〈S∗f, ρ
〉∣∣2 ≥ ∥∥S∗f

∥∥2
(1 − μ ‖ρ‖2) = 0.

Since ‖S∗f ‖2 = 〈TLI f, f 〉 and Sρ = σ we can rewrite this inequality as

〈TLI f, f 〉 ≥ μ 〈〈f, σ 〉 σ, f 〉 .

In terms of kernels this means that

L (s, t) ≥◦ μσ (s) σ (t).

So when we write

L (s, t) = μσ (s) σ (t) + (L(s, t) − μσ (s)σ (t))
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we can be sure that the term in parentheses defines a continuous, positive definite kernel
on I × I , which, by Mercers’s theorem [1, Section 5.3 or 6, Section 98], has a uniformly
convergent eigenfunction expansion. Thus we have

L(s, t) = μσ (s)σ (t) +
∞∑

n=0

λnφn(s)φn(t) (s, t ∈ I),

where λn ↓ 0, where (φn) is an orthonormal sequence of continuous functions in L2 (I)
and where the series is uniformly convergent on I × I . Therefore

K (s, t) L (s, t) = μσ (s) K (s, t) σ (t) +
∞∑

n=0

λnφn (s) K (s, t) φn (t),

uniformly on I × I . Since each term on the right is positive definite we see that

K (s, t) L (s, t) ≥◦ μσ (s) K (s, t) σ (t) (s, t ∈ I) ,

and so Lemma 2.2 is proved.
Having disposed of these preliminaries we can now turn our attention to

reductions. From now on our notation will be as set out in Definition 1.1 and Theorem
1.2 but until Section 3 we can assume that c ∈ �. Thus I = [a, b] always satisfies
0 < a < b < ∞, ψ is a non-negative, locally integrable function on (0,∞), and Kψ (s, t)
is the Laplace transform of ψ evaluated at s + t. We show first that if ψ ∈ Pc (0,∞)
then the asymptotic behaviour of the eigenvalues of TψI depends only on c.

LEMMA 2.3. Let I = [a, b] where a > 0, and let c ∈ �. If φ,ψ ∈ Pc(0,∞) then

λn(Kψ, I) � λn(Kφ, I). (2.3)

Proof. It is worth noting here that there is an easy special case. Suppose that, for
all u > 0,

αψ (u) ≤ φ (u) ≤ βψ (u) ,

where α, β > 0 are constant. It follows immediately from (1.2) that αTψI ≤ TφI ≤
βTψI , so that αλn(Kψ, I) ≤ λn(Kφ, I) ≤ βλn(Kψ, I), for all n, by (2.1).

We shall prove the general case by constructing a θ ∈ Pc (0,∞) which is continuous
on the closed half-line (0,∞) and satisfies

λn(Kψ, I) = O(λn(Kθ , I)), λn(Kθ , I) = O(λn(Kφ, I)) (2.4)

which will show that λn(Kψ, I) = O(λn(Kφ, I)); (2.3) will then follow by symmetry. For
the reader who likes to have examples in mind we suggest ψ(u) = u−1/2(1 + u3/2) and
φ(u) = max(0, u − 1), both elements of P1(0,∞).

To construct θ , let χ be the characteristic function of the interval (0, 1) and let θ

be the convolution product of ψ with χ :

θ (u) =
∫ u

0
ψ (v) χ (u − v) dv =

∫ u

α(u)
ψ (v) dv (u ≥ 0) ,
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where α (u) = max (0, u − 1). By the convolution theorem for Laplace transforms,

Kθ (s, t) = Kψ (s, t) Kχ (s, t) (s, t ∈ I) . (2.5)

Since χ ∈ P (0,∞), Kχ is positive definite on I × I , as we have already seen in Section 1.

To verify the first relation in (2.4) we begin by applying Lemma 2.2 (ii) to the
product kernel in (2.5). We put K = Kψ, L = Kχ , H = L2 (I) and S = T1/2

LI . Lemma
2.2 (ii) is most useful when we can choose σ to be bounded and bounded away from
0, and this problem will be uppermost in our mind in the following construction of ρ

and σ = Sρ.
Let e be a fixed continuous, strictly positive function on I , and let σ = TχI e. By

(1.3),

σ (s) =
∫

I
Kχ (s, t) e (t) dt =

∫
I

1 − e−(s+t)

s + t
e (t) dt (s ∈ I) .

Since s, t ≥ a > 0 on I × I it is clear that σ is continuous and strictly positive on I .
Now put ρ = T1/2

χI e, so that σ = Sρ: necessarily ρ �= 0 . If, therefore, μ = ‖T1/2
χI e‖−2

we see, from Lemma 2.2 (ii), that

Kθ (s, t) ≥◦ μσ (s) Kψ (s, t) σ (t) (s, t ∈ I) , (2.6)

the conjugate sign over σ (t) being superfluous.
Now the kernels in (2.6) are analogous to matrices. We shall convert (2.6) into an

operator inequality as follows. Let M be the multiplication operator on L2 (I) : Mf =
σf. Since σ is bounded and real, M is continuous and symmetric and (2.6) is equivalent
to

TθI ≥ μMTψI M.

But, since σ is bounded away from 0, M is invertible: M−1f = f/σ . Therefore

TψI ≤ μ−1M−1TθI M−1,

and it follows from Lemma 2.1 (ii) that

λn(TψI ) ≤ μ−1λn(M−1TθI M−1) = O(λn(TθI )),

which is the same as saying λn(Kψ, I) = O(λn(Kθ , I)).
It remains for us to show that λn (Kθ , I) = O (λn (Kθ , I)), see (2.4). First let us note

that, for all m ≥ 0,

θ (u) � φ (u) � φ (u + m) � uc, as u → ∞.

Fix m > 0 and δ > 0 such that φ (u) ≥ δuc, for u ≥ m. Since θ is continuous on (0,∞)
we see that θ (u) /φ (u + m) is bounded over u ≥ 0. So we can choose an α > 0 such
that θ (u) ≤ αφ (u + m), for all u > 0. Now, for all f ∈ L2 (I),

〈TθI f, f 〉 =
∫

I

∫
I

∫ ∞

0
f (s)f (t) θ (u) e−u(s+t)dudtds

=
∫ ∞

0
θ (u)

∣∣∣∣
∫

I
f (t) e−utdt

∣∣∣∣2

du

https://doi.org/10.1017/S0017089508004606 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004606
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≤ α

∫ ∞

0
φ (u + m)

∣∣∣∣
∫

I
f (t) e−utdt

∣∣∣∣2

du

= α

∫ ∞

m
φ (u)

∣∣∣∣
∫

I
f (t) emte−utdt

∣∣∣∣2

du

≤ α

∫ ∞

0
φ (u)

∣∣∣∣
∫

I
f (t) emte−utdt

∣∣∣∣2

du

= α

∫
I

f (s)ems
∫

I
f (t) emt

∫ ∞

0
φ (u) e−u(s+t)dudtds

= α
〈
TφI Mf, Mf

〉
,

where M is the continuous symmetric multiplication operator on L2 (I) : Mf (s) =
emsf (s) .

We have proved, therefore, that TθI ≤ αMTφI M, so that, by Lemma 2.1 (ii),
λn(Kθ , I) = O(λn(Kφ, I)). Since we have now verified both relations in (2.4) we can
say that λn(Kψ, I) = O(λn(Kφ, I)); so (2.3) now follows, by symmetry.

This lemma shows us that, for a given c ∈ �, we need to only verify Theorem 1.2
for one special case ψ ∈ Pc (0,∞). A judicious choice of ψ will enable us to compare
the corresponding operator with an operator S satisfying the hypotheses of Theorem
1.1. This can be done quite efficiently when c > −1, because we shall be able to use a
unitary equivalence of the following kind.

Suppose that J ⊆ � is another closed interval and that σ : J → I is a C1

homeomorphism with σ ′ (t) > 0 on J. Then σ induces a unitary operator Uσ mapping
L2 (I) onto L2 (J) :

Uσ f (s) = f (σ (s)) σ ′ (s)1/2 (
f ∈ L2 (I) , s ∈ J

)
. (2.7)

The inverse U−1
σ = U∗

σ : L2 (J) → L2 (I) is given by an analogous formula involving
σ−1. If K is an L2-integral kernel on I × I then the function σK on J × J:

σK (s, t) = σ ′ (s)1/2 K (σ (s) , σ (t)) σ ′ (t)1/2 (s, t ∈ J) (2.8)

is an L2-kernel on J × J. A simple integration by substitution argument is enough to
verify that

TσKJ = Uσ TKI U∗
σ

so that TσKJ and TKI have exactly the same eigenvalues.

3. Proof of Theorem 1.2 when c > −1 . Let us now fix I = [a, b], where 0 < a < b,
and fix c > −1. Lemma 2.3 allows us to verify Theorem 1.2 for just one special case of
ψ ∈ Pc (0,∞): we shall put ψ (u) = uc. Because of these choices we can now simplify
our notation, abbreviating Kψ to K and TψI to T . Thus K is the integral kernel on
I × I :

K (s, t) =
∫ ∞

0
uce−u(s+t)du = c!

(s + t)c+1 (s, t ∈ I) , (3.1)
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and T is the integral operator on L2(I) with kernel K :

Tf (s) =
∫

I

c!
(s + t)c+1

f (t)dt (f ∈ L2(I), s ∈ I). (3.2)

The Möbius transformation

σ (s) = 1 + s
1 − s

(3.3)

maps the open interval (−1, 1) in a strictly increasing fashion onto the open half-line
(0,∞): its derivative σ ′ (s) = 2/ (1 − s)2 is everywhere positive. Let us define

α = σ−1 (a) , β = σ−1 (b) , J = [α, β] , (3.4)

so that −1 < α < β < 1 and σ (J) = I. It is elementary that

σ−1 (s) = s − 1
s + 1

, σ−1′ (s) = 2

(1 + s)2 (3.5)

and that

β − α

1 − αβ
= σ−1 (b) − σ−1 (a)

1 − σ−1 (a) σ−1 (b)
= b − a

b + a
. (3.6)

The significance of (3.6) will be seen by referring to the statements of Theorems 1.1
and 1.2.

Let U = Uσ : L2 (I) → L2 (J) be the unitary operator in (2.7) with σ as in (3.3).
Then the eigenvalues of T are exactly the same as those of UTU∗. By (2.8) and (3.2)
this last operator is the positive integral operator on L2 (J) with kernel

σK (s, t) = σ ′ (s)1/2 K (σ (s) , σ (t)) σ ′ (t)1/2

= 2K (σ (s) , σ (t))
(1 − s) (1 − t)

= 2−cc!
(1 − s)c (1 − t)c

(1 − st)c+1 (s, t ∈ J) . (3.7)

Let S be the integral operator on L2 (J) with kernel

L (s, t) = 1

(1 − st)c+1 =
∞∑

n=0

∣∣∣∣
(−c − 1

n

)∣∣∣∣ sntn (s, t ∈ J). (3.8)

It follows from Stirling’s formula that the coefficients (an) in the series here satisfy
(an) � nc; so, by Theorem 1.1 and (3.6),

λn (S) � ncq
(

β − α

1 − αβ

)n

= ncq
(

b − a
b + a

)n

. (3.9)

Referring back to (3.7), let M be the multiplication operator on L2 (J) : Mf (s) =
(1 − s)c f (s) . Then M is continuous, symmetric and invertible (because 1 /∈ J) and
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(3.7) is equivalent to

UTU∗ = 2−cc!MSM.

It follows from (3.9) and Lemma 2.1 (iii) that

λn (T) = 2−cc!λn (MSM) � λn (S) � ncq
(

b − a
b + a

)n

.

REMARK 3.1. The method of Section 3 breaks down when c ≤ −1 because the
function ψ (u) = uc is not a member of Pc (0,∞): it is not locally integrable. More
indirect methods will be needed, and we plan to prepare a paper in this case as well.

4. Proof of Lemma 2.1. To prove (i), fix n ≥ 0 and let E be any closed sub-space
of H with dim E⊥ = n. Then, for all g ∈ E with ‖g‖ = 1,

〈Ag, g〉 ≤ ‖A − B‖ + 〈Bg, g〉
≤ ‖A − B‖ + sup

f ∈E,‖f ‖=1
〈B f, f 〉 .

It follows from (2.1) that

λn (A) ≤ sup
f ∈E,‖f ‖=1

〈Af, f 〉 ≤ ‖A − B‖ + sup
f ∈E,‖f ‖=1

〈B f, f 〉

Now if we take the inf of the right-hand side here over all E with dim E⊥ = n we see,
by (2.1) that

λn (A) ≤ ‖A − B‖ + λn (B) ,

so that λn (A) − λn (B) ≤ ‖A − B‖, and hence, by symmetry

|λn (A) − λn (B)| ≤ ‖A − B‖ .

To prove (ii), fix n ≥ 0 and ε > 0 and choose a sub-space F ⊆ H1 with dim F⊥ = n
such that

〈Sg, g〉 ≤ (λn (S) + ε) ‖g‖2 (g ∈ H1) .

Now let

E = { f ∈ H : V∗f ∈ F}.

Then f ∈ E if and only if 〈f, Ve〉 = 0, for all e ∈ F⊥. That is, E = (
VF⊥)⊥

, so that
dim E⊥ = dim VF⊥ = k ≤ n. So if f ∈ E we have〈

VSV∗f, f
〉 = 〈

SV∗f, V∗f
〉 ≤ (λn (S) + ε)

∥∥V∗f
∥∥2 ≤ ‖V‖2 (λn (S) + ε) ‖f ‖2

since ‖V∗‖ = ‖V‖. Hence by (2.1)

λn (VSV∗) ≤ λk (VSV∗) ≤ λn (S) + ε,

and item (ii) follows because ε was arbitrary.
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If, in addition, V is invertible then, because S = V−1 (VSV∗) V−1∗, we now have,
by (ii) ∥∥V−1

∥∥−2
λn (S) ≤ λn (VSV∗) ≤ ‖V‖2 λn (S) .

To prove (iv), let F by the range of R, so that F is a closed sub-space and dim F = m =
rank R ≤ N. Since R is symmetric, F⊥ is just the null-space of R, so that 〈R f, f 〉 ≡ 0
on F , and 〈(A + R) f, f 〉 ≡ 〈A f, f 〉 on any sub-space E ⊆ F .

Now fix n ≥ N and ε > 0, and choose a closed sub-space G ⊆ H with dim G⊥ =
n − N and such that

〈Af, f 〉 ≤ (λn−N (A) + ε) ‖f ‖2 (f ∈ G) .

Let E = F ∩ G; then E⊥ = F⊥ + G⊥, so that dim E⊥ = k ≤ n. So, for all f ∈ E,

〈(A + R) f, f 〉 = 〈Af, f 〉 ≤ (λn−N (A) + ε) ‖f ‖2
,

and hence, by (2.1),

λn (A + R) ≤ λk (A + R) ≤ λn−N (A) + ε.

Since ε was arbitrary (iv) now follows.
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