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Abstract

We show that if w is a multilinear commutator word and G a finite group in which every metanilpotent
subgroup generated by w-values is of rank at most r, then the rank of the verbal subgroup w(G) is bounded
in terms of r and w only. In the case where G is soluble, we obtain a better result: if G is a finite soluble
group in which every nilpotent subgroup generated by w-values is of rank at most r, then the rank of w(G)
is at most r + 1.
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1. Introduction

Guralnick [11] and Lucchini [17] independently proved that if all Sylow subgroups of a
finite group G can be generated by d elements, then the group G itself can be generated
by d + 1 elements. This was an improvement over an earlier result due to Longobardi
and Maj [15] giving the bound 2d.

It follows that if all nilpotent subgroups of a finite group G have rank at most r, then
the group G has rank at most r + 1. Here, the rank of a finite group is the minimum
number r such that every subgroup can be generated by r elements.

In the present paper, we are concerned with the question of whether the rank of
a verbal subgroup w(G) can be bounded in terms of ranks of nilpotent subgroups
generated by w-values. Recall that, given a group G and a group-word w, the verbal
subgroup w(G) is the one generated by the set Gw of all w-values in G. In general,
elements of w(G) are not w-values but there are many results showing that the set Gw

has a strong influence on the structure of G (see, for example, [19]). Thus, the main
theme of this article is as follows.
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QUESTION 1.1. Let w be a group-word and let G be a finite group in which every
nilpotent subgroup generated by w-values has rank at most r. Is the rank of the verbal
subgroup w(G) bounded in terms of r and w only?

In the case where w = xn is the power word for n ≥ 2, the answer to the above
question is negative. Indeed, let G = FK be a Frobenius group with kernel F and cyclic
complement K satisfying the conditions that Fn = 1 and Kn = K. It is straightforward
that Gn = G while any nilpotent subgroup generated by nth powers is cyclic. However,
F can be chosen to be of arbitrarily large rank. Hence the rank of G cannot be bounded
in terms of n.

In view of this example, we focus on commutator words. Similar issues with respect
to the exponent of a verbal subgroup of a finite group were addressed in [20] where,
in particular, it was proved that if w is a multilinear commutator word and G a finite
group in which the exponent of any nilpotent subgroup generated by w-values divides
some fixed number e, then the exponent of w(G) is bounded in terms of e and w only.
Later, this was extended in [3] to some words that are not necessarily multilinear.
We recall that a finite group G is said to have exponent e if e is the least positive
number such that ge = 1 for each g ∈ G. Multilinear commutator words, also known
as outer commutator words, are obtained by nesting commutators, but using always
different indeterminates. For example, the word [[x1, x2], [x3, x4, x5], x6] is a multilinear
commutator word.

The question about the rank of a verbal subgroup is more complex than that of
the exponent. The main catch is that the condition that every nilpotent subgroup
generated by w-values has rank at most r may fail in homomorphic images of G.
The corresponding condition on the exponent was shown in [20] to survive under
homomorphisms.

In this paper, we find a way around that obstacle in the case of soluble groups. Our
first result is the following theorem.

THEOREM 1.2. Let w be a multilinear commutator word and let G be a finite soluble
or finite simple group in which every nilpotent subgroup generated by w-values has
rank at most r. Then the rank of the verbal subgroup w(G) is at most r + 1.

Theorem 1.2 is almost a straightforward consequence of the verification of the Ore
conjecture [14] and the following proposition, which is a generalisation of the focal
subgroup theorem to multilinear commutator words in soluble finite groups. This
might be of independent interest (see Section 3).

PROPOSITION 1.3. Let w be a multilinear commutator word and let G be a finite
soluble group. Let P be a Sylow p-subgroup of G. Then P ∩ w(G) can be generated
by w-values lying in P.

It remains unknown whether the above proposition can be extended to arbitrary
finite groups. The main result of [1] says that if w is a multilinear commutator word
and G is a finite group, then P ∩ w(G) can be generated by powers of w-values. We
also mention that, for derived words, the proposition was established in [2].
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In the general case, that is, where G is not assumed to be either soluble or simple, we
are able to answer only a weaker version of the main question: namely, the condition
on the rank is imposed on the metanilpotent subgroups generated by w-values rather
than the nilpotent ones.

THEOREM 1.4. Let w be a multilinear commutator word and let G be a finite group in
which every metanilpotent subgroup generated by w-values has rank at most r. Then
the rank of the verbal subgroup w(G) is bounded in terms of r and w only.

Recall that a group G is metanilpotent if there is a normal subgroup N such that
N and G/N are both nilpotent. Obviously, Theorem 1.4 furnishes evidence that, for
multilinear commutator words, the answer to our question should be positive. We
do not know for which other words results of a similar nature can be obtained. In
particular, it would be interesting to see whether Theorems 1.2 and 1.4 remain valid
when w is an Engel word.

2. Multilinear commutator words

We recall that multilinear commutator words are recursively defined as follows.
The group-word w(x) = x in one indeterminate is a multilinear commutator; if α and
β are multilinear commutators involving disjoint sets of indeterminates, then the word
w = [α, β] is a multilinear commutator, and all multilinear commutators are obtained in
this way. Here and in the rest of the paper, given two elements a and b of a group G, we
use the standard notation [a, b] = a−1b−1ab and ab = b−1ab. Examples of multilinear
commutators include the familiar lower central words γn(x1, . . . , xn) = [x1, . . . , xn] and
derived words δn, on 2n variables, defined recursively by

δ0 = x1, δn = [δn−1(x1, . . . , x2n−1 ), δn−1(x2n−1+1, . . . , x2n )].

Of course, δn(G) = G(n) is the nth derived group of a group G.
Let X be a subset of a group and let w = w(x1, . . . , xn) be a multilinear commutator

word. We set
Xw = {w(y1, . . . , yn) | yi ∈ X}.

We say that the subset X is commutator-closed if [x, y] ∈ X whenever x, y ∈ X.
If G = 〈X〉 is a group generated by a commutator-closed set X, then the commutator

subgroup G′ is generated by commutators [x, y], where x, y ∈ X (see [2, Lemma 2.2]).
Here we generalise this result to multilinear commutator words.

PROPOSITION 2.1. Let G = 〈X〉 be a group generated by a commutator-closed set X
and let w be a multilinear commutator word. Then w(G) = 〈Xw〉.

To prove Proposition 2.1, we need the concepts of height and defect of a multilinear
commutator word, introduced in [8]. For the reader’s convenience, we now describe
some results from [8].

DEFINITION 2.2. The height and the labelled tree of a multilinear commutator word
are defined recursively as follows.
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γ4

[x1, x2, x3] x4

[x1, x2] x3

x1 x2

δ3

[[x1, x2], [x3, x4]] [[x5, x6], [x7, x8]]

[x1, x2] [x3, x4] [x5, x6] [x7, x8]

x1 x2 x3 x4 x5 x6 x7 x8

FIGURE 1. The trees of the words γ4 and δ3.

(1) An indeterminate has height zero, and its tree is an isolated vertex, labelled with
the name of the indeterminate.

(2) If w = [α, β], where α and β are disjoint multilinear commutator words, then the
height ht(w) of the word w is taken to be the maximum of the heights of α and β
plus one, and the tree of w is obtained by adding a new vertex with label w and
connecting it to the vertices labelled α and β of the corresponding trees of these
words.

The tree of a multilinear commutator word w provides a visual way of reading
how w is constructed by nesting commutators, which is easier than writing the actual
expression for w using commutator brackets. We draw these trees by going downwards
whenever we form a new commutator, so that the vertex with label w is placed at the
root of the tree. Every vertex v is labelled with a multilinear commutator word, which
we denote by wv. Note that the indeterminates correspond exactly to the vertices of
degree one. Also, the height of w coincides with the height of the tree, that is, the
largest distance from the root to another vertex of the tree (which is necessarily labelled
by an indeterminate). For example, Figure 1 shows the trees for the words γ4 and δ3.

More generally, the full tree of height h corresponds to the derived word δh.
All labels of the tree of a multilinear commutator word are determined, up to

permuting the indeterminates, by the tree itself (as a graph without labels): given the
tree, we only need to associate an indeterminate to every vertex of degree one, and
then proceed downwards by labelling each vertex with the commutator of the labels of
its immediate ascendants.

DEFINITION 2.3. Let v be a vertex of the tree of a multilinear commutator word w of
height h. We say that v is in the ith level of the tree if it lies at distance h − i from the
root of the tree.

Thus the upmost level is level zero and the root is at level h, but note that a vertex v
at level i is not necessarily labelled with a word wv of height i: it might happen that wv

is an indeterminate.
It is also useful to associate a companion vertex to each vertex of the tree that is

different from the root, defined as follows.

DEFINITION 2.4. Let p be a vertex of the tree of a multilinear commutator word w
that is different from the root and let u be the immediate descendant of p. Then the
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companion of p is the only other vertex q of the tree which has u as an immediate
descendant.

It is clear that companion vertices lie on the same level of the tree.
We prove Proposition 2.1 for a general multilinear commutator word w by induction

on the ‘distance’ of w to the closest derived word. We make this notion of distance
precise in the following definition.

DEFINITION 2.5. Let w be a multilinear commutator word of height h. Then the defect
of w, which is denoted by def w, is defined as

def w = 2h+1 − 1 − V ,

where V is the number of vertices of the tree of w.

So, if the height of w is h, then the defect is the number of vertices that need to be
added to the tree of w in order to get the tree of δh. Thus the defect is zero if and only
if w is a derived word, and we have def γ4 = 8 and def [γ3, γ3] = 4.

DEFINITION 2.6. Let T be the tree associated to a multilinear commutator word w.
A subset S of vertices of T is called a section of T if S is maximal (with respect
to inclusion) subject to the condition that S does not contain two vertices where one
is a descendant of the other. Equivalently, in terms of labels, this means that every
indeterminate involved in w appears in exactly one word wv with v ∈ S.

A very natural way of obtaining a section is by cutting a tree below level i, that is,
we consider the section S containing all vertices at level i + 1 and all the vertices of
the tree lying below level i + 1 labelled by an indeterminate. This is the type of section
that we use in the proof of Proposition 2.1. Figure 2 shows an example of a section
obtained by cutting below level 0.

[γ4, γ4]

aaaaaaaaaaaa aaa

aaa

aaaaa aaa

aaaaaa S

FIGURE 2. Example of a section.

LEMMA 2.7 [8, Lemma 3.2]. Let w be a multilinear commutator word and let T be the
tree of w. If η is another multilinear commutator word, then, for every v ∈ T, we define
π(v) to be the word whose tree is obtained by replacing the tree of wv at vertex v by the
tree of [wv, η]. Then, for every section S of T and for every group G,

[w(G), η(G)] ≤
∏

v∈S
π(v)(G).
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DEFINITION 2.8. Let ϕ and w be two multilinear commutator words.

1. We say that w is a constituent of ϕ if w is the label of a vertex in the tree of ϕ.
2. We say that ϕ is an extension of w if the tree of ϕ is an upward extension of the

tree of w (simply as a tree, without labels).

Thus, in order to get an extension of w, we only need to draw new binary trees at
some of the vertices which are labelled by indeterminates in the tree of w.

[γ4, δ2]

FIGURE 3. An extension of [γ4, δ2].

In Figure 3, the black tree represents the word w = [γ4, δ2] and the extension of
w, which is obtained by adding the grey trees, is ϕ = [[γ3, γ3], [δ2, γ3]]. Clearly, the
derived word δh is an extension of all words of height less than or equal to h.

Observe that, if G is a group and ϕ is an extension of w, then ϕ(G) ≤ w(G).
Moreover, if α is a constituent of w, then w(G) ≤ α(G).

The proof of Proposition 2.1 depends on the following result which is implicit in
the proof of Theorem B of [8].

THEOREM 2.9. Let w = [α, β] be a multilinear commutator word of height h. If w � δh,
then at least one of the subgroups [w(G),α(G)] and [w(G), β(G)] is contained in a
product of verbal subgroups corresponding to words that are proper extensions of w
of height h.

For the reader’s convenience we include a proof.

PROOF. Let Φ be the (finite) set of all multilinear commutator words of height h that
are a proper extension of w and set H =

∏
ϕ∈Φ ϕ(G).

aaaaaaaa aaaaa

aaaaaa S

p q

v

r

w

p q

v

w(v)

r

w(r)

FIGURE 4. The two different cases for the construction of w(v) with v ∈ S. Observe that i = 1 in this
example.
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Let i be the largest integer for which there is a vertex in the tree of w at level i with
label δi. Note that 1 ≤ i < h, since w is not a derived word. Let S be the section of
the tree of w obtained by cutting the tree below level i, so that S contains all vertices
at level i + 1 and all the vertices of the tree lying below level i + 1 that are labelled
with an indeterminate. For every vertex v in S, we construct a word w(v), as follows
(see Figure 4 for an example). If the label wv of v is not an indeterminate, then we can
write wv = [wp, wq], where p and q are the companion vertices at level i having v as
immediate descendant. By the maximality of i, one of these vertices is labelled with a
word which is different from δi. For simplicity, let us assume that this happens for q,
the vertex on the right (the argument is exactly the same otherwise). We define w(v) to
be the word whose tree is obtained by replacing wq with δi in the tree of w. Thus the
label of w(v) at the vertex v is the commutator [wp, δi]. On the other hand, if wv is an
indeterminate, then w(v) is defined simply by putting the tree corresponding to δi on
top of the vertex v in the tree of w.

In any case, it is clear that ht(w(v)) = h and that w(v) is a proper extension of w, so
that w(v) belongs to Φ. Consequently, we have w(v)(G) ≤ H for every vertex v in the
section S.

On the other hand, if we apply Lemma 2.7 to the section S with δi playing the role
of η, then

[w(G), δi(G)] ≤
∏

v∈S
π(v)(G). (2-1)

Here, π(v) is the word whose tree is obtained by inserting the tree of [wv, δi] at vertex v
into the tree of w. Now it is easy to compare the two words w(v) and π(v): they look the
same at all vertices of the original tree of w, except for the vertex v, where π(v) has the
label [wv, δi] and w(v) has either [wp, δi] or δi. In either of the two cases,

(π(v))v(G) ≤ (w(v))v(G),

and then, since π(v) and w(v) have the same labels outside the tree above v, also

π(v)(G) ≤ w(v)(G).

Since this happens for all vertices in S, it follows from (2-1) that

[w(G), δi(G)] ≤ H.

Now, by the definition of i, the derived word δi is a constituent of either α or β and,
consequently, either [w(G),α(G)] ≤ H or [w(G), β(G)] ≤ H. This concludes the proof
of the theorem. �

We also need the following observation.

LEMMA 2.10. Let H, K be two subgroups of a group G such that H = 〈A〉, K = 〈B〉
and let C = {[a, b] | a ∈ A, b ∈ B}. Let T = 〈C〉. If [a, b]ã, [a, b]b̃ ∈ T for all a, ã ∈ A
and b, b̃ ∈ B, then T = [H, K].
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PROOF. It follows from the hypotheses that T is a normal subgroup of 〈H, K〉, and
thus, in the quotient group 〈H̄, K̄〉 = 〈HT/T , KT/T〉, we have that every generator of
H̄ commutes with every generator of K̄. Therefore [H̄, K̄] = 1, that is, [H, K] ≤ T . The
reverse inclusion is obvious. �

PROOF OF PROPOSITION 2.1. We argue by double induction: we first use induction
on the height of the word w, and then, for a fixed value of the height, induction on the
defect of w. If w has height zero, then w = x1 and the result holds. Now assume that
h = ht(w) ≥ 1 and that the result has been proved for any multilinear commutator word
whose height is less than h. If def w = 0, then w is a derived word, and the result holds
by [2, Lemma 2.2]. So we assume that def w > 0. Let us write w = [α, β], where α and
β are multilinear commutator words of height smaller than h. Then, by induction on
the height, α(G) = 〈Xα〉 and β(G) = 〈Xβ〉.

Let Φ be the (finite) set of all multilinear commutator words of height h that are a
proper extension of w. Then, by induction on the defect, ϕ(G) = 〈Xϕ〉 for each ϕ ∈ Φ.

Let T = 〈Xw〉. Since X is commutator-closed, we have that Xϕ ⊆ Xw for each ϕ ∈ Φ.
Therefore ∏

ϕ∈Φ
ϕ(G) ≤ T .

In view of Theorem 2.9, at least one of the subgroups [w(G),α(G)] and [w(G), β(G)]
is contained in T .

Now, by Lemma 2.10, in order to prove that T = w(G) it is enough to prove that
[a, b]ã, [a, b]b̃ ∈ T for all a, ã ∈ Xα and b, b̃ ∈ Xβ.

Let us assume that [w(G),α(G)] ≤ T; the other case is similar.
Then [a, b]ã = [a, b][a, b, ã] ∈ T , as [a, b] ∈ Xw and [a, b, ã] ∈ [w(G),α(G)] ≤ T .

This proves that T is normalised by α(G).
Moreover, as [a, b] ∈ α(G) = 〈Xα〉, we can write [a, b] = c1c2 · · · cr with ci ∈ Xα ∪

Xα−1. Then [a, b]b̃ = [a, b][a, b, b̃] and, by the standard commutator identities, we
can write [a, b, b̃] = [c1c2 · · · cr, b̃] as the product of r α(G)-conjugates of elements
of the form [ci, b̃]. If ci ∈ Xα, then [ci, b̃] ∈ Xw ≤ T . If c−1

i ∈ Xα, then again [ci, b̃] =
([c−1

i , b̃]−1)ci ∈ Tα(G) = T . It follows that [a, b, b̃] ∈ T and thus [a, b]b̃ = [a, b][a, b, b̃] ∈
T , as desired. �

3. Proof of Proposition 1.3

The focal subgroup theorem (see, for example, [9, Theorem 7.3.4]) says that if P is
a Sylow subgroup of a finite group G, then P ∩ G′ is generated by elements of the form
[x, y] ∈ P, where x ∈ P and y ∈ G. In particular, it follows that the Sylow subgroups of
G′ are generated by commutators. Thus, the following question arises.

Let w be a commutator word, let G be a finite group and let P be a Sylow p-subgroup
of w(G). Is it true that P can be generated by w-values lying in P?

The above question was introduced in [1] where it was proved that if w is a
multilinear commutator word, then P is generated by powers of w-values. In this
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section, we prove that if G is soluble, then indeed P can be generated by w-values.
For the derived words, this was established in [2, Lemma 2.5]. To deal with arbitrary
multilinear commutator words, we require the following combinatorial lemma.

Let i be a positive integer. We denote by I the set of all n-tuples (i1, . . . , in), where
all entries ik are nonnegative integers. We view I as a partially ordered set with the
partial order given by the rule that

(i1, . . . , in) ≤ (j1, . . . , jn)

if and only if i1 ≤ j1, . . . , in ≤ jn.
Given a group G, a multilinear commutator word w = w(x1, . . . , xn) and i =

(i1, . . . , in) ∈ I, we write

w(i) = w(G(i1), . . . , G(in))

for the subgroup generated by the w-values w(g1, . . . , gn) with gj ∈ G(ij). Further, set

w(i+) =
∏

w(j),

where the product is taken over all j ∈ I such that j > i.
Observe that w(i) = wi(G), where wi is the extension of w obtained by replacing, in

w(x1, . . . , xn), each xj with the word δij , for j = 1, . . . , n.
Note that if δh(G) = 1, then there is an n-tuple i such that w(i) � 1 but w(i+) = 1.

LEMMA 3.1 [4, Corollary 6]. Let G be a group, let w = w(x1, . . . , xn) be a multilinear
commutator word and let i ∈ I. If w(i+) = 1, then w(i) is abelian.

The next lemma is taken from [1].

LEMMA 3.2 [1, Lemma 1.1]. Let G be a finite group and let N be a normal subgroup
of G. If P is a Sylow p-subgroup of G and Y is a normal subset of G consisting of
p-elements, then YN ∩ PN = (Y ∩ P)N.

The following lemma also plays an important role.

LEMMA 3.3 [2, Lemma 2.1]. Any finite soluble group is generated by a commuta-
tor-closed set, all of whose elements have prime power order.

Now we are ready to prove that if w is a multilinear commutator word and G is a
finite soluble group, then, for any Sylow p-subgroup P of G, the corresponding Sylow
p-subgroup P ∩ w(G) of w(G) can be generated by the w-values lying in P.

PROOF OF PROPOSITION 1.3. Recall that G is a finite soluble group and that
w is a multilinear commutator word. We know from Lemma 3.3 that there is a
commutator-closed subset X ⊆ G such that X generates G and every element of X has
prime power order.

Recall that Xw stands for the set {w(x1, . . . , xn) | xi ∈ X}. For a prime p ∈ π(G), set

Xw,p = {x ∈ Xw | x is a p-element}
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and

Yw,p = {XG
w,p},

that is, Yw,p is the union of the conjugacy classes of elements of Xw,p.
We claim that if P is a Sylow p-subgroup of G, then P ∩ w(G) = 〈P ∩ Yw,p〉.
Without loss of generality, assume that G is a minimal counterexample to the above

claim. If N is a nontrivial normal subgroup of G, then the set X̄ = {xN | x ∈ X} has the
required properties. Since X is a commutator-closed set, we deduce that every element
of Xw has prime power order. Hence,

(X̄)w,p = Xw,p = {xN ∈ X̄w | xN is a p-element},

so that Ȳw,p = Yw,p. By minimality of G,

P̄ ∩ w(Ḡ) = 〈P̄ ∩ Ȳw,p〉 = 〈P̄ ∩ Yw,p〉.

By virtue of Lemma 3.2,

P ∩ w(G) = 〈P ∩ N, P ∩ Yw,p〉. (3-1)

So, if N is a p′-group, then P ∩ N = 1 and P ∩ w(G) = 〈P ∩ Yw,p〉, which is a
contradiction. Hence G has no nontrivial normal p′-subgroups.

We now use the notation introduced before Lemma 3.1. Let i ∈ I such that w(i) � 1
but w(i+) = 1. By Lemma 3.1, w(i) is abelian. Since G has no nontrivial normal
p′-subgroups, w(i) is a p-group. It follows from Proposition 2.1 that

w(i) = wi(G) = 〈Xwi〉.

Since w(i) is a p-group, Xwi = Xwi,p and P ∩ w(i) = w(i). Moreover, every wi-value is a
w-value, and hence Xwi,p ≤ Yw,p. We deduce from (3-1), applied with N = w(i), that

P ∩ w(G) = 〈P ∩ Yw,p, P ∩ w(i)〉 = 〈P ∩ Yw,p, w(i)〉 = 〈P ∩ Yw,p〉,

which is contrary to our assumptions. �

4. The proofs of Theorem 1.2 and Theorem 1.4

As mentioned in the introduction, now the proof of Theorem 1.2 follows easily.

PROOF OF THEOREM 1.2. Recall that G is a finite group in which every nilpotent
subgroup generated by w-values has rank at most r. Let H be a subgroup of w(G) and
let P be a Sylow p-subgroup of H. By the aforementioned result of Guralnick [11] and
Lucchini [17], it is sufficient to prove that the rank of P is at most r.

The Ore conjecture that every element of a nonabelian finite simple group is a
commutator was famously verified in [14]. Since w is a multilinear commutator word,
we easily deduce that if G is a nonabelian simple group, then every element of G is a
w-value. So P is a nilpotent subgroup of G generated by w-values. By hypotheses, the
rank of P is at most r.
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Now assume that G is soluble and let P̃ be a Sylow p-subgroup of w(G) contain-
ing P. By Proposition 1.3, P̃ can be generated by w-values. Hence, the rank of P̃ is at
most r. So, P also has rank at most r. �

We now start the preparations for the proof of Theorem 1.4.
The Frattini subgroup of a group G is denoted by Frat(G). Let us denote by Fit(G)

the Fitting subgroup of G and by Fi(G) the ith term of the upper Fitting series of G,
defined recursively by F1(G) = Fit(G) and Fi(G)/Fi−1(G) = Fit(G/Fi−1(G)). If G is a
finite soluble group, then the least number h with the property that Fh(G) = G is called
the Fitting height of G.

The next lemma is quite well known.

LEMMA 4.1. Let G be a finite soluble group of rank at most r. Then the Fitting height
of G is at most 2r + 1.

PROOF. Since Fit(G)/Frat(G) = Fit(G/Frat(G)) (see, for example, [18, 5.2.15]), with-
out loss of generality, we can assume that Frat(G) = 1. In this case, F = Fit(G) is a
direct product of abelian minimal normal subgroups of G, say,

F = N1 × · · · × Nt,

where each Ni is an elementary abelian pi-group of rank at most r.
Set Hi = G/CG(Ni), for i = 1, . . . t. Every Hi is isomorphic to a soluble linear group

acting on Ni, where Ni is a vector space of dimension at most r. As a soluble subgroup
of GL(n, F), where F is any field, has derived length at most 2n (see, for instance,
[7, Theorem 6.2A]), the derived length of each Hi is bounded by 2r. Therefore
G/ ∩t

i=1 CG(Ni) has derived length at most 2r. Since ∩t
i=1CG(Ni) = CG(F) ≤ F (see, for

example, [18, 5.4.4]) it follows that G/F has derived length at most 2r. We conclude
that G has Fitting height at most 2r + 1. �

As a corollary of Theorem 1.2, we deduce the following.

COROLLARY 4.2. Let w be a multilinear commutator word and let K be a finite soluble
group in which every nilpotent subgroup generated by w-values has rank at most r.
Then the Fitting height of K is bounded in terms of r and w.

PROOF. Let n be the height of w. As every δn-value of K is a w-value, K/w(K) is
soluble of derived length at most n. So it is sufficient to bound the Fitting height of
w(K). By Theorem 1.2 applied to K, the verbal subgroup w(K) has rank at most r + 1.
Therefore, by Lemma 4.1, the Fitting height of w(K) is bounded in terms of r. �

Every finite group G has a normal series, each of whose quotients is either soluble or
is a direct product of nonabelian simple groups. The nonsoluble length of G, denoted
by λ(G), was defined in [12] as the minimal number of nonsoluble factors in a series
of this kind: if

1 = G0 ≤ G1 ≤ · · · ≤ G2k+1 = G
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is a shortest normal series in which, for i even, the quotient Gi+1/Gi is soluble (possibly
trivial) and, for i odd, the quotient Gi+1/Gi is a (nonempty) direct product of nonabelian
simple groups, then the nonsoluble length λ(G) is equal to k.

PROPOSITION 4.3 [6, Proposition 2.2]. Let N, M be normal subgroups of G such that
λ(G/N) ≤ λ(G/M) ≤ 1. Then λ(G/N ∩M) ≤ 1.

Given a finite group G, we define T(G) as the intersection of all normal subgroups
N of G such that λ(G/N) ≤ 1. It is easy to deduce from Proposition 4.3 that
λ(G/T(G)) ≤ 1 and λ(G/T(G)) = 1 if and only if G is nonsoluble.

It is proved in [12] that the nonsoluble length λ(G) does not exceed the maximum
Fitting height of soluble subgroups of a finite group G. A straightforward consequence
of this result and Corollary 4.2 is the following lemma.

LEMMA 4.4. Let w be a multilinear commutator word and let G be a finite group in
which every nilpotent subgroup generated by w-values has rank at most r. Then the
nonsoluble length of G is bounded in terms of r and w.

The following well-known lemma is useful.

LEMMA 4.5. Let N be a normal subgroup of a finite group G. Then there exists a
subgroup H of G such that G = HN and H ∩ N ≤ Frat(H).

PROOF. The lemma clearly holds if N ≤ Frat(G), with H = G. On the other hand, if N
is not a subgroup of Frat(G), then there exists a proper subgroup of G supplementing N.
Let H be a subgroup of G which is minimal with respect to the property that G = HN.
If N ∩ H is not contained in Frat(H), then there exists a proper subgroup M of H such
that H = M(N ∩ H). Thus G = NH = MN, against the minimality of H. �

If w is a multilinear commutator word and N is a normal subgroup of a group
G containing no nontrivial w-values, then N centralises w(G) (see, for example, [21,
Theorem 2.3] or the comment after Lemma 4.1 in [5]).

The next two lemmas deal with particular cases of Theorem 1.4. Clearly, if G is
perfect, then G = w(G).

LEMMA 4.6. Let w be a multilinear commutator word and let G be a finite group
in which every metanilpotent subgroup generated by w-values has rank at most r.
If G/Frat(G) is a direct product of nonabelian simple groups, then the rank of G is
bounded in terms of r and w.

PROOF. Let P be a Sylow p-subgroup of G and set Φ = Frat(G). As PΦ is metanilpo-
tent, by assumption, the set Y = Gw ∩ PΦ generates a subgroup of rank at most r. It
follows, from the Ore conjecture [14], that every element of G/Φ is a w-value. Thus P
is contained in the set YΦ and so PΦ/Φ ≤ 〈Y〉Φ/Φ has rank at most r.

First, assume that G/Φ is a simple group. The subgroup N generated by Gw ∩ Φ
is nilpotent, and hence, by assumption, its rank is at most r. Since the image of Φ in
G/N contains no nontrivial w-values of G/N, and w is a multilinear commutator, Φ/N
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centralises w(G/N) = G/N. So Φ/N is a quotient of the Schur multiplier of the simple
group G/Φ. A corollary of the classification of finite simple groups is that the rank
of the Schur multiplier of any such group is at most two (see, for example, [10, Table
4.1]). As PΦ/Φ, Φ/N and N have bounded rank, we deduce that P has bounded rank.
Since this holds for every prime p, the aforementioned result of Guralnick [11] and
Lucchini [17] implies that the rank of G is bounded.

Now assume that G/Φ = S1 × · · · × St is a direct product of t > 1 nonabelian simple
groups Si. Let Q be a Sylow 2-subgroup of G. By the above argument, QΦ/Φ has
rank at most r. Since each Si has a nontrivial Sylow 2-subgroup, we deduce that t is at
most r. Therefore the lemma follows from the case where G/Φ is simple. �

LEMMA 4.7. Let w be a multilinear commutator word and let G be a perfect finite
group such that λ(G) = 1. Assume that every metanilpotent subgroup of G generated
by w-values has rank at most r. Then the rank of G is bounded in terms of r and w.

PROOF. As G is perfect and λ(G) = 1, the quotient group of G over its soluble radical
R(G) is a direct product of nonabelian simple groups. Moreover, by Corollary 4.2, the
Fitting height of R(G) is bounded in terms of r and w. So G has a normal series of
bounded length

1 = G0 < G1 < · · · < Gs−1 < Gs = G, (4-1)

where G/Gs−1 is a direct product of nonabelian simple groups and each section Gi/Gi−1
is nilpotent for i = 1, . . . , s − 1. We argue by induction on the minimal length s of such
a series. The case s = 1 is handled in Lemma 4.6, so we assume that s > 1.

Let H be a subgroup of G which is minimal with respect to the properties that
G = HG1 and H ∩ G1 ≤ Frat(H) (see Lemma 4.5). Note that H/H ∩ G1 is perfect since
it is isomorphic to G/G1. We have H = H′(H ∩ G1), and hence H′G1 = HG1 = G. We
therefore conclude that H is perfect, by minimality of H. Moreover, λ(H) = λ(G) = 1.

Consider the series of H

1 ≤ G1 ∩ H ≤ · · · ≤ Gs−1 ∩ H ≤ Gs ∩ H = H.

If s > 2, then (G2 ∩ H)/(G1 ∩ H) is nilpotent. Taking into account that G1 ∩ H ≤
Frat(H), we deduce that G2 ∩ H is nilpotent. By induction on the minimal length of a
series as in (4-1), H has bounded rank.

On the other hand, if s = 2, then H/Frat(H) is a homomorphic image of G/G1,
which is a direct product of nonabelian simple groups, and we can apply Lemma 4.6
to conclude that also, in this case, H has bounded rank.

Now consider the subgroup N = 〈Gw ∩ G1〉 generated by the w-values of G lying
in G1. Since the image of G1 in G/N contains no nontrivial w-values of G/N and w
is a multilinear commutator, G1/N centralises w(G/N) = G/N. Set K = G/N and note
that K/Z(K) is a homomorphic image of H. Therefore K/Z(K) has bounded rank. A
theorem of Lubotzky and Mann [16] (see also [13]) now implies that the derived group
K′ of K has bounded rank. Since G is perfect, we conclude that G/N has bounded rank.
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Finally, note that since N is a nilpotent subgroup generated by w-values, it has rank at
most r by the hypothesis. Therefore G has bounded rank, as claimed. �

Write G(∞) for the last term of the derived series of G. Set T1(G) = G(∞) and, by
induction, Ti+1(G) = T(Ti(G)). In view of Proposition 4.3, it is clear that if Ti−1(G) �
1, then Ti(G) is the unique smallest normal subgroup N of G such that λ(G/N) =
i − 1. Moreover, λ(Ti(G)/Ti+1(G)) = 1 and Ti(G) is perfect for every i ≥ 1 such that
Ti(G) � 1.

PROOF OF THEOREM 1.4. Recall that w is a multilinear commutator word and G is
a finite group in which every metanilpotent subgroup generated by w-values has rank
at most r. We want to prove that the rank of the verbal subgroup w(G) is bounded
in terms of r and w only. By Corollary 4.4, the nonsoluble length λ = λ(G) of G
is bounded in terms of r and w. We argue by induction on λ. If λ(G) = 0, then
G is soluble, and the result follows from Theorem 1.2. Assume that λ ≥ 1, and let
N = Tλ. Note that N is perfect. Moreover, λ(G/N) = λ − 1 and λ(N) = 1. By Lemma
4.5, there exists a subgroup H of G such that G = HN and H ∩ N ≤ Frat(H). Since
λ(H/H ∩ N) ≤ λ(G/N) = λ − 1 and H ∩ N ≤ Frat(H) is soluble, the nonsoluble length
of H is at most λ − 1. As H inherits the assumptions, by induction, w(H) has bounded
rank. Moreover, as N is perfect and λ(N) = 1, we deduce from Lemma 4.7 that N
has bounded rank. Now w(G)/w(G) ∩ N is isomorphic to w(G)N/N = w(H)N/N, so it
has bounded rank. As N also has bounded rank, we conclude that w(G) has bounded
rank. �
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