COMPLETE AND ORTHOGONALLY COMPLETE RINGS

W. D. BURGESS AND R. RAPHAEL

This article continues the study of Abian's order on commutative semiprime rings (for such a ring R, the relation " $a \leq b$ if and only if $ab = a^{2}$ " makes R into a partially ordered multiplicative semigroup). The aim, here, is to extend as far as possible the theorem of Brainerd and Lambek which says that the completion of a Boolean ring is its complete ring of quotients. Only certain subsets of a ring may have upper bounds (in any extension ring) and these are called boundable (the notion is due to Haines). A ring will be called complete if every boundable subset has a supremum. If $R \subset S$ are (commutative semiprime) rings then S will be called a *completion* of R if S is complete and every element of S is the supremum of a subset of R. It is shown by example that not all rings have completions but completions exist if the ring has sufficiently many idempotents. Such rings will be called *i-dense* and they include regular and Baer rings (in fact all pp-rings and more). A technique, due to Banaschewski, yields a construction which gives the completion in the case of *i*-dense rings: this completion is a ring of quotients with respect to a certain torsion theory and, in the case of regular rings, this completion is the complete ring of quotients. The completion, in the *i*-dense case, has a weak form of selfinjectively and we get the theorem that an *i*-dense ring is complete if and only if it is weakly self-injective.

1. In [1], Abian initiated the study of a partial order relation for commutative semiprime rings defined by $a \leq b$ if $ab = a^2$; and, although this order relation is known in the study of semigroups [9, p. 40] and is well known in the special case of Boolean rings, it will here be called *Abian's order*. In [2] it is remarked that for a ring A, commutative or not, the relation \leq defined above is an order relation if, and only if, A is reduced (i.e., 0 is its only nilpotent) and in this case \leq makes A an ordered semigroup. All order properties below refer to Abian's order.

The purpose of [1] (and, in the non-commutative case, [8]) was to characterize, in terms of Abian's order, those reduced rings which are products of fields. One of the conditions characterizing products of fields is "orthogonal completeness". A subset X of a reduced ring A is called *orthogonal* if for $a, b \in X$, $a \neq b, ab = 0$. A is *orthogonally complete* if every orthogonal set in A has a supremum. Orthogonally complete rings as well as orthogonal completions

Received January 21, 1974 and in revised form, March 27, 1974. This research was supported by NRC grants A-7539 and A-7752.

were studied in [7] and this article is a continuation of that one; the following definitions and results from it are quoted for convenience.

In what follows all rings are assumed to be reduced with 1 and, although some of what follows can be extended to the case of reduced rings A such that the complete ring of quotients, Q(R), is strongly regular, we assume that all rings mentioned are also commutative. If $R \subset S$ are rings, S is an orthogonal extension of R if every element of S is the supremum of an orthogonal set in R, and S is an orthogonal completion of R if it is an orthogonally complete orthogonal extension. A regular ring R is orthogonally complete if, and only if, it is selfinjective. Also a regular ring always has an orthogonal completion, namely Q(R), the complete ring of quotients; and a Baer ring R has an orthogonal completion which may be smaller than Q(R). For any R, an orthogonal extension must lie in Q(R) and for any set X in R, $\sup_R X = \sup_{Q(R)} X$, if both exist. Finally not every ring has an orthogonal completion but every ring with ascending chain condition on annihilator ideals is orthogonally complete.

2. In [11], Haines introduces a generalization of orthogonality which he calls "quasiorthogonality"; we prefer the term "boundable". A subset X of a ring R is *boundable* if for all $a, b \in X$, ab(a - b) = 0. Note that if R is Boolean, every subset is boundable. The purpose of this section is to relate the notions of orthogonality and boundability and to show that certain orthogonally complete rings are *complete* in the sense that every boundable set has a supremum.

We say that an extension $R \subset S$ is an order extension if every element of S is the supremum of some set in R and S is a completion if it is a complete order extension. Clearly any order extension of R must lie in Q(R).

1. PROPOSITION. The boundable sets of a commutative semi-prime ring R are exactly those which have suprema in Q(R).

Proof. We shall defer the proof of the fact that every boundable set X of R has a supremum in Q(R) until Theorem 5. Let X be a subset of R with an upper bound $q \in Q(R)$. Then for $a, b \in X$, $ab(a - b) = a^2b - ab^2 = abq - abq = 0$. (In fact a subset X of R is boundable if it has an upper bound in any extension ring and this justifies the name.)

2. Definition. A ring R is called *i*-dense (*idempotent dense*) if it is commutative semiprime and every idempotent of Q(R) is the supremum of a subset (necessarily a set of idempotents) of R.

The class of *i*-dense rings includes all p.p. rings [4, Lemma 31] and, hence, all regular and all Baer rings. However there are *i*-dense rings which are not p.p. rings (for example $C(\mathbf{Q})$). Any subdirect product of domains which includes the direct sum is *i*-dense and, if R is *i*-dense, so is any ring between R and Q(R).

3. LEMMA. If R has an order extension S which is Baer then R is i-dense.

Proof. This follows since the Baer ring S has all the idempotents of Q(R) [13, 1.6 Lemma].

4. PROPOSITION. A commutative semiprime ring R is i-dense if, and only if, every non-zero annihilator ideal contains a non-zero idempotent.

Proof. Suppose R is *i*-dense. Let $X \subseteq R$ and $\operatorname{Ann}_{R} X \neq 0$. We have $\operatorname{Ann}_{Q(R)} X = eQ(R)$ for some $e^{2} = e \in Q(R)$. Then $e = \sup \{e_{\alpha}\}$ for some set of idempotents in R. But $Xe_{\alpha} = Xe_{\alpha}e = 0$.

Conversely, let $e^2 = e \in Q(R)$, $e \neq 0$. Let *D* be a large ideal of *R* so that $(1 - e)D \subseteq R$ and $eD \subseteq R$. Then (1 - e)DeD = 0 so (1 - e)D is annihilated by some $0 \neq g = g^2 \in R$. Thus g(1 - e) = 0 and ge = g and *e* bounds some non-zero idempotents in *R*. Let

 $E = \{e_{\alpha} \in R | e_{\alpha} = e_{\alpha}^{2}, e_{\alpha} \leq e\}.$

Put $f = \sup_{Q(R)} E$. Then, $f \leq e$ and e - f is an idempotent, $e - f \leq e$ and (e - f)f = 0. If $e - f \neq 0$, let $0 \neq e' \in R$ be an idempotent such that $e' \leq e - f$. We get $e' \leq e - f \leq e$ so $e' \in E$ which implies $e' \leq f$. Now e' = e'(e - f) = e'e - e'f = e' - e'f so e'f = 0. This is a contradiction, so e = f.

5. THEOREM. If R is i-dense then R is orthogonally complete if, and only if, it is complete. Further, if R is i-dense, any order extension of R is an orthogonal extension.

Proof. It is easy to check that the supremum of a set X in R, if it exists, is an upper bound s so that $AnnX = Ann\{s\}$. Now if R is complete it is orthogonally complete. Conversely, if R is orthogonally complete and *i*-dense, it is Baer. Suppose X is boundable. Define $q \in Q(R)$ by $q: XR \oplus I \to R$ where $I = Ann_R X$ and $qx = x^2$ for $x \in X$ and qa = 0 for $a \in I$. Now q is well-defined since X is boundable $(\sum_X x^2 r = 0$ implies for $y \in X, \sum_X x^2 yr = \sum_X xy^2 r = 0$ so that $(\sum_X r)y = 0$ for all $y \in X$; hence $\sum_X r \in XR \cap I = 0$. Since $Ann_{Q(R)}X = Ann_{Q(R)}\{q\}, q = \sup_{Q(R)}X$.

Let Y be a maximal orthogonal subset of XR with the property that for all $y \in Y$, $qy = y^2$. Then, YR + I is large. Indeed, if $r \neq 0$ and r(YR + I) = 0 then rI = 0 and, so, $rXR \neq 0$. Hence for some $x \in X$, $rx \neq 0$. There is an idempotent $e \in Q(R)$ so that er = r and e = rr' for some $r' \in Q(R)$. Since R is Baer, $e \in R$. We get that e(YR + I) = 0 and $ex \neq 0$. From this, $qex = x^2e = (xe)^2$, contradicting the maximality of Y. Now q is also defined by $qy = y^2$ for all $y \in Y$ and qa = 0 for $a \in I$.

The remaining part now follows since it has just been shown that the supremum, in Q(R), of a boundable set in R is also the supremum of an orthogonal set in R.

Note that this completes the proof of Proposition 1 since Q(R) has been shown to be complete. In fact this shows that a regular ring R is complete if and only if it is orthogonally complete if and only if it is self-injective (cf. [7, 2. Theorem]).

For rings which are not *i*-dense the situation is more complicated. We know rather little in this case but the following examples will show that a complete ring is not necessarily *i*-dense and that there are rings which are orthogonally complete which have no completion.

6. Example. Let R be the subring of $\prod_{n \in N} \mathbb{Z}$ generated by $\prod_{n \in N} n \mathbb{Z}$ and 1. A typical element of R has the form r + m where $r \in \prod n \mathbb{Z}$, m an integer. Hence R has only two idempotents while its complete ring of quotients $\prod \mathbb{Q}$ has infinitely many. If X is a boundable set in R, and $x \in X$ is written $x = x' + n_x$, $x' \in \prod n \mathbb{Z}$, n_x an integer; then either all the n_x are zero or for some $n \neq 0$, $n_x = n$ or $n_x = 0$ and for some $x \in X$, $n_x = n$. In the first case X has a supremum which is in $\prod n \mathbb{Z}$. In the second, let $x \in X$, $n_x = n$. Then for all but finitely many *i*, the *i* component of x is non-zero. From this it follows that the supremum can be constructed in the form z + m, $z \in \prod n \mathbb{Z}$.

7. Example. Let R be the subring of $\mathbb{Z}[x] \times \mathbb{Z}[x] \times \mathbb{Z}[x]$ generated by (x, x, 0), (0, x, x) and (1, 1, 1). A typical element of R is of the form (f + n, f + g + h + n, g + n) where $n \in \mathbb{Z}$, f, g, h are polynomials of zero constant term and if $h \neq 0$, deg $h \geq 2$. Clearly R has the ascending chain condition on annihilators so R is orthogonally complete. Hence [12, p. 113], Q(R) is its total ring of fractions $Q_{cl}(R)$, which is seen to be $\mathbb{Q}(x) \times \mathbb{Q}(x) \times \mathbb{Q}(x)$. R is not complete since $\{(x, x, 0), (0, x, x)\}$ is boundable while its supremum $(x, x, x) \in Q(R)$ is not in R. Further, R has no completion since such a completion would contain (x, x, x) + (x, 0, -x) = (2x, x, 0). There are no non-zero elements of R below (2x, x, 0).

The subject of Abian's order in rings which are not i-dense remains to be studied.

3. In [3], Banaschewski gives a construction of Q(R), where R is a (commutative semiprime) ring, which resembles that of [10] for rings of continuous functions. This method is used below to construct the completion for *i*-dense rings.

Let X = Spec R be the set of prime ideals of R where an element of X is denoted either by x or P_x , depending on the context. Then, as usual, X is topologized by taking the sets $\{\cos r | r \in R\}$ as a base for the open sets $(\cos r = \{x | r \notin P_x\}, z(r) = X \setminus \cos r)$. Important for us is the observation that the clopen (closed and open) sets of X are of the form $\cos e$, e an idempotent, and conversely.

Now R may be represented as a subring of $\prod_{x \in x} R/P_x$ in an obvious way and, hence, as a subring of $S = \prod_{x \in X} Q(R/P_x)$; $Q(R/P)_x$ is a field. The components of $q \in S$ are denoted by q(x), $x \in X$. For $q \in S$, $\cos q \equiv \{x | q(x) \neq 0\}$ and $z(q) \equiv \{x | q(x) = 0\}$. For each $q \in S$, we define, as in [3],

$$\mathscr{F}(q) = \{x | \text{ for some neighbourhood } N \text{ of } x, \text{ there are } r, s \in R \text{ with} N \subseteq \cos s \text{ so that for all } y \in N, q(y) = r(y)/s(y) \}$$

and

$$\mathscr{R}(q) = \{x | \text{ for some neighbourhood } N \text{ of } x, \text{ there is an } r \in R \text{ so that} \\ \text{ for all } y \in N, q(y) = r(y) \}.$$

Both $\mathscr{F}(q)$ and $\mathscr{R}(q)$ are open sets of X. We define

$$\mathscr{X}(R) \equiv \{q \in S | \mathscr{F}(q) \text{ is dense} \}$$

and $\mathscr{Y}(R) \equiv \{q \in S | \mathscr{R}(q) \text{ is dense}\}\)$. Hence elements of $\mathscr{X}(R)$ are "locally like" fractions of elements of R while those of $\mathscr{Y}(R)$ are "locally like" elements of R. It is clear that $\mathscr{Y}(R) \subseteq \mathscr{X}(R) \subset S$ are subrings. Next let $\mathscr{I}(R) = \{q \in S | z(q) \text{ contains a dense open set}\}\)$. Then $\mathscr{I}(R)$ is an ideal in $\mathscr{X}(R)$ and in $\mathscr{Y}(R)$ and, as Banaschewski showed, $\mathscr{X}(R)/\mathscr{I}(R) \simeq Q(R)\)$. We denote $\mathscr{Y}(R)/\mathscr{I}(R)$ by C(R), it is a subring of Q(R), in fact $R \subseteq C(R) \subseteq Q(R)$. Banaschewski remarks in [3] that the same construction, with X replaced by a dense subset, also yields Q(R). It can be shown similarly that replacing X be a dense subset yields a ring isomorphic to C(R).

For regular rings, R, Q(R) = C(R), as will be seen later; but, in general, $Q(R) \neq C(R)$. In fact, if R is a domain, C(R) = R. Hence C(R) is not always regular but it is Baer.

8. LEMMA. For any ring R, C(R) is Baer.

Proof. We must show that any idempotent of Q(R) is in C(R). Let $\bar{e} \in Q(R)$ be an idempotent represented by $e \in \mathscr{X}(R)$ and $1 - \bar{e}$ represented by $f \in \mathscr{X}(R)$. We have $e^2 - e$, ef, $f^2 - f \in \mathscr{I}(R)$. Let U_1 , U_2 , U_3 be dense open sets in $z(e^2 - e)$, z(ef), $z(f^2 - f)$, respectively. Then put $U = \mathscr{F}(e) \cap \mathscr{F}(f) \cap U_1 \cap U_2 \cap U_3$; U is a dense open set. For $x \in U$, e(x) = 0 or e(x) = 1. If e(x) = 1 then for some neighbourhood N of x, $N \subseteq U$, e|N = r/s|N where $r, s \in R$, $N \subseteq \operatorname{coz} s$. Now on $N \cap \operatorname{coz} r$, e = r/s = 1. If e(x) = 0 then f(x) = 1 and, similarly, f = 1 on a neighbourhood $N \subseteq U$ of x. Hence e is 0 on N. If follows that $e \in \mathscr{Y}(R)$.

It was seen in the previous section that every boundable set in R has a supremum in Q(R). In fact the supremum is in C(R).

9. THEOREM. Every boundable set in a commutative semi-prime ring R has a supremum in C(R). Further, C(R) is complete.

Proof. The first part will be done by exhibiting the supremum. Let $\{r_{\alpha}\}_{\alpha \in \Lambda}$ be a boundable set in R. Hence for all $x \in X$, all $r_{\alpha}(x)$ which are non-zero coincide. Define $q \in S$ by:

$$q(x) = \begin{cases} r_{\alpha}(x), & \text{if for some } \alpha, r_{\alpha}(x) \neq 0\\ 0, & \text{if } r_{\alpha}(x) = 0 \text{ for all } \alpha \in \Lambda. \end{cases}$$

888

Now $q \in \mathscr{Y}(R)$ since $\mathscr{R}(q)$ contains $\bigcup_{\alpha} \cos r_{\alpha} \cup \sim \mathrm{cl} (\bigcup_{\alpha} \cos r_{\alpha})$.

Let $\bar{q} \in C(R)$ be the element represented by q. Clearly \bar{q} is an upper bound for $\{r_{\alpha}\}$, since $(qr_{\alpha} - r_{\alpha}^2)(x) = 0$ for all $x \in X$. If \bar{h} is another upper bound represented by $h \in \mathscr{Y}(R)$, consider $\{x \in X | (qh - q^2)(x) = 0\}$; this includes

$$V = \bigcup_{\alpha} \left[\mathscr{R}(h) \cap \operatorname{coz} r_{\alpha} \cap U_{\alpha} \right] \cup \left(\sim \operatorname{cl} \left(\bigcup_{\alpha} \operatorname{coz} r_{\alpha} \right) \right),$$

where U_{α} is the interior of $z(hr_{\alpha} - r_{\alpha}^2)$. Now V is dense open since $\mathscr{R}(h)$ and each U_{α} are dense open. Thus $\bar{q}h = \bar{q}^2$.

For the second part we must show that each boundable set in C(R) has a supremum there. Let $\{\bar{q}_{\alpha}\}_{\alpha \in \Lambda}$ be a boundable set in C(R). This set has a supremum $\bar{q} \in Q(R)$ which will be shown to be in C(R).

For each $t \in \mathscr{X}(R)$ let

$$\mathscr{K}(t) = \{x \mid \text{ on some neighbourhood } N \text{ of } x, t \text{ coincides with}$$

a non-zero fraction on N}.

Then, $\mathscr{K}(t) = \operatorname{coz} t \cap \mathscr{F}(t)$. Let U_{α} be the interior of $z(qq_{\alpha} - q^2)$, a dense open set, where q and q_{α} represent \bar{q} and \bar{q}_{α} , respectively. If $x \in \mathscr{F}(q) \cap \mathscr{K}(q_{\alpha}) \cap U_{\alpha} = V_{\alpha}$ then $q(x) = q_{\alpha}(x)$ and V_{α} is dense in $\mathscr{K}(q_{\alpha})$. Hence, $L = \bigcup_{\alpha} V_{\alpha} \subseteq \mathscr{R}(q)$. Consider $Y = \sim \operatorname{cl}(\bigcup_{\alpha} \mathscr{K}(q_{\alpha}))$. If N is an open set on which all the q_{α} are zero then $N \subseteq Y$. Now define $p \in \mathscr{Y}(R)$ by p(x) = q(x)for $x \in L$ and p(x) = 0, $x \notin L$. Then, $\mathscr{R}(p) \supseteq L \cup \sim \operatorname{cl}(L)$ so, indeed, $p \in \mathscr{Y}(R)$. Next, $\bar{p} \in C(R)$ is an upper bound of $\{\bar{q}_{\alpha}\}$. Indeed, $pq_{\alpha} - q_{\alpha}^2$ is zero on V_{α} and on $\mathscr{R}(q_{\alpha}) \setminus \mathscr{K}(q_{\alpha})$. Hence $pq_{\alpha} - q_{\alpha}^2$ is zero on V_{α} , which is dense open. Also, $\bar{p} \leq \bar{q}$ since $pq - p^2$ is zero on $L \cup \sim \operatorname{cl}(L)$. Hence $p - q \in \mathscr{I}(R)$. But $p \in \mathscr{Y}(R)$ so $\bar{q} \in C(R)$.

The question which arises naturally is: For which rings is C(R) the (orthogonal) completion? The answer will be "*i*-dense rings".

10. LEMMA. If R is i-dense then every non-empty open set of X = Spec R contains a non-empty open set of the form $A \cap V$, A clopen and V dense open.

Proof. We must show that each set $\operatorname{coz} r, 0 \neq r \in R$, contains a set of the indicated type. Let $\overline{f} \in Q(R)$ be an idempotent with $\overline{f}r = r$ and $\overline{f} = r\overline{r}$, for some $\overline{r}' \in Q(R)$. Let $f, r' \in \mathscr{X}(R)$ be representatives and so for some dense open set U, f | U = rr' | U. Hence for $x \in U, r(x) = 0$ if, and only if, f(x) = 0 and $r(x) \neq 0$ if, and only if f(x) = 1. Since R is *i*-dense, there is an idempotent $e \in R, e \neq 0$, with $e\overline{f} = e$. Hence ef - e is zero on some dense open set U' and for $x \in U', e(x) = 1$ implies f(x) = 1. Put $V = U \cap U'$. Then $\operatorname{coz} e \cap V \subseteq \operatorname{coz} r$.

Note that the family \mathfrak{A} of sets of the form $A \cap V$, A clopen and V dense open, may not form a base for the topology, but for every open set U there is a disjoint family $\{A_{\alpha}\}$ from \mathfrak{A} so that each $A_{\alpha} \subseteq U$ and $\bigcup A_{\alpha}$ is dense in U.

11. THEOREM. C(R) is the completion of the commutative semiprime ring R if, and only if, R is i-dense; and, in this case, it is also the orthogonal completion.

Proof. If the Baer ring C(R) is the (orthogonal) completion of R then R is certainly *i*-dense.

Conversely, we shall use the family \mathfrak{A} of open sets discussed in (10) to show that each element of C(R) is the supremum of some orthogonal set in R.

Let $\bar{q} \in C(R)$ be represented by $q \in \mathscr{Y}(R)$. For each $x \in \mathscr{R}(q)$, there is an open set $N, x \in N$, so that for some $r \in R$, q|N = r|N. A maximal disjoint family, $\{U_{\alpha}\}_{\alpha \in \Lambda}$, of open subsets of $\mathscr{R}(q)$ such that $q|U_{\alpha} = r_{\alpha}|U_{\alpha}$ for some $r_{\alpha} \in R$, has union dense in $\mathscr{R}(q)$. For each U_{α} , in such a family, there is a disjoint family

 $\{\operatorname{coz} e_{\alpha\beta} \cap V_{\alpha\beta}\}_{\beta \in \Lambda_a}, e_{\alpha\beta}^2 = e_{\alpha\beta} \in R, V_{\alpha\beta} \text{ dense open in } X,$

such that its union is dense in U_{α} . Then $Y = \{r_{\alpha}e_{\alpha\beta}\}_{\beta\in\Lambda_{\alpha},\alpha\in\Lambda}$ is orthogonal. Let $\bar{h} \in C(R)$ be the supremum of Y with representative $h \in \mathscr{Y}(R)$ as in the proof of (9). Then q and h coincide on $\bigcup (\operatorname{coz} e_{\alpha\beta} \cap V_{\alpha\beta})$, and so $\bar{q} = \bar{h}$.

12. COROLLARY. If R is regular then C(R) = Q(R).

Proof. This follows since R is *i*-dense with Q(R) as orthogonal completion.

The converse, however, is false since the subring R of $\prod_{N} \mathbf{Q}$, consisting of elements which are almost everywhere integers, is Baer, but not regular, while C(R) = Q(R).

Just as in [7, 18. Theorem] it will be shown that if R is *i*-dense, C(R) is the partial ring of quotients with respect to an idempotent topologizing family, \mathscr{E} , of ideals of R. This is done by making precise the isomorphism $Q(R) \rightarrow \mathscr{K}(R)/\mathscr{I}(R)$. Let $s \in Q(R)$ be represented by $\phi : D \rightarrow R$ where D is a large ideal of R. Let D' be a maximal orthogonal family from D, D' necessarily has zero annihilator. Define $q \in \mathscr{K}(R)$ by:

$$q(x) = \begin{cases} \frac{\phi(d)(x)}{d(x)}, & \text{if } x \in \operatorname{coz} d \text{ for some } d \in D'\\ 0, & \text{otherwise.} \end{cases}$$

Then define $\Psi: Q(R) \to \mathscr{X}(R)/\mathscr{I}(R)$ by $\Psi(s) = \bar{q}$.

1. \bar{q} is independent of the choice of D and D'. (This is easy to see).

2. Ψ is a ring isomorphism. The verification that Ψ is an injective ring homomorphism is straightforward. It must be shown to be surjective. Consider $\bar{q} \in \mathscr{X}(R)/\mathscr{I}(R)$ represented by $q \in \mathscr{X}(R)$. Let \mathscr{N} be the set of open sets Nof X so that for some $r, s \in R, N \subseteq \operatorname{coz} s, q | N = r/s | N$. A maximal disjoint family \mathscr{U} from \mathscr{N} has union which is dense in X, since it is dense in $\bigcup_{\mathscr{N}} N =$ $\mathscr{F}(q)$, which is dense in X. For each $U_{\alpha} \in \mathscr{U}$, let $q | U_{\alpha} = r_{\alpha}/s_{\alpha}| U_{\alpha}$ and choose a maximal orthogonal set $\{t_{\alpha\beta}\}$ of elements of R so that $\operatorname{coz} t_{\alpha\beta} \subseteq U_{\alpha}$. Then,

$$q \left| \cos t_{\alpha\beta} = \frac{r_{\alpha}t_{\alpha\beta}}{s_{\alpha}t_{\alpha\beta}} \right| \cos t_{\alpha\beta}.$$

Note that $\bigcup_{\beta} \cos t_{\alpha\beta}$ is dense in U_{α} . Then, $T = \{s_{\alpha}t_{\alpha\beta}\}_{\alpha,\beta}$ is orthogonal and $\bigcup_{\alpha,\beta} \cos s_{\alpha}t_{\alpha\beta}$ is dense. Also, TR is a large ideal and T is a maximal orthogonal set in it. Define $\phi : TR \to R$ by $\phi(s_{\alpha}t_{\alpha\beta}) = r_{\alpha}t_{\alpha\beta}$. The corresponding element of $\mathscr{X}(R)$ defined by T and ϕ is q' where

$$q'(x) = \begin{cases} \frac{\phi(s_a t_{\alpha\beta})(x)}{s_a t_{\alpha\beta}(x)} = \frac{r_a t_{\alpha\beta}(x)}{s_a t_{\alpha\beta}(x)}, & \text{for } x \in \operatorname{coz} t_{\alpha} s_{\alpha\beta} \\ 0, & \text{otherwise.} \end{cases}$$

Clearly q and q' coincide on the dense open set $\bigcup_{\alpha,\beta} \cos s_{\alpha} t_{\alpha\beta}$ and, hence, $\bar{q} = \bar{q}'$.

13. THEOREM. For each large ideal D of a commutative semi-prime ring R, let Hom'D = { $\phi : D \to R | \phi(d) = r_d d$ for some $r_d \in R$ }. Then

$$C(R) = \lim_{D \text{ large}} \operatorname{Hom}' D.$$

If R is i-dense, let $\mathscr{E} = \{D | D \text{ contains a set of idempotents } E \text{ so that Ann } E = 0\}$. Then \mathscr{E} is an idempotent topologizing family and $C(R) = Q_{\mathscr{E}}(R)$.

Proof. A general reference for rings of quotients is [5, Chapitre II, § 2, Exercices] or [14, Chapter 2]. Clearly lim Hom'D is a subring of Q(R) since

each Hom'D is a subgroup of Hom (D, R) which is preserved by restrictions and compositions. We next imitate the constructions given above. In fact if $\phi \in \text{Hom'D}$, the corresponding element $q \in \mathscr{X}(R)$ is in $\mathscr{Y}(R)$ (for $x \in \cos d$, $q(x) = \phi(d)(x)/d(x) = r_d(x)d(x)/d(x) = r_d(x)$). Similarly, if $q \in \mathscr{Y}(R)$, the homomorphism $\phi : TR \to R$ constructed above is in Hom'TR since $\phi(s_{\alpha}t_{\alpha\beta}) =$ $r_{\alpha}t_{\alpha\beta}$; but, here, s_{α} may be taken to be 1.

In [7], it is shown that \mathscr{E} is a topologizing idempotent family. If $D \in \mathscr{E}$ with E the set of idempotents in D, then ER is also large; and, the set of ideals of the form ER, E a set of idempotents with Ann E = 0, is cofinal in \mathscr{E} . But, Hom(ER, R) = Hom'ER. Hence, in general, $Q_{\mathscr{E}}(R) \subseteq C(R)$. If R is *i*-dense the first part of this proof will be refined.

Indeed, let $\{t_{\alpha\beta}\}$ be as in the first part of the proof. Then, in $\cot t_{\alpha\beta}$ find a maximal disjoint family of sets from \mathfrak{A} (as in (10)). That is, sets of the form $\cot e_{\alpha\beta\gamma} \cap V_{\alpha\beta\gamma}$, where $e_{\alpha\beta\gamma}$ is an idempotent and $V_{\alpha\beta\gamma}$ is dense open. Then $\bigcup_{\gamma} (\cot e_{\alpha\beta\gamma} \cap V_{\alpha\beta\gamma})$ is dense in $\cot t_{\alpha\beta}$. Now let $E = \{e_{\alpha\beta\gamma}\}_{\alpha,\beta,\gamma}$; E is orthogonal and has zero annihilator, since $\bigcup_{\alpha\beta\gamma} \cot e_{\alpha\beta\gamma}$ is dense. Define $\phi : ER \to R$ by: $\phi(e_{\alpha\beta\gamma}) = e_{\alpha\beta\gamma}r_{\alpha}t_{\alpha\beta}$. Then ϕ gives rise to an element equivalent to q.

The rings C(R) have a kind of weakened injectivety.

14. Definition. A commutative ring R is weakly self-injective if for every ideal I of R and homomorphism $\phi : I \to R$, so that for all $a \in I$ there is $r_a \in R$ with $\phi(a) = ar_a, \phi$ lifts to an endomorphism of R.

This allows an extension to i-dense rings of the theorems of Brainerd and Lambek, [6], for Boolean rings and those of [7] for regular rings.

15. THEOREM. Let R be i-dense. Then R is complete if, and only if, R is weaklyself-injective. Also, C(R) is the completion of R.

Proof. This follows from (11) and the observation, based on(13), that R is weakly self-injective if, and only if, R = C(R).

Products of domains are weakly self-injective and the following characterization is given without proof, since it is straightforward.

16. PROPOSITION. A commutative semiprime ring R is isomorphic to a product of domains if, and only if, it is orthogonally complete, i-dense and its algebra of idempotents is atomic.

References

- 1. A. Abian, Direct product decomposition of commutative semisimple rings, Proc. Amer. Math. Soc. 24 (1970), 502-507.
- 2. ——— Order relation in rings without nilpotent elements (typescript, 1973).
- 3. B. Banaschewski, Maximal rings of quotients of semi-simple commutative rings, Arch. Math. 16 (1965), 414-420.
- G. M. Bergman, Hereditary commutative rings and centres of hereditary rings, Proc. London Math. Soc. 23 (1971), 214-236.
- 5. N. Bourbaki, Algèbre commutative, Chapitres 1 et 2, Fasc. 27 (Hermann, Paris, 1961).
- 6. B. Brainerd and J. Lambek, On the ring of quotients of a Boolean ring, Can. Math. Bull. 2 (1959), 25-29.
- 7. W. D. Burgess and R. Raphael, Abian's order relation and orthogonal completions for reduced rings, Pacific J. Math. 54 (1974), 55-64.
- 8. M. Chacron, Direct product of division rings and a paper of Abian, Proc. Amer. Math. Soc. 29 (1971), 259-262.
- 9. A. A. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. II (Amer. Math. Soc., Providence, R.I., 1967).
- 10. N. Fine, L. Gillman, and J. Lambek, *Rings of quotients of rings of functions* (McGill University Press, Montreal, 1965).
- 11. D. C. Haines, Injective objects in the category of p-rings, Proc. Amer. Math. Soc. 42 (1974), 57-60.
- 12. J. Lambek, Lectures on rings and modules (Ginn, Waltham, Mass., 1966).
- 13. R. Raphael, Algebraic extensions of commutative regular rings, Can. J. Math. 22 (1970), 1133-1155.
- 14. B. Stenström, Rings and modules of quotients, Lecture Notes in Math. 237 (Springer, 1971).

University of Ottawa, Ottawa, Ontario; Concordia University, Montreal, Quebec

892