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In theorem 3.3 of our paper we gave an incomplete characterization of the spaces
Dk/2 associated with the operators Ak/2, k ∈ N, and, as a consequence, we missed
compatibility conditions in the subsequent theorem 4.5 and corollary 4.6 therein.
In this corrigendum we give corrected versions of these results.

We start with an additional lemma which improves the regularity result (2.9b)
in [3] and provides an estimate needed in the subsequent theorem.

(Henceforth, equation numbers of the form (a.b) refer to [3].)

Lemma 1. Let G ⊂ Rd, d � 3 be a bounded domain with Ck+2-boundary ∂G and
f ∈ Hk(G), k ∈ N0. Furthermore, let u ∈ H0 be a weak solution of problem (2.1).
Then u ∈ Hk+2(G) and we have the bound

‖u‖Hk+2(G) � C‖f‖Hk(G) = C‖∆u‖Hk(G) (1)

with a constant C depending on G, k and d.

Proof. The case k = 0 is already implied by the interior regularity result (2.9a). In
fact, u ∈ H2

loc(R
d) means (see [1, p. 309])

‖u‖H2(G) � Ĉ(‖f̂‖L2(K) + ‖u‖L2(K)), (2)

where f̂ denotes the trivial extension of f onto Rd and K denotes some bounded
domain such that G � K. Combining (2.6) with the boundedness of the Green
operator G̃, we obtain

‖u‖L2(K) � CK‖u‖H � CKCG‖f‖L2(G), (3)
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and thus (2) takes the form

‖u‖H2(G) � C‖f‖L2(G). (4)

No boundary regularity is required for this result.
The case k > 0 needs separate considerations of tangential and normal deriva-

tives at ∂G. We refer in the following to the situation where ∂G has already been
flattened, as explained in the paragraph before lemma 2.1 in [3], and we use the
notation introduced there. So, given g ∈ L2(W−), we assume v ∈ H1(W ) to be a
(weak) solution of

d∑
i,j=1

∫
W

aij∂yj v∂yiw dy =
∫

W −
gw dy (5)

for any w ∈ H1
0 (W ). Let ĝ be again the trivial extension of g onto W . Now we

assume higher tangential regularity of g, i.e. Dαg ∈ L2(W−) for |α| � k, αd = 0,
which implies Dαĝ ∈ L2(W ). From interior regularity for weak solutions it follows
that Dβv ∈ L2(V ) for |β| � k + 2, βd � 2 and any V � W , together with the
estimate ∑

βd�2
|β|�k+2

∫
V −

|Dβv|2 dy � C

( ∑
αd=0
|α|�k

∫
W −

|Dαg|2 dy + ‖v‖2
L2(W )

)
. (6)

As to normal derivatives, note that higher interior regularity implies

−Dα
d∑

i,j=1

∂yi
(aij∂yj

v) = Dαg (7)

to hold almost everywhere (a.e.) in W−. Writing (7) with α = (0, . . . , 0, 1) in the
form

aydyd
∂3

yd
v = −

d∑
i+j<2d
i,j=1

∂yd
∂yi(aij∂yj v) − 2∂yd

aydyd
∂2

yd
v − ∂2

yd
aydyd

∂yd
v − ∂yd

g, (8)

we find, by uniform ellipticity, ∂3
yd

v to be bounded in W− by the right-hand side of
(8), which is at most of second order in ∂yd

v. So, (6) may be applied, and we arrive
at ∫

V −
|∂3

yd
v|2 dy � C̃

( ∑
αd=0
|α|�k

∫
W −

|Dαg|2 dy + ‖v‖2
L2(W )

)
. (9)

The case of arbitrary higher derivatives is now easily proved by induction. So, we
find, finally, that (6) holds without restriction on αd and βd.

To complete the proof, one has, as usual, to cancel the change of variables, to
cover G by local patches, to sum up the corresponding local estimates and to use
once more (3).

Theorem 2 (corrected version of [3, theorem 3.3]). Let G ⊂ Rd, d � 3, be a bound-
ed domain with C∞-boundary ∂G and let {vn : n ∈ N} be the complete orthonormal
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system defined by the eigenvalue problem (3.1). Furthermore, let A and Dα be as
defined in definition 3.2, and G be the Green operator associated to the Poisson
problem (2.1). Then

D0 = H0(G) = L2(G),

D1/2 = {v|G : v ∈ H0 and v|Ĝ is harmonic} = H1(G), (10)

i.e. in particular, any v ∈ D1/2 has a unique harmonic extension ṽ ∈ H0, and

D1 = G(L2(G)) = {v ∈ H2(G) : ṽ ∈ H2
loc(R

d)}. (11)

Higher-order spaces are characterized by

Dk/2 = {v ∈ Hk(G) : ∆̃i−1v ∈ H2
loc(R

d) for i = 1, . . . , [k/2]}, k ∈ N \ {1}, (12)

where w̃ ∈ H0 denotes the harmonic extension of a function w ∈ D1/2 = H1(G) and
[r] := max{j ∈ N : j � r} is the integer part of r. On Dk/2 we have the equivalence
of norms:

‖ · ‖k/2 ∼ ‖ · ‖Hk , k ∈ N0. (13)

Proof. (Concerning notation, observe that the symbols L2 and Hk without specified
domains always mean L2(G) and Hk(G), respectively.) The case k = 0 is trivial
and the case k = 1, i.e. (10) and (13)k=1, is proved as in theorem 3.3 in [3]. As to
k = 2, the proof of the first equality in (11) remains likewise untouched. The proof
of the second equality in (11) (and all the rest of the proof), however, now differs
from the proof in [3] in the following way.

The inclusion G(L2(G)) ⊂ {v ∈ H2(G) : ṽ ∈ H2
loc(R

d)} is an immediate conse-
quence of the H2-regularity of weak solutions. To prove the opposite inclusion, let
w ∈ H2(G) with harmonic extension w̃ ∈ H0 ∩H2

loc(R
d). Defining f := −∆w ∈ L2,

the Poisson problem (2.1) yields a solution ũ ∈ H0∩H2
loc(R

d). So, we have pointwise
a.e. ∆(w̃ − ũ) = 0 in Rd for w̃ − ũ ∈ H0 ∩H2

loc(R
d), which means w̃ − ũ is harmonic

in Rd (by Weyl’s lemma), and, moreover, w̃− ũ = 0 (by Liouville’s theorem). Thus,
w̃ = ũ and, in particular, w = u = G(f).

To estimate the 1-norm of v ∈ D(A) observe that ṽ ∈ H0 ∩ H2
loc(R

d) for its
harmonic extension, and vn ∈ C1(Rd) for the eigenfunctions. So, by (3.3) we can
calculate

−(λnvn, v)L2(G) = −
∫

Rd

∇ṽn · ∇ṽ dx =
∫

Rd

ṽn∆ṽ dx = (vn, ∆v)L2(G) (14)

and therefore obtain

‖v‖2
1 = ‖Av‖2

L2 =
∞∑

n=1

λ2
n|(vn, v)L2 |2 =

∞∑
n=1

|(vn, ∆v)L2 |2 = ‖∆v‖2
L2 , (15)

which implies ‖v‖1 � C‖v‖H2(G) with a constant C depending only on d. To prove
the opposite inequality we combine (15) with (1)k=0:

‖v‖1 = ‖∆v‖ � 1
C

‖v‖H2(G).

This proves (13)k=2.
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The case k > 2 is proved by induction. Let v ∈ Dk/2+1, k ∈ N, i.e. Av ∈ Dk/2.
By assumption we have Av ∈ Hk(G) and

∆̃i−1Av ∈ H2
loc(R

d) for i = 1, . . . , [k/2]. (16)

(Note that for v ∈ D3/2 condition (16) does not yet make sense and can be omitted.)
By (15) the condition Av ∈ Hk(G) means ∆v ∈ Hk(G), and lemma 1 implies
v ∈ Hk+2(G). Moreover, we have ṽ ∈ H2

loc(R
d), which complements condition (16).

So, we conclude

v ∈ {v ∈ Hk+2(G) : ∆̃i−1v ∈ H2
loc(R

d) for i = 1, . . . , [k/2] + 1}. (17)

To prove the opposite inclusion, let v be as in (17). We set w := ∆v and have, by
assumption,

w ∈ {v ∈ Hk(G) : ∆̃i−1v ∈ H2
loc(R

d) for i = 1, . . . , [k/2]} = Dk/2.

Computing the k/2 + 1-norm of v, we find, with (14),

‖v‖2
k/2+1 =

∞∑
n=1

λk
n|λn(vn, v)L2 |2 =

∞∑
n=1

λk
n|(vn, w)L2 |2 = ‖w‖2

k/2 < ∞, (18)

and thus, v ∈ Dk/2+1. This completes the proof of (12).

As to the equivalence (13) we proceed likewise by induction. Assuming v ∈
Dk/2+1, k ∈ N, we find, by (18) and by assumption,

‖v‖k/2+1 = ‖∆v‖k/2 � C‖∆v‖Hk � C̃‖v‖Hk+2 ,

whereas the opposite inequality follows by (1):

‖v‖Hk+2 � C‖∆v‖Hk
� C̃‖∆v‖k/2 = C̃‖v‖k/2+1.

This completes the proof.

Remark 3. Iterating (14), one finds on Dα for integer values α the following alter-
native formulation of the α-norm:

‖v‖k = ‖∆kv‖L2(G), v ∈ Dk, k ∈ N,

and for half-integer values:

‖v‖k+1/2 = ‖∇∆kv‖L2(G), v ∈ Dk, k ∈ N.

In view of theorem 2 we must in the following discriminate between Hk and Dk/2.
So, a corrected version of [3, theorem 4.5] on higher regularity now reads as follows.

Theorem 4 (corrected version of [3, theorem 4.5]). Let T > 0, k ∈ N \ {1} and
a, b, c ∈ Ck

1 (Ḡ × [0, T ]). Furthermore, let v0 ∈ D(k+1)/2, −a(·, 0)Av0 + B|t=0v0 +
f(0) ∈ D(k−1)/2 and f ∈ C1([0, T ], Hk(G)). Then the weak solution v of problem
(4.2) in [3] satisfies

v ∈ L2((0, T ), Dk/2+1), v̇ ∈ L2((0, T ), Dk/2), v̈ ∈ L2((0, T ), Dk/2−1).
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Theorem 4 differs from theorem 4.5 in [3] (in addition to the fact that f ∈
C1([0, T ], Dk/2) has been replaced by f ∈ C1([0, T ], Hk(G))) by the additional con-
dition −a(·, 0)Av0 + B|t=0v0 + f(0) ∈ D(k−1)/2, which is now no longer implied by
the conditions on v0 and the coefficients, and must, therefore, be stated explicitly.
The condition is needed in the proof of v̈ ∈ L2((0, T ), Dk/2−1). In fact, differen-
tiating (4.4)1 with respect to t yields an equation of type (4.17) and applying
Ak/2−1 results in an evolution equation for Ak/2−1v̇ =: ω. Together with the initial
value ω0 := Ak/2−1(−a(·, 0)Av0 + B|t=0v0 + f(0)) ∈ D1/2, we have then an initial-
value problem to which theorem 4.3 in [3] applies with the result (among others)
ω̇ ∈ L2((0, T ), L2(G)) and hence v̈ ∈ L2((0, T ), Dk/2−1). Otherwise the proof of
theorem 4.5 in [3] remains unchanged. Of course, higher temporal regularity would
require further compatibility conditions. For classical solutions, however, the regu-
larity stated in theorem 4 is enough.

As to corollary 4.6 in [3], observe that u ∈ C2(Ḡ) and ũ ∈ C1(Rd) imply ũ ∈
H2

loc(R
d). Thus, the corollary now takes the following supplemented form, where

again we aim at sufficient (and not necessarily sharp) conditions in terms of classical
derivatives for existence of classical solutions.

Corollary 5 (corrected version of [3, corollary 4.6]). Let G ⊂ Rd, d � 3, be a
bounded domain with Ck+3/2-boundary, k > 1 + d/2, u0 ∈ Ck+1(Ḡ) and a, b, c ∈
Ck

1 (Ḡ × [0, T ]), u∞ ∈ C2([0, T ]) for any T > 0. Furthermore, let u0 − u∞(0),
∆iu0, and ∆i−1(a0∆u0 + b0 · ∇u0 + c0u0 − u̇∞(0)), i = 1, . . . , [(k − 1)/2], where
a0 = a(·, 0), etc., all C1-match to their harmonic extensions. Then problem (1.1)
has a unique classical solution u, i.e. u ∈ C2

1 (G × R+) ∩ C2(Ĝ × R+) satisfies
pointwise equations (1.1).

Remark 6. In d = 3 we may choose k = 3, and the compatibility conditions
amount to

(u0 − u∞(0))˜, ∆̃u0 ∈ C1(R3) (19)

and

(a0∆u0 + b0 · ∇u0 + c0u0 − u̇∞(0))˜ ∈ C1(R3). (20)

So, in the case u∞ = 0 admissible initial values u0 are, for instance, C4(Ḡ)-functions
with ∂i

nu0|∂G = 0, i = 0, . . . , 3, where ∂n denotes the normal derivative at ∂G. In
the case when u0 = u∞ = const. > 0, which was interesting in applications [2],
condition (20) requires the coefficient c0 to have a C1-smooth harmonic extension.

Remark 7. Appendix E in [3], which provides simpler proofs in the case of a time-
independent principal coefficient, now loses some of its significance. The idea was
to absorb the principal coefficient a into the definition of the operator A =: Aa.
In that case, the sequence (w(n)) of Galerkin approximations can be shown to
converge in C([0, T ], D1/2) to some limit function w, and ẇ ∈ C1([0, T ], D−1/2)
follows then by the evolution equation (E2)1, since w(n) ∈ C([0, T ], D1/2) implies
−Aaw(n) + Q(n)(Bw(n) + f) ∈ C([0, T ], D−1/2). The latter conclusion, however, no
longer works if D1/2 is replaced by Dk/2 and D−1/2 is replaced by Dk/2−1, with
k > 3, since the lower-order terms do not preserve the boundary behaviour that is
now required for elements of Dk/2, k > 1. So, theorem E.2 now holds only in the case

https://doi.org/10.1017/S0308210510000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510000028


824 R. Kaiser and H. Uecker

of vanishing lower-order coefficients, i.e. b = c = 0, while a compatibility condition
involving the principal coefficient a arises from the condition w0 ∈ D(k+1)/2 as Aa

corresponds to −a∆ on H2-functions.
We take the opportunity to correct another blunder in the proof of theorem E.2:

of course, Q(n)−Q(m) is always a projection operator with norm 1 as long as n > m.
Nevertheless, with f =

∑∞
n=1 cnwn ∈ C([0, T ], L2(G)), the norm

max
[0,T ]

‖(Q(n) − Q(m))f‖L2
a

= max
[0,T ]

( n∑
ν=m+1

|cν(t)|2
)1/2

clearly vanishes in the limit n, m → ∞. The same argument applies to the projected
initial value (Q(n)−Q(m))w0, whereas the lower-order term Q(n)Bw(n)−Q(m)Bw(m)

is no longer present.
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