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Generalized k-Configurations

Sindi Sabourin

Abstract. In this paper, we find configurations of points in n-dimensional projective space (P
n) which

simultaneously generalize both k-configurations and reduced 0-dimensional complete intersections.

Recall that k-configurations in P
2 are disjoint unions of distinct points on lines and in P

n are induc-

tively disjoint unions of k-configurations on hyperplanes, subject to certain conditions. Furthermore,

the Hilbert function of a k-configuration is determined from those of the smaller k-configurations.

We call our generalized constructions kD-configurations, where D = {d1, . . . , dr} (a set of r positive

integers with repetition allowed) is the type of a given complete intersection in P
n. We show that the

Hilbert function of any kD-configuration can be obtained from those of smaller kD-configurations.

We then provide applications of this result in two different directions, both of which are motivated by

corresponding results about k-configurations.

1 Introduction

Recall that k-configurations in P
2 were defined by Geramita, Harima and Shin as dis-

joint unions of points on lines and in P
n were inductively defined as disjoint unions

of k-configurations in P
n−1, (see [2]). The individual pieces in the union were con-

nected by certain properties. Recall that α(X) is the smallest degree of a non-zero
element in I(X) and that σ(X) is the smallest degree at which the Hilbert function of
X stabilizes. Then, if X = X1 ∪ X2 ∪ · · · ∪ Xr where each Xi is contained in a hyper-

plane Hi , we require σ(Xi) < α(Xi+1). Intuitively, each piece must be small enough
in relation to the piece in the next hyperplane. Geramita, Harima and Shin [2] have
found a formula for the Hilbert function of a k-configuration in terms of those of the
smaller k-configurations in the disjoint union.

In this paper, we generalize their construction by demanding that our configu-
rations lie inside a given complete intersection V rather than only inside P

n. Let

D = {d1, . . . , dr} be the type of the given complete intersection. In order to mimic
the construction of k-configurations, we define σD(X) to be σ(X) and αD(X) to be
the smallest degree of a form in I(X) that is not in V. We then demand at each stage
that σD(Xi) < αD(Xi+1), where Xi and Xi+1 are in two consecutive hyperplanes in the

construction. We also define weak kD-configurations in the same way, but with the
condition σD < αD replaced with σD ≤ αD.

In Section 4, we provide two applications, one of which applies to weak kD-con-
figurations, while the other only applies to actual kD-configurations. First, we de-
termine the degree of each point in a weak kD-configuration. This generalizes [7,

Theorem 5.11]. Secondly, we consider sequences H which occur as the Hilbert func-
tion of some kD-configuration. If Y ⊆ V (F1, . . . , Fr) is a set of points with Hilbert
function H, and F is a hypersurface of degree d for which (F1, . . . , Fr, F) is a radical
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ideal of height r + 1, then we determine the maximal number of points on F ∩ Y in
terms only of T ↔ H and d. This generalizes [3, Theorem 3.15] and the proof follows

closely that found there.

Section 3 was extracted from Section 4.2 of the author’s Ph.D. thesis. The first
application detailed in Section 4 was extracted from Section 4.6 of the thesis. The
second application was not part of the thesis. This paper is the basis for two subse-
quent papers ([8] and [9]), both also based on the thesis, where we characterize the

Hilbert functions of kD-sequences by defining an analogue to O-sequences and where
we study their minimal free resolutions.

2 Preliminary Results

Let k be a field of characteristic 0, k = k. Let R = k[x0, . . . , xn] be the polynomial

ring in n + 1 variables with the standard grading and let P
n denote n-dimensional

projective space over k. All varieties will be reduced, although not necessarily irre-
ducible.

Let S0 = k, and let S = R/I where I is a homogeneous ideal, so that S is a finitely
generated N-graded k-algebra. The sequence H(S, i) := dimk Si is called the Hilbert

function of S. H(S, i) will sometimes be denoted HS(i). If V is a variety, then the

Hilbert function of V is the Hilbert function of R/I(V ), which we sometimes denote
by HV . If a sequence a1 a2 a3 . . . eventually becomes constant, say at the value a j , we
will denote this by a1 a2 a3 . . . a j →.

Definition 2.1 For any variety X ⊆ P
n, we put αX := min{i | HX(i) < HPn (i)}.

In addition, if X is a finite set of points, we put σX := min{i | ∆HX(i) = 0}. We
sometimes denote σX by σH , since σ depends only on H. Since α depends on H and

n, we sometimes denote αX by αH,n or, if n is understood, just αH .

A complete intersection (CI) will always be reduced:

Definition 2.2 A complete intersection is a projective variety V such that the (radi-
cal) ideal of V is I(V ) = (F1, . . . , Fr), where F1, . . . , Fr form a regular sequence. If

we let di := deg Fi , then (d1, . . . , dr) is usually referred to as the type of the complete
intersection, and we write V := CI(d1, . . . , dr) or V := CI(D), where D is the un-
ordered set (repetition allowed) {d1, . . . , dr}. Furthermore, if n ≥ r, we denote the
Hilbert function of a CI(D) in P

n by HD,n.

Remark 2.3 The notation HD,n makes sense because the Hilbert function of a CI(D)
in P

n depends only on n and D (see for example the proof of [6, I Proposition 7.6]

which proves that the Hilbert function of a hypersurface in P
n depends only on the

degree of the hypersurface; one can then use induction on the length of the regular
sequence).

Geramita, Maroscia and Roberts [4] have characterized the sequences which occur
as the Hilbert function of a finite set of points in P

n. The constructions they used in
their proof came to be called k-configurations, which we now wish to define. Before
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we can do so, we need to define the notion of an n-type vector, defined in [2]. We
simultaneously define the notion of a weak n-type vector.

Definition 2.4 ([2]) A 1-type vector is a vector of the form T = (d), where d is a
positive integer. For such a 1-type vector T, we define α(T) = d = σ(T). A weak

1-type vector is a 1-type vector.

A (weak) n-type vector is a vector of the form T = (T1, T2, . . . , Tr), where r ≥ 1,
the Ti are (weak) (n − 1)-type vectors, and (σ(Ti) ≤ α(Ti+1)) σ(Ti) < α(Ti+1) for
1 ≤ i ≤ r − 1. Define α(T) = r, and σ(T) = σ(Tr).

For convenience, we will denote the weak 2-type vector ((d1), . . . , (dm)) by

(d1, . . . , dm). Thus, for example, the 3-type vector (((1),(2)),((1),(3),(4))) will be
written as ((1,2),(1,3,4)). This does however create confusion since (d1) could de-
note either the 2-type vector ((d1)) or the 1-type vector (d1). If there is ever any
confusion, we will explicitly state what we are referring to.

The importance of n-type vectors rests on the following result:

Theorem 2.5 ([2, Theorem 2.6]) Let Sn denote the collection of Hilbert functions of

all sets of points in P
n. Then there is a 1-to-1 correspondence Sn ↔ {n-type vectors}

where if H ∈ Sn and H corresponds to T (we write H ↔ T) then α(H) = α(T) and

σ(H) = σ(T).

There is an inductive formula for obtaining a Hilbert function from its corre-
sponding n-type vector, which we now state:

Theorem 2.6 ([2, Proof of Theorem 2.6]) If n = 1 and T = (r), then T ↔ H =

1 2 · · · r →. If n > 1 and H ↔ T = (T1, . . . , Tr) with Hi ↔ Ti , then H( j) =

Hr( j) + Hr−1( j − 1) + · · · + H1( j − (r − 1)), where H(t) = 0 for t < 0.

Remark 2.7 Let H be a Hilbert function of s points in P
n. If T ↔ H, then the sum

of the 1-type vectors in T is s.

We are now ready to define the notions of k-configuration [2, Definition 4.1] and

weak k-configuration. We caution the reader that the term “weak k-configuration”
has been used in [5] to describe a slightly different object for points in P

2; our notion
is weaker than that of [5].

Definition 2.8 Let T be a (weak) n-type vector, n ≥ 1. Then a (weak) k-configura-

tion of type T is constructed in the following way:

n = 1: Then T = (d), and we choose any d distinct points of P
1. We say that these

d points form a (weak) k-configuration of type T in P
1.

n ≥ 2: Then T = (T1, . . . , Tr). Let H1, . . . , Hr be distinct hyperplanes in P
n. By

induction, we suppose we have a (weak) k-configuration Xi ⊂ Hi of type Ti for each
(weak) (n − 1)-type vector Ti . Suppose furthermore that Hi does not contain any
point of X j for any j < i. Then X =

⋃r
i=1 Xi is called a (weak) k-configuration of

type T.
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Example 2.9 In the diagram below, X1 consists of the two points of L1 that are not
in L2, X2 consists of the five points of L2, and X3 consists of the six points of L3. Then

X = X1 ∪ X2 ∪ X3 is a k-configuration of type T = (2, 5, 6). Notice that Li does not
contain a point of X j for j < i, although L1 does contain a point of X2.

@
@

@
@

@
@

@
@

@

u u u

u

u

u

u

u u u u u u

L1

L2

L3

Notice that X is not a k-configuration of type T = (3,4,6) since X1 would have to

consist of all 3 points on L1 and this includes a point of L2. This is not permitted.

Theorem 2.10 ([2, p. 21]) If X is a k-configuration of type T ↔ H, then X has

Hilbert function H.

A separator of a point P ∈ X from X \ P is a homogeneous polyonomial for which
f (P) 6= 0 and f (Q) = 0 for all Q ∈ X \ P. The degree of P in X, denoted deg

X
(P),

is the minimal d ∈ N for which there is a separator, homogeneous of degree d, of
P from X \ P. There is a formula for the degree of each point of a k-configuration.

Before we can state this formula, we need to introduce some notation.

Definition 2.11 Let T = (T1, . . . , Tr). We define T
n := T and T

n−1 := T1, the
left-most (n − 1)-type vector of T. For 1 ≤ j ≤ n − 2, we define T

j := (T j+1)1,
where T

j+1
= ((T j+1)1, . . . , (T j+1)α(T j+1)). Thus, T

j is the left-most j-type vector of

T for 1 ≤ j ≤ n.

Example 2.12 Consider the two 4-type vectors T and T
′ where

T = (((1)), ((1), (1, 2)))

and T
′
= (((2, 3), (1, 3, 4, 5)), ((1), (1, 2), . . . , (1, 2, 3, 4, 5, 6))). Then

T
4
= T (T ′)4

= T
′

T
3
= (((1))) (T ′)3

= ((2, 3), (1, 3, 4, 5))

T
2
= ((1)) (T ′)2

= (2, 3)

T
1
= (1) (T ′)1

= (2)

Definition 2.13 Let T be an n-type vector. Define tn(T) = 1, and tn−1(T) = α(T).
For 1 ≤ k ≤ n − 2, define tk(T) := α(Tk+1) +

∑n
i=k+2(α(Ti) − 1).
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Example 2.14 Let T =
((

(1, 2, 3), (1, 2, 3, 4)
)

,
(

(1), (1, 2), . . . , (1, 2, 3, 4, 5)
))

.
Then t4(T) = 1, t3(T) = 2, t2(T) = 3 and t1(T) = 5.

Definition 2.15 Each point P of a given k-configuration lies in a line which corre-
sponds to a 1-type vector of the corresponding T. We will denote α of this 1-type
vector by f (P). Remove from T everything to the left of the given 1-type vector

( f (P)), and add the appropriate number of left brackets at the beginning. Call the
resulting n-type vector TP.

Example 2.16 Let T = (T1, T2, T3) = ((1), (1, 2, 4), (1, 2, 3, 5, 8)). In a k-configu-

ration of type T, let P be any point on the second plane and on the second line in that
plane. Then f (P) = 2, and TP = ((2, 4), (1, 2, 3, 5, 8)).

Theorem 2.17 ([7, Theorem 5.11]) Let X be a k-configuration of type T, and P ∈ X.

Then degX(P) = f (P) + t1(TP) − 2.

Remark 2.18 In Example 2.16, f (P) = 2, so degX(P) = t1(TP) = 3.

We will generalize Theorem 2.17 to determine the degree of each point in a weak
kD-configuration (Theorem 4.2).

Geramita, Harima and Shin have shown that among all sets of points in P
n with

Hilbert function H, k-configurations have the most number of points on a hyper-
plane in [2] (or on a hypersurface of given degree in [3]). More precisely, for all sets
of points X with HX = H, they consider all the subsets Y of X which lie on a hyper-
surface of P

n of degree d ≥ 1 (assume that not all of X is in such a hypersurface,

so that d < α(H)). They referred to the set of all Hilbert functions of such subsets
Y as Subd(H). They then partially ordered Subd(H) as follows: define HY1

≤ HY2

if HY1
(i) ≤ HY2

(i) for every i. Under this partial ordering, Subd(H) has a unique
maximal element.

Theorem 2.19 ([3, Theorem 3.15]) Let H ↔ T = (T1, . . . , Tu). Let d < u be

a positive integer. Then H ′ ↔ (Tu−d+1, . . . , Tu) is the unique maximal element of

Subd(H).

Furthermore, if X is any set of points having a subset Y with this extremal Hilbert
function, they were able to determine the Hilbert function of X \ Y.

Theorem 2.20 ([3, Proposition 3.18]) Let X be a set of points in P
n with HX = H ↔

T = (T1, . . . , Tu). Let U ⊂ X satisfy HU ↔ (Tu−d+1, . . . , Tu). Then HX\U ↔
(T1, . . . , Tu−d).

We generalize these results in Theorems 4.6 and 4.8.
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3 Main Result

The main goal of this paper is to find configurations whose Hilbert functions can
be built up from those of smaller such configurations. To do so, we will generalize
both weak and actual k-configurations. We introduce some notation by attaching a

number to each unordered set D = {d1, . . . , dr} that will be used frequently.

Notation Let D = {d1, . . . , dr}. Then σ(D) := d1 + · · · + dr − r + 1.

Just as k-configurations are constructed as unions of points on lines, our construc-
tions will be unions of more general complete intersections. Letting

D = {d1, . . . , dr},

we begin by simultaneously defining nD-type vectors and weak nD-type vectors.

Definition 3.1 Let D = {d1, . . . , dr} be a set of positive integers (repetition al-
lowed). For t ≥ 1, we define a (weak) tD-type vector in the following way:

t = 1: A (weak) 1D-type vector T is a vector of the form T = (e), where e is a positive
integer. We define αD(T) := e and σD(T) := σ(D) + e − 1.

t > 1: Let T = (T1, . . . , Tu). Then T is said to be a (weak) tD-type vector if each Ti

is a (weak) (t − 1)D-type vector and

(σD(Ti) ≤ αD(Ti+1)) σD(Ti) < αD(Ti+1) for 1 ≤ i ≤ u − 1.

We define αD(T) := u and σD(T) := σD(Tu).

Example 3.2 Let T =((1,4),(2,6,9,12,15,19,23)) be a 3D-type vector, where D =

{2, 2}. Then αD(T) = 2, and σD(T) = 25.

Remark 3.3 If D = {1, 1, . . . , 1}, then σ(D) = 1 and a (weak) tD-type vector is just
a (weak) t-type vector.

Remark 3.4 Let T = ((e1), . . . , (er)) be a 2D-type vector. As before, we write T as
(e1, . . . , er) for simplicity.

Note that if we consider T as both a usual t-type vector and a tD-type vector, we
have σ(T) + σ(D) − 1 = σD(T). This is clear when T is a 1-type vector and then
the general case follows from the inductive nature of σD(T) and σ(T) for T a t-type
vector when t > 1.

Thus, we could have defined tD-type vectors without defining αD and σD, by just
demanding at each stage that σ(Ti)+σ(D) ≤ α(Ti+1) rather than σD(Ti) < αD(Ti+1).
We choose to define σD and αD because it will be helpful when looking at our gener-
alized notion of k-configurations.

Recall that a k-configuration X of type T satisfies σ(X) = σ(T) and α(X) = α(T).
We would like to find an analogous statement for αD(T) and σD(T). In order to do
so, we need to define a notion of αD and σD for varieties contained in a fixed CI(D)
similar to the notion of α and σ for varieties contained in P

n.
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Definition 3.5 Let D = {d1, . . . , dr}. Let X be contained in a CI(D) in P
n. Then put

αD(X) := min{i | HX(i) < HD,n(i)}. If we wish to stress that X is being considered

in P
n, we sometimes write αD,n(X). If X is a zero-dimensional subvariety, we put

σD(X) := min{i | ∆HX(i) = 0}, which is the usual σ.
We will sometimes use the notation αD(H) and σD(H) if H is the Hilbert function

of X, since the notions of αD(X) and σD(X) only depend on HX and not on X itself.

Definition 3.6 Let D = {d1, . . . , dr} and let n ≥ r + 1 be an integer. Let R =

k[x0, . . . , xn]. Let V be a fixed CI(D) in P
n, so that I(V ) = (F1, . . . , Fr) ⊂ R where

deg Fi = di .
We define a (weak) k-configuration with respect to V in P

n as follows:
n = r+1: Let T = (e) be a 1D-type vector. A (weak) k-configuration X with respect to
V of type T in P

n is V (F1, . . . , Fr, G) where G is a form of degree e and (F1, . . . , Fr, G)

is a radical ideal of height r + 1 in R.
The requirement on the height guarantees that X is a complete intersection. The

requirement that the ideal be radical guarantees that the type of the complete inter-
section is (d1, . . . , dr, deg G).

n = r + t, t > 1: Let T = (T1, . . . , Tu) be a (weak) tD-type vector. Let H1, . . . , Hu be
distinct hyperplanes in P

n, where Hi is defined by the linear form Hi . Suppose that
each (F1, . . . , Fr, Hi) is a radical ideal of height r + 1, so that Vi := V (F1, . . . , Fr, Hi)
is a CI(D) in Hi for which I(Vi) = (F1, F2, . . . , Fr) in R/Hi .

Let Xi be a (weak) k-configuration with respect to Vi in Hi of type Ti . Suppose
furthermore that Hi does not contain any point of X j for j < i. Then X =

⋃u
i=1 Xi is

a (weak) k-configuration with respect to V of type T in P
n.

Notation Let D = {d1, . . . , dr}. Let X be a (weak) k-configuration of type T with
respect to V , where V is a CI(d1, . . . , dr). Then we will say that X is a (weak) kD-
configuration.

Remark 3.7 While the notation “kD-configuration” is very useful, it might suggest
that X depends only on D and T. In fact, X depends on the complete intersection

V and it is crucial to the definition of a kD-configuration that the same complete
intersection be used throughout the construction.

The next result observes exactly how this new notion generalizes ordinary (weak)
k-configurations.

Proposition 1 Let r ≤ n, D = {d1, . . . , dr} = {1, 1, . . . , 1}, so that σ(D) = 1. Let

T be an (n − r)D-type vector. A (weak) kD-configuration X of type T in P
n is a usual

(weak) k-configuration in P
n−r of type T.

Proof Since D = {1, 1, . . . , 1}, X is a k-configuration with respect to

V = V (F1, . . . , Fr)

where each Fi is a linear form. So we have that R/(F1, . . . , Fr) ≃ k[x0, . . . , xn−r].
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If n = r + 1, then T is a (weak) 1-type vector (e) and a (weak) k-configuration of
type T with respect to V is X = V (F1, . . . , Fr, G) where deg G = e and (F1, . . . , Fr, G)

is a radical ideal of height r + 1. Let G = G mod (F1, . . . , Fr). Then

V (F1, . . . , Fr, G) = V (G)

in P
n−r

= P
1. But G 6= 0 since (F1, . . . , Fr, G) has height r + 1. Thus, G is a non-zero

form of degree e in R/(F1, . . . , Fr) ≃ k[x0, x1]. But G does not have any repeated
factors since (F1, . . . , Fr, G) is radical, so V (G) consists of e distinct points in P

1,

which is a usual k-configuration of type (e).

If n > r + 1, then let T = (T1, . . . , Tu) be a (weak) (n − r)-type vector. Then
X =

⋃u
i=1 Xi where Xi is a (weak) kD-configuration in a hyperplane Hi with respect

to V = V (F1, . . . , Fr) ∩ Hi of type Ti . By the induction hypothesis, Xi is a usual
k-configuration of type Ti in Hi . Furthermore, Hi does not contain any point of X j

for j < i, so X =
⋃u

i=1 Xi is a (weak) k-configuration.

Example 3.8 Let R = k[x0, x1, x2, x3] (so that n = 3), and let r = 1. Let F be
the degree 3 form (x0)(x0 − x3)(x0 − 2x3). We will construct a k-configuration with

respect to V = V (F). Let T = (1, 4, 8) = (e1, e2, e3) be a 2D-type vector with
D = {3}. Let H1, H2, H3 be three hyperplanes defined, respectively, by the linear
forms H1 = x2 − 2x3, H2 = x2 − x3 and H3 = x2. Certainly, (F, Hi) is a radical ideal
of height 2 for each i = 1, 2, 3. We construct Xi , a k-configuration with respect to Vi

in Hi of type Ti , where Ti = (ei), where I(Vi) = F = F mod Hi .

We need to find Xi = Z(F, Gi , Hi) where (F, Gi) is a radical ideal of height 2
in R = k[x0, . . . , xn]/(Hi). In particular, Xi is a complete intersection of type
(3, ei) in Hi . Letting G1 = x1, G2 = x1(x1 − x3)(x1 − 2x3)(x1 − 3x3) and G3 =

x1(x1 − x3) . . . (x1 − 7x3) will do.

�

�
��	

-

6

s s s s s s s s

s s s s s s s s

s s s s s s s s

s s s s

s s s s

s s s s

s

s

s

x1

x0

x2

Note that we did not need to choose either F or the Gi as products of linear forms;
we merely chose to do so for the purposes of this example. The Hi , of course, are

always linear.

As in the case of k-configurations, the Hilbert function of a kD-configuration of
type T will depend only on T and D. In fact, our result will determine the Hilbert
function of a weak kD-configuration of type T as long as σ(D) > 1, i.e., as long as X

is not a k-configuration.
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Let V be a fixed CI(D) in P
n and let X ⊆ V be any subvariety. Let H be a hyper-

plane chosen so that V ∩ H is a CI(D) in H ≃ P
n−1, not containing any irreducible

component of X. If we let H define H, so that (H) = I(H), then H is a non-zero-
divisor mod I(X). Let W ⊆ V ∩ H be any subvariety.

We have the following short exact sequence where bi , ci, di and ei are the dimen-
sions of the k-vector spaces indicated:

0 →(R/(I(X ∪ W))i →(R/I(W))i ⊕ (R/I(X))i →(R/(I(X) + I(W)))i →0

bi ci di ei

From linear algebra, we know that bi +ei = ci +di for all i. Our first goal is to show
that if σ(X) ≤ αD,n−1(W) and σ(D) > 1, then bi = ci + di−1 for all i. Then, once
we prove this result, we will be able to obtain, given the Hilbert functions of X and

W, the Hilbert function of their union. We will then be able to obtain the Hilbert
function of a weak kD-configuration of type T as a special case. We will prove this
result in several steps.

Theorem 3.9 Let W, X, bi, ci , di and ei be as above. Then

(1) ei ≤ ∆di for all i;

(2) ei = ∆di for i < αD,n−1(W);

(3) for i < αD,n−1(W), bi = ci + di−1;

(4) iIf σX ≤ αD,n−1(W), then bi = ci + di−1 for all i.

Proof (1) We have that ei = HR/(I(X)+I(W)) ≤ HR/(I(X)+(H)) = HR/I(X)/(I(X)+H)/I(X) =

∆HR/I(X), since H is not a zero-divisor mod I(X). By definition, this is just ∆di .

(2) Since W ⊆ H, we know that I(X) + I(H) ⊆ I(X) + I(W). But in P
n−1, I(W)

does not have any non-zero form of degree strictly less than αD,n−1(W) that is not
already in I(V ) ⊆ I(X). Hence, for i < αD,n−1(W), (I(X) + I(W))i = (I(X) + I(H))i .

Thus, ei = HR/(I(X)+I(H))(i) = ∆HR/I(X)(i) = ∆di .
(3)In general, bi + ei = ci + di for all i. But for i < αD,n−1(W), we can, by (2),

rewrite this as bi + di − di−1 = ci + di . So, bi = ci + di−1, as required.
(4)For i < αD,n−1(W), we are done, by (3). Now, ei = 0 for i ≥ σX, from (1), so

for i ≥ σX, we have bi = ci + di = ci + di−1. Thus, for all i, bi = ci + di−1.

Before proving our main result, we need the following lemma:

Lemma 1 Let W, X, bi, ci, di and ei be as above. If σD(X) < σD(W), then

σD(X ∪ W) = σD(W).

Proof From 3.9(1), ei ≤ ∆di for all i. Thus, ei = 0 for all i ≥ σX and so bi = ci + di

for all i ≥ σX. It follows that ∆bi = ∆ci + ∆di = ∆ci for all i > σX. But σ(W) >
σ(X), so ∆bσ(W) = ∆cσ(W) = 0. Recalling that the bi ’s represent X ∪W, we conclude
that σX∪W ≤ σW. But certainly, σX∪W ≥ σW, so we have the desired equality.

We are now ready to prove the main result of this paper.
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Theorem 3.10 Let D = {d1, . . . , dr} be a set of positive integers with σ(D) > 1. Let

V be a CI(D) in P
n, so that I(V ) = (F1, . . . , Fr) where deg Fi = di . Let X be a weak

k-configuration with respect to V in P
n of type T = (T1, . . . , Tu), where T is a weak

tD-type vector, where t = n − r. Then σD(HX) = σD(T), αD(HX) = αD(T) and if

t ≥ 2, then

HX( j) =

u
∑

i=1

HXi
( j − u + i),

where X =
⋃u

i=1 Xi with each Xi a weak kD-configuration of type Ti in the hyperplane

Hi . Furthermore, there is a 1-1 correspondence between (weak) nD-type vectors and

Hilbert functions of (weak) kD-configurations.

Proof We first prove by induction on t that αD(X) < σD(X). If t = 1, let T = (e) be

a 1D-type vector. Then HX = HCI(d1,...,dr ,e), so σ(HX) = σ(D)+e−1, and αD(HX) = e.
Note that αD(X) < σD(X) since σ(D) > 1. If t > 1, then by induction on t , we know
that

αD,n−1(Xi) < σD(Xi) ≤ αD,n−1(Xi+1) for 1 ≤ i ≤ u − 1.

Letting Hi be the linear form defining Hi , we know that each Hi is a non-zero-divisor

modulo I(V ). Hence H1H2 · · ·Hu is in I(X), but not in I(V ). So, αD,n(X) ≤ u ≤
αD,n−1(X1) + u − 1 ≤ αD,n−1(Xu) < σD(Xu) ≤ σD(X).

We now prove, by induction on k, that if t ≥ 2, then σ(
⋃k

i=1 X) = σ(Xk) for
1 ≤ k ≤ u. If k = 1, this is trivial, so we assume that k > 1. Then by induction on

k, σ(
⋃k−1

i=1 Xi) = σ(Xk−1) ≤ αD,n−1(Xk) < σ(Xk). So from Lemma 1, σ(
⋃k−1

i=1 Xi ∪
Xk) = σ(Xk).

We can now show that σ(X) = σ(T), by induction on t , the case t = 1 being clear:
σ(X) = σ(Xu) = σ(Tu) = σ(T).

Also, σ(
⋃u−1

i=1 Xi) = σ(Xu−1) ≤ αD(Xu). Thus, from Theorem 3.9(4), HX(i) =

HXu
(i) + HY (i − 1). Since Y =

⋃u−1

i=1 Xi is also a weak k-configuration with respect to
V (and the result is trivial for u = 1), we use induction to obtain that

HX(i) = HXu
(i) + HXu−1

(i − 1) + · · · + HX1
(i − u + 1).

We next claim that αD,n(
⋃k

i=1 Xk) = αD,n(
⋃k−1

i=1 Xi) + 1. Notice that

αD,n

(

k
⋃

i=1

Xi

)

≤ αD,n

(

k−1
⋃

i=1

Xi

)

+ 1

since if F ∈ I(
⋃k−1

i=1 Xi) \ I(V ), then FHk ∈ I(
⋃k

i=1 Xi) \ I(V ). But then

αD,n

(

k−1
⋃

i=1

Xi

)

< σ
(

k−1
⋃

i=1

Xi

)

≤ αD,n

(

k
⋃

i=1

Xi

)

≤ αD,n

(

k−1
⋃

i=1

Xi

)

+ 1.

So in fact αD,n(
⋃k

i=1 Xi) = αD,n(
⋃k−1

i=1 Xi) + 1. Since X1 ⊆ P
n−1, we have

αD,n(X1) = 1.
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So, αD,n(X) = u = α(T), as required.
Also, notice that the Hilbert function HD of a weak kD-configuration of type T is

completely determined from T and D, since if H ↔ T as a usual (n − r)-type vector,
we can obtain HD from H in the same way in which the Hilbert function of a CI(D)
in P

n is obtained from the Hilbert function of P
n−r. Similarly, we can recover H from

HD. Thus, we have the following 1-to-1 correspondences: T ↔ H ↔ HD.

4 Some Applications

In this section, we provide two applications of Theorem 3.10. The first application

will apply to any weak kD-configuration (with σ(D) > 1), while the second applica-
tion will only apply to kD-configurations.

4.1 The Degree of Each Point in a Weak kD-Configuration

Lemma 2 Let D = {d1, . . . , dr}, with σ(D) > 1. Let X =
⋃u

i=1 Xi be a weak

kD-configuration, and let P ∈ Xi . Then deg
X

P = deg
X1∪···∪Xi

P + u − i.

Proof If i = u, there is nothing to prove, so suppose that i < u. By induction, it
is enough to show that deg

X
P = deg

X1∪···∪Xu−1

P + 1. Let Y = X1 ∪ · · · ∪ Xu−1. We
know that

HX(i) = HXu
(i) + HY(i − 1) for all i.

Let d = deg
Y

P, so that

HY\P(i) =

{

HY (i) for i < d,

HY (i) − 1 for i ≥ d.

Now, σ(Y \ P) ≤ σ(Y) ≤ αD(Xu), so, by Theorem 3.9(4)

HX\P(i) = HXu
(i) + HY\P(i − 1) for all i

=

{

HXu
(i) + HY(i − 1) for i − 1 < d,

HXu
(i) + HY(i − 1) − 1 for i − 1 ≥ d,

=

{

HX(i) for i < d + 1,

HX(i) − 1 for i ≥ d + 1.

Thus, deg
X

P = d + 1 = deg
Y

P + 1.

Lemma 3 Let D = {d1, . . . , dr}, with σ(D) > 1. Let X be a weak kD-configuration

of type T, where T is a weak nD-type vector. Let P ∈ X. Then deg
X

P ≥ αD(X). In

particular, αD(X \ P) = αD(X).

Proof We use induction on n and u, the case u = 1 being the induction hypoth-
esis on n. If n = 1, so that T = (e), then X is a complete intersection of type
(d1, . . . , dr, e). Then for any P ∈ X, we have deg

X
P = σ(D) + e − 2 ≥ e = αD(X).
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If n > 1, then T = (T1, . . . , Tu) and X =
⋃u

i=1 Xi . If P ∈ Xu, then by the induction
hypothesis on u, deg

X
P ≥ deg

Xu
P ≥ αD(Xu) ≥ u = αD(X). So suppose that P ∈ Xi ,

where i < u. Then by induction on u, deg
X

P = deg
X1∪···∪Xi

P + u− i ≥ i + u− i = u.
In particular, HX\P(i) = HX(i) for i < u, so αD(X \ P) ≥ u = αD(X) ≥ αD(X \ P).
Hence, αD(X) = αD(X \ P), as required.

Remark 4.1 If σ(D) = 1, so that X is a k-configuration, then Lemma 3 need not
hold. Indeed, any k-configuration of type (1, e1, . . . , er) provides a counterexample.

Lemma 4 Let D = {d1, . . . , dr}, with σ(D) > 1. Let X =
⋃u

i=1 Xi be a weak kD-

configuration of type T, where T is a weak nD-type vector. Let P ∈ Xu. Then deg
X

P =

deg
Xu

P.

Proof Let Y =
⋃u−1

i=1 Xi . Note that σ(Y) ≤ αD(Xu) = αD(Xu \ P), so

HX\P(i) = HXu\P(i) + HY(i − 1) for all i

=

{

HXu
(i) + HY(i − 1) for i < deg

Xu
P,

HXu
(i) − 1 + HY (i − 1) for i ≥ deg

Xu
P,

=

{

HX(i) for i < deg
Xu

P,

HX(i) − 1 for i ≥ deg
Xu

P.

Thus, deg
X

P = deg
Xu

P, as required.

From Lemmas 2 and 4, we obtain the following result.

Corollary 1 Let X =
⋃u

i=1 Xi be a weak kD-configuration, where σ(D) > 1. Let

P ∈ Xi . Then deg
X

P = deg
Xi

P + u − i.

Just as was done for k-configurations [7, Theorem 5.11], we can also determine an
explicit formula for the degree of each point of a weak kD-configuration. Each point

P of a given weak kD-configuration lies in a complete intersection which corresponds
to a 1D-type vector of the corresponding weak nD-type vector T. We will denote αD

of this weak 1D-type vector by αD(P). Similarly, we will denote σD of this weak 1D-
type vector by σD(P). Regarding a weak nD-type vector as an ordinary n-type vector,

we have the invariants tk(T) as defined in Definition 2.13 and we define TP as before.

Theorem 4.2 Let σ(D) > 1. Let X be a weak kD-configuration of type T, and P ∈ X.

Then deg
X

(P) = σD(P) + t1(TP) − 2.

Proof We use induction on n, where T is an nD-type vector. If n = 1, then T = (e)

and X is a CI(d1, . . . , dr, e). Then for any P ∈ X, deg
X

(P) = d1 + · · ·+ dr + e− r−1 =

σ(D) − 1 + αD(P) − 1 = σD(P) − 1. But t1(TP) = 1, so the result holds in this case.
If n > 1, let T = (T1, . . . , Tu) be a weak nD-type vector, and let X =

⋃u
i=1 Xi be a

weak kD-configuration of type T. Let P ∈ X. Then P ∈ Xi for some i. By induction
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on n, deg
Xi

P = σD(P) + t1((Ti)P) − 2 and by definition, t1((Ti)P) + u − i = t1(TP),
so deg

X
(P) = deg

Xi
(P) + u − i = σD(P) + t1(TP) − 2.

Remark 4.3 Since σD(P) + t1(TP) − 2 = αD(P) + t1(TP) − 2 + σ(D) − 1, we see
that the values that occur as the degree of some point for a weak kD-configuration of
type T can be obtained from the values that occur as the degree of some point for a
k-configuration of type T simply by adding σ(D) − 1.

4.2 Maximal Subsets Lying on a Hypersurface

Let H be the Hilbert function of a finite set of points which is contained in the com-
plete intersection W = V (F1, . . . , Fr). Consider all sets X of points contained in W

which have HX = H. Let F define a hypersurface in P
n of degree d chosen so that

(F1, . . . , Fr, F) is a radical ideal of height r + 1. Consider all subsets Y of each such
X which lie in V (F). We refer to the set of all Hilbert functions of such subsets Y

as SubD,d H. We can then partially order SubD,d H as follows. Define H1 ≤ H2 if

H1(i) ≤ H2(i) for every i. We will show that, given D, if H is the Hilbert function of
a kD-configuration and d ≤ αD(H), then SubD,d H has a unique maximal element.
We need some preliminary results.

Definition 4.4 Let W = V (F1, . . . , Fr) be a reduced CI(d1, . . . , dr). Let V be a
hypersurface in P

n of degree d chosen general enough so that V ∩ W is a reduced
CI(d1, . . . , dr, d). For a finite set of points X in V ∩ W, we put

αD,V(X) := min{i|HX(i) < HV∩W(i)}.

Note that if d = 1, then αD,V = αD,n−1.

Theorem 4.5 Let V and W be as above, and let D = {d1, . . . , dr}. Let H be the

Hilbert function of a kD-configuration of type T = (T1, . . . , Tu), an nD-type vector.

Suppose that deg V = u = αD(T). Then αD,V(H) = αD,n−1(T1) + u − 1.

Proof Let X be a kD-configuration of type T, so that X =
⋃u

i=1 Xi , where each Xi ,

contained in the hyperplane Hi , is a kD-configuration of type Ti . Let Hi be the Hilbert
function of Xi . We know that H(i) = Hu(i) + Hu−1(i − 1) + · · · + H1(i − u + 1) for
all i. If i ≥ αD,n−1(T1) + u−1, then H j(i −u + j) ≤ HW∩H j

(i −u + j) for 1 ≤ j ≤ u,
so

H(i) < HW∩Hu
(i) + HW∩Hu−1

(i − 1) + · · · + HW∩H1
(i − u + 1) = HW∩V(i).

If i < αD,n−1(T1)+u−1, then H1(i−u+1) = HW∩H1
(i−u+1). Furthermore, i− j <

αD,n−1(T1) + u − j − 1 ≤ αD,n−1(Tu− j ), so we have Hu− j(i − j) = HW∩Hu− j
(i − j).

Thus, H(i) = Hu(i) + · · · + H1(i − u + 1) = HW∩Hu
(i) + · · · + HW∩H1

(i − u + 1) =

HW∩V(i).
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Corollary 2 Let D = {d1, . . . , dr} and let T = (T1, . . . , Tu) be an nD-type vector. If

H1 ↔ (T1, . . . , Tu−d) and H ′
1 ↔ (Tu−d+1, . . . , Tu) and V is a hypersurface of degree d

in P
n+r such that V ∩ W is a CI(D, d) in P

n+r, then σD(H1) + d ≤ αD,V(H ′
1).

Proof Since σD(H1) < αD,n−1(Tu−d+1), we have σD(H1) + d ≤ αD,n−1(Tu−d+1) +
d − 1 = αD,V(H ′

1).

We are now ready to show that, given D, if H is the Hilbert function of a kD-

configuration and d ≤ αD(H), then SubD,d H has a unique maximal element.

Theorem 4.6 Let H be the Hilbert function of a kD-configuration of type T =

(T1, . . . , Tu). Let d ≤ u and let H ′ be the Hilbert function of a kD-configuration of

type (Tu−d+1, . . . , Tu). Then H ′ is the maximal element of SubD,d H.

Proof Let Z be any set of points in P
n with Hilbert function H which is contained

in W = V (F1, . . . , Fr) and let F be a form of degree d defining a hypersurface in
P

n for which (F1, . . . , Fr, F) is a radical ideal of height r + 1. We will show that
∆HZ∩V (F,F1 ,...,Fr )( j) ≤ ∆H ′( j) for all j ≥ 0.

Now, H ′( j) is generic in V (F1, . . . , Fr, F), which is a CI(d1, . . . , dr, d) in P
n for

0 ≤ j < αD,V(H ′), so we obviously have ∆HZ∩V (F1 ,...,Fr ,F)( j) ≤ ∆H ′( j) for 0 ≤ j <
αD,V(H ′).

Since ∆HZ∩V (F1 ,...,Fr ,F)( j) ≤ ∆HZ( j) = ∆H( j) for all j, it is enough to show that
∆H ′( j) = ∆H( j) for all j ≥ αD,V(H ′). Let T̃ = (T1, . . . , Tu−d). and let H̃ ↔ T̃.
Then H( j) = H ′( j) + H̃( j − d) for all j, from the correspondence between Hilbert
functions of kD-configurations and nD-type vectors. Also, σ(H̃) + d ≤ αD,V(H ′),

from Corollary 2. Let s be the eventually constant value of H̃, so that H̃(t) = s for all
t ≥ σ(H̃) − 1. Then for all j ≥ αD,V(H ′) − 1, we have that H( j) = H ′( j) + s. Thus,
∆H( j) = ∆H ′( j) for j ≥ αD,V(H ′), as required.

Given D, not every Hilbert function is the Hilbert function of some kD-configura-
tion. Indeed, when σ(D) > 1, there is an obvious restriction on which sequences can
be the Hilbert function of even a weak kD-configuration.

Fact 1 With D as above, if X is a weak kD-configuration of cardinality s, then

(d1d2 · · · dr) | s.

In fact, if X is a weak kD-configuration of type T, then s
d1d2···dr

is the sum of the 1-type

vectors in T.

Thus, Theorem 4.6 only applies to very special Hilbert functions, but for those
Hilbert functions to which it does apply, it provides a generalization of Theorem
2.19.
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Example 4.7 Let D = {2}, T = (3, 5, 7). Let X be the union of the two k-configura-
tions shown below in the projective planes defined by X1 = 0 and X1 = X3. X is

drawn in the affine portion (X3 = 1) of projective 3-space.

��

��

��	

-

6

s s s

s s s

s s s s s

s s s s s

s s s s s s s

s s s s s s s

X0

X1

X2

X is a kD-configuration with respect to V (F), where F = X1(X1 − X3). Then if
H is a hyperplane for which (H, F) is a radical ideal of height 2, then |H ∩ X| ≤ 14.
However, if H is either X1 or X1−X3, then |H∩X| = 3+5+7 = 15, so the hypothesis

in the definition of SubD,d H that (H, F) has height 2 is essential.

If X is any set of points having a subset Y with the extremal Hilbert function, then
we can determine the Hilbert function of X \Y, thus generalizing (for special Hilbert
functions) Theorem 2.20.

Theorem 4.8 Let X be a finite set of points in P
n contained in the complete intersection

V (F1, . . . , Fr) of type (d1, . . . , dr), and let D = {d1, . . . , dr}. Let F be a form of degree

d such that V (F1, . . . , Fr, F) is a radical ideal of height r + 1. Let H = HX be the Hilbert

function of a k-configuration with respect to V (F1, . . . , Fr) of type T. Let U ⊂ X∩V (F)

be such that the Hilbert function HU of U satisfies HU ↔ T
′
= (Tu−d+1, . . . , Tu). Let

X̃ = X −U . Then H
X̃
↔ T̃ := (T1, . . . , Tu−d).

Proof We have the following exact sequence:

0 → [IX : F](−d)
×F
→ IX → (IX + F)/F → 0.

Note that there cannot be more points of X on V (F) than those of U , since HU

is the maximal element of SubD,d H. Then since X̃ is precisely the set of points of X

which do not lie on V (F), we see that I
X̃

= [IX :F], so we have the following exact
sequence:

0 → I
X̃

(−d)
×F
→ IX → (IX + F)/F → 0.

Thus, HX(t) = H
X̃

(t−d)+HR/(IX +F)(t). From the correspondence between Hilbert
functions of kD-configurations and nD-type vectors, we know that HX(t) = H

T̃
(t −
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d) + HT ′(t), so it is enough to show that HR/(IX +F) = HT ′ := HU . Certainly, IX + F ⊆
IU , so we only need to show that HR/(IX +F)(t) ≤ HU (t) for all t . Now,

HU (t) = HT ′(t) = HTu
(t) + HTu−1

(t − 1) + · · · + HTu−d+1
(t − d + 1)

= HR/(F1,...,Fr )(t) + HR/(F1,...,Fr)(t − 1) + · · ·

+ HR/(F1,...,Fr )(t − d + 1) for t − d + 1 < αD(Tu−d+1)

= HR/I(V )(t) for t < αD(Tu−d+1) + d − 1.

But HT ′(t) ≤ HIX +F(t) ≤ HV (t) for all t since (F1, . . . , Fr, F) ⊆ (IX + F) ⊆ IU , so
HT ′(t) = HIX +F(t) for t < αD(Tu−d+1) + d − 1.

Now, σD(T̃) = σD(Tu−d) < αD(Tu−d+1). So, ∆H
T̃

(t) = 0 for t ≥ αD(Tu−d+1)−1.
But, ∆HX = ∆H

X̃
(t − d) + ∆HR/IX +F(t) = ∆H

T̃
(t − d) + ∆HU (t).

Since ∆H
T̃

(t − d) = 0 for t − d ≥ αD(Tu−d+1) − 1 and ∆H
X̃

(t − d) ≥ 0
for all t , we see that ∆HR/(IX +F)(t) ≤ ∆HU (t) for t ≥ αD(Tu−d+1) + d − 1. Thus,

HU (t) = HR/IX +F(t) for all t, and hence H
X̃

= H
T̃

, as claimed.
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