
AXIOMATIC TREATMENT OF RANK IN INFINITE SETS 

R. RADO 

1. Summary. In many branches of mathematics the notion of rank plays 
an important part. H. Whitney [3] made a detailed axiomatic investigation 
of rank and several related ideas. All sets considered by Whitney are finite. 
In the present note the axiomatic treatment of rank is extended to sets of any 
cardinal. In the special case of algebraic dependence of elements of a field 
with respect to a sub-field, similar questions have already been considered by 
Steinitz [2]. 

Following Whitney, we investigate rank by means of a function r(A) which 
associates a non-negative integer with every finite subset A of a given set M 
and which satisfies axioms (4)-(6) below. These axioms state that (i) the 
empty set is of rank zero, (ii) by adding one more element to A the rank is 
either unaltered or increased by 1, (iii) if neither the addition of the element x 
nor the addition of the element y increases the rank of A then the simultaneous 
addition of both, x and y, does not increase the rank of A. A subset L of M 
is called independent, if the rank r(A) of every finite subset A of L is equal to 
the number of elements of A, A base of L is a maximal independent subset of 
L, i.e. an independent subset of L which is not a proper subset of another inde­
pendent subset of L. It is easy to prove that every subset L of M possesses 
at least one base, more generally, that every independent subset of L is con­
tained in some base of L. The main result of this note is that all bases of L 
have the same cardinal. Thus it is possible to define the rank r{L) of any 
subset L of M as the common cardinal of all bases of L or, which is equivalent, 
as the largest cardinal of independent subsets of L. 

Lemma 1 is a general combinatorial theorem which is capable of various 
applications. Lemma 2 generalizes an earlier theorem1 on axiomatically de­
fined independence of elements of a set. 

2. A combinatorial lemma. We require a lemma which, in a certain sense, 
can be considered as a generalization of Cantor's diagonal process. Let there 
be given a system of finite, non-empty sets Ayi where the index v ranges over 
an arbitrary set, the index set. Corresponding to every finite set N = {i>i, *>2, 
. . . , vm} of indices, select arbitrarily one element from each of the sets AVx, 
AVi, . . . , AUfn. This means that the element selected, say, from AVx} depends 
not only on v\ but also on the particular index set N of which v\ is a member. 
The assertion is that, under these circumstances, it is possible to make one 
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further selection of elements, this time of one element x*v from each A „, so that 
the following condition holds. However one chooses a finite index set N, there 
exists a finite index set N' containing JV, such that, for every index v of N, the 
element selected from A v in the given selection corresponding to the index set 
N'f is x*„. 

Let M be an arbitrary set. Typical elements of M are denoted by the letters 
x and y, and typical finite subsets of M are denoted by A and B. Let Mi be 
another set. Letters v and N denote typical elements and finite subsets of Mi 
respectively. 

LEMMA 1. Let AVC M(veMi). Suppose that the elements x(N, v) satisfy 

x(N,v)eAv (veN C Mi). 
Then there are elements x*v such that, given any N, there exists N' satisfying 
N CN', 

x*v= x(N', v) (veN). 

Proof. We say that a system of sets Bv(veMi) has the property R (possesses 
representatives) if, given any iV, there exists N' satisfying N C N', 

x{N', v)eBv (veN). 

By hypothesis, the system Av possesses the property R, in fact, with Nf = N. 
The assertion of the lemma is that there are elements x*v such that the system 
{x*v} has the property R. 

We may assume that2 M Mi = 0. Let M and Mi be well-ordered.3 The order 
relation is denoted by " < " . Let ï> be the first element of Mi. Since x({^}, v)eAv, 
we have Avj£ 0. We shall define elements xv inductively. Let v^eMi, and 
suppose that xv has already been defined for all v < vo, and that xveAv(v < vo). 
This includes the case v0= i>, when no assumption is made about the existence 
of elements xv. Consider the following systems of sets : 

» y S t e m 5 W : B,M •{{Ziltt 
f { xv } (p < vo) 

system S'(v0, x): B'v(vo, x) = i { x } (y = vo) 
{ Av (v> vo). 

Case 1. Suppose that S(v0) does not possess the property R. Then define 
xv to be the first element of Av. 

Case 2. Suppose that S(v0) possesses the property R. Then XVQ is defined 
as the first element x of A VQ which satisfies the condition that S'(vo, x) possesses 
the property R. It must now be shown that there exists such an element x. 
Let us therefore assume that for no x of AP.o the system 5'(Vo, x) has the prop-

2{X, Y, . . . } denotes the set whose elements are X, Y, . . . . S + T and ST are the union 
and meet of sets 5 and T respectively, and 5 — ST is the set of elements of 5 not belonging 
to T. The empty set is denoted by 0, and the cardinal of S is p | . 

3The well-ordering of M can be dispensed with. 
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erty R. Then, given any xeAVa, there is N(x) satisfying the following con­
dition. For no N' containing N(x) is 

(1) x(N', v)tB',(v0, x) (veN(x)). 

Put N*= £ N(x). 
XeA„ 

0 

Then N* is finite. Since S(v0) has the property R, there exists N' satisfying 
N*C N', 
(2) x(N\ v)eBv(vo) (veN*). 
Let xeAVo. Then N(x)C. ^ * C Nf. Hence, by the assumption which we 
want to prove false, (1) does not hold. By (2), 

(3) x(N',v)eB,(ro) (veN(x)). 
By comparing (1) and (3), one concludes that, for some v e N(x), 

B'P(VO,X)T* B9(VÔ). 

Therefore v0e N(x) C N* (x e A „o). 

Put x(N\ vo) = x'. Then 

x'e AVo; x(N\ v)e B\(v0l x') (v e N(x')), 
in contradiction to the assumption that (1) is false for every x of AVQ. Hence 
this assumption is false, and it is possible to define an element xV(j in the way 
indicated. Thus, by transfinite construction, one obtains elements xveAv 

which satisfy the following condition C: if, for some *>o, the system S(vo) has 
the property R, then the system .S^o, xv) has the property R. 

Put S'fro,*,,) = S*(?o), 

B'V(VO,XPQ) = B*v(v0). 

By the hypothesis of the lemma, S(v) has the property R. Hence, by con­
dition C, S*(v) has the property R. Let vo> i>, and assume that, for every 
v\< vo, S*(v\) has the property R. Consider any set N. Since N is finite, 
there is an element v\ < vo satisfying 

v < v\ (y e N; v < vo). 

Since S*(vi) has the property R, there exists N' satisfying 

N C N'; x(N', v)e B*^) (y e N). 

Then x(N', v)e B*v{vùC Bv(v0) (v e N). 

Since N is arbitrary, this shows that S(v0) has the property R. Hence, by 
condition C, .S*(Vo) has the property R. Thus it follows by induction that 
every system S*(v) has the property R. 

Let N 9^ 9. Let v' be the last element of N. Since S*(vf) has the property 
R, there exists Nf such that 

NCN';x(N',v)eB*J/) = {xv} (veN), 

xu= x(N', v) {v eN). 

Hence the assertion of the lemma is true for x*„= xv. 
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I should like to point out that the lemma is no longer valid if in both, 
hypothesis and conclusion, the condition that A and N are finite sets, is re­
placed by the condition that A and N are at most denumerable sets. For let 
M be the set of all positive integers and Mi be a non-denumerable set, A v = M 
(v e Mi). If N is at most denumerable, say4 N = {vi, v2, . . . }^ , define 
x(N, v), for v e iV, by putting x(N, vx) = A (vxe N). Then the modified hypo­
thesis holds, but the modified conclusion of the lemma does not hold. 

3. A lemma on rank functions. We use the notation of sec. 2. In addition, 
we denote by L any subset of M. By definition, a rank function in M is a 
function r which associates with every A an integer r(A) and satisfies the 
following axioms5 : 
(4) r{6) = 0, 

(5) r(A)<r(A + {x})< r(A)+ 1, 

( 6 ) { i f r(A)=r(A + {x})=r(A + {y}), 
\ then r(A) = r(A + {x,y}). 

P u t / ( L ) = 1, if r(A) = \A\ (A C L), a n d / ( L ) = 0 otherwise. In particular, 
/ (0)= 1. The equation f(L) = 1 expresses the fact that the set L is inde­
pendent, in the sense of this term as defined in the summary of this note. 

Let Av be a system of finite subsets of M which has the property that, given 
any finite number k of distinct indices vKJ the union of the corresponding k sets 
AVK is at least of rank k. Then Lemma 2 below states that it is possible to 
select one element from each A v in such a way that the selected elements are 
mutually distinct and the set of all selected elements is independent. 

LEMMA 2. Let r(A) be a rank function in M. Let 

APCM (veilfi). 
Suppose that 

(7) r ( £ Av) > \N\ (NC.M,). 
vtN 

Then there are elements x*veAv satisfying 

(8) *%?* r \ (xi^ vt), 

(9) / (E {**,}) = I-
veMt 

Clearly, (7) is necessary for the existence of such x*v. 
Proof. Whitney6 has shown that the definition of a rank function r in M 

satisfying (4), (5) and (6) is equivalent to a classification of all finite subsets 
of M into dependent and independent sets, this classification satisfying certain 
axioms.7 Given the definition of rank, Whitney's definition of independence 
is identical with the definition given in the present note. Actually in Whitney's 

4The symbol {Xj F, . . . }9£ denotes the set {X, Y, . . . } and, a t the same time, expresses 
the fact that the objects Xy Y, . . . are different from each other. 

'[3], 510, (Ri)-(Rz). 
6[3], 6. 
7[3], 513, (Ii) and (I2). 
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case, M is finite, but in this particular instance no use is made of this fact. 
In view of Whitney's result, the case of Lemma 2 in which Mi is finite is 
contained in a known theorem.8 Now let Mi be of any cardinal. Then, by 
applying this last result to a finite subset N of Mi, one can find elements 
x(N, v) satisfying 

x(N1v)eAf>(veNCMi)1 

(10) r ( £ {x(N,v)}) = \N\ (NCMi). 
peN 

By Lemma 1, there are elements x*v satisfying 

x*v= x(N',v) (veN C Afi), 

where N'= N'(N) is a certain set containing N. Put 
A = A(N) = E [x(N', v)} ; B = B(N) = E {x(N't v)} . 

vtN vtN'—N 

Then, by using (10) and two simple results of (l),9 one deduces that 

\N'\ = r(A + B)< r(A)+ r(B)< \A\ + \B\ < \N\ + \N'- N\ = |JV'| , 

r(A) = \A\ = \N\ , 

r(£ {**,}) = r ( Z {x(N',v)\) = r(A) = \N\ . 
veN veN 

This implies (8) and (9). 

4. The rank of sets of any cardinal. We use the same notation as in the 
preceding section. Let r(A) be a rank function defined in M. Let L be a 
subset of M. A subset L* of L is called a base of L, if L* is a maximal inde­
pendent subset of L, i.e. if 

f(L*) = 1 ; / ( L * + {*}) = 0 . (* 6 L - L*). 
I shall now prove that the concepts of independence and base relating to sets 
of any arbitrary cardinal have some of the usual properties well known in the 
case of finite sets, in particular that (i) given two independent sets, the second 
of higher cardinal than the first, it is possible to enlarge the first by the addition 
of one more element of the second set in such a way that independence is not 
lost; (ii) every independent subset of a set is contained in some base of this 
set; (iii) all bases of a set are of the same cardinal. 

THEOREM, (i) / / | i | < \V\ ; f(L) = / ( ! / ) = 1, then there exists x't L ' - LL' 
satisfying f(L + {# '} )= 1. 

(ii) If LiQ L;f(Li) = 1, then there exists a base of L which contains 
L\. In particular (Li the empty set) every set L possesses at least one base. 

(iii) If Lr and L" are bases of L, then \L'\ = \L"\ . 

In view of (ii) and (iii), one can define the rank cardinal r(L) as the largest 
cardinal of independent subsets of L, or, which is equivalent, as the common 
cardinal of all bases of L. If L is finite, this definition is consistent with the 
given definition of r. 

8[11, Theorem 3. 
9[3], (3.3) and Lemma 1. 
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Proof. For every integer n ^ 0 and every ordered system Xi, x<i, . . . , xn of 
n elements of My define a number I(xi, . . . , xn) as follows: 

I(xu . . . , xn) = 1, if r({#i, • • • i *n}) = », 
I(xi, . . . , xn) = 0 otherwise. 

According to Whitney,10 the function J satisfies conditions (i)-(iv) of [1], in 
particular 

ra+1 
(11) I(yu ...,ym) /(x' i , . . . , x'm+i) < E I(ju • • . , ym, x'J. 

In order to prove (i) of the Theorem, assume that 

(12) f(L + {x}) = 0, (xeL'-LL'). 

Let x'e L'. Then there exists a set {xi, . . . , Xnj^C £ satisfying 

(13) /(xi, . . . , xnj x') = 0. 

For if x'e L, this follows from (12). If x'e L, (13) holds for n = 1, xi= x'. 
Put, for some fixed choice of n and xi, • • • , #n, {xi, . . . , xn) = A(xf). I want 
to apply Lemma 2 to the system of sets A(x') (x 'e l / ) , using the cardinal 
number as the rank function occurring in Lemma 2. In order to verify (7) 
assume that 

{x'i, . ... , x ' 4 ^ C L', 

(14) A(x\)+. . . + A{x'k) = {yu . . . , y«}^C U 
m < k. 

This should lead to a contradiction. By (13), 

I(ymxi • • • , 3^» X'l) = 0 

for suitable rax; 1 < Wi< . ; . < mi< m. Then /(yi, . . . , ym, x \ ) = 0 and, 
by symmetry, 
(15) I(yu . . . , ym, X'K) = 0 (1 ^ K ^ &). 
Since /(L) = 1, 
(16) I(yu • • • , ym) = 1. 
One deduces from (14), (16), (15), (11) that / ( x / , . . . , x'^) = 0, which contra­
dicts f(L') = 1. This proves that 

\A(x'1)+. ..+ A(x'k)\ ï k 
whenever {x'i, . . . , x '^ j^C L\ Hence, by Lemma 2, one can find elements 
4>(x') satisfying 

ct>(x')eA(x')CL (x'eZ/), 

<Kx') 7* <i>(x") f o r x V x". 

This contradicts the fact that | l / | > \L\ . Hence (i) holds. 
In order to prove (ii), suppose that L i C L;f(Li) = 1. Let A be the aggre­

gate whose elements are all sets V satisfying L i C L'CZL; / ( ! / ) = 1. Thus 
Lie A. Then Zorn's Lemma [4] applies to A. For let A' be any subaggregate 
of A which has the property that, whenever L'e A', L"e A', at least one of the 

10[3], 6. 
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relations L'Q L"', L " C L' holds; denote by U" the union of all sets L'e A'. 
Then, clearly, any finite subset A of U" is subset of some element of A', and 
hence satisfies/(-4) = 1. Therefore / ( ! / " ) = 1, Z/"e A'. By Zorn's Lemma, A 
possesses a maximal element L*. This means that 

L i C L * C £ ; / ( £ * ) = 1, 
/(L*+ {x})= 0 (xeL - ! * ) , 

i.e. that L* is a base of L containing L\. This proves (ii). 
Finally, suppose that V and L" are bases of L, | l / | < |L / ; | . T h e n ^ L ' ) = 

/ ( L , ; ) = 1. Hence, by (i), there exists x'i-L"-L'L" such t h a t / ( L r + {x'})= 1. 
This contradicts the fact that V is a base of L and hence, by definition, not a 
proper subset of an independent subset of L. This completes the proof of the 
theorem. 
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