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Abstract

It is well known that CQ{JL) is amenable and so its global dimension is zero. In this paper we will
investigate the cyclic and Hochschild cohomology of Banach algebra co(Z, o r 1 ) and its unitisation with
coefficients in its dual space, where co is a weight on Z which satisfies inf {co(i)} = 0. Moreover we show
that the weak homological bi-dimension of co(Z, co~x) is infinity.

2000 Mathematics subject classification: primary 46M20, 43A15.

1. Introduction

The Banach algebra srf is amenable if J^x{s^, X') — 0 for every Banach srf-
bimodule SC. This definition was introduced by Johnson in (1972) [8]. The Banach
algebra srf is weakly amenable if 3tfx (srf, #/') = 0. This definition generalizes the
one which was introduced by Bade, Curtis and Dales in [1], where it was noted that a
commutative Banach algebra &/ is weakly amenable if and only if J^x{s^, J2T) = 0
for every symmetric Banach .c^-bimodule 3C.

Johnson in [8] proved that for an amenable Banach algebra srf, the cohomology
groups J^n(s^', &') vanish for every Banach .e^-bimodule 5C and all n > 1. The
question was raised whether in general J^Cn{s^, £?') = 0 for a weakly amenable
Banach algebra $4 and all n > 1. The question was answered in the negative
in [14] by showing that J^2(£1(F2), r 0 ^ ) ) ^ 0. In fact Johnson [8] showed
that t^

2(^1(F2), C) ^ 0 and in [14] Sinclair and Smith showed that the non-trivial
cohomology group J ^ 2 ^ 1 ^ ) , Q is naturally embedded as a direct summand of
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In this paper we will give an example of a weakly amenable
Banach algebra, such that the n* cohomology groups with coefficients in the dual
space do not vanish for all n > 1.

It is a question of general interest whether or not the n* cohomology group is
necessarily zero. This, and closely related questions have stimulated much of the
recent development of the theory of cohomology groups.

Bade, Curtis and Dales in [1] showed that Jf?l(ll(Z+),el(Z+)f) ^ 0. This may lead
one to believe that Jifn(ix(l+), tx(!+)') for all n > 2 are also non-zero. However,
Johnson showed in [10] that the alternating cohomology of tl(Z+) vanishes in all
dimensions strictly greater than one. Then Dales and Duncan [2, Theorem 3.2] showed
that Jt?2(li(I+), ll(l+)') = 0. Gourdeau and White in [4] with a complicated proof
showed that Jt?3(ll(Z+), il(1+)') = 0. This leads to the conjecture that all the
cohomology groups of tl(Z+) with coefficients in lx(Z+)' vanish for n > 3.

In this paper for the weakly amenable Banach algebra s>/*, the unitisation of
£/ = co(Z, co'1), we show that the cyclic cohomology group Jiftf"1^*) and the
Hochschild cohomology group Ji?n(£/*, (£?*)') are non-trivial for every n > 2.

Let co be a weight sequence on Z, that is, co is a non-zero, positive valued function
on Z such that co (n) < 1 for every n e Z. Set

c o ( l , co~l) = \ a = {an} : n e l , l i m J ^ )lim ^ o) ,
\n\-*oo CO (n) J

where co(Z, co~x) is a closed subalgebra of

r°(Z, co~') = \a = {an} : n € Z, ||a|L-. = sup { -^ - : n 6 z l < oo
I [co(n) \

and co(Z, co~1)' (the dual space of co(Z, co~1)) is equal to

0 0

a = {an} :n el, 2_^ Mco(n) < oo
n=—oo

The element et = {<5y }y€Z, / € Z is an idempotent, where Sy denotes the Kronecker
delta. We denote the linear span of such elements by E, which is a dense subset of
co(Z, co'1); since if a € co(Z, a;"1), then we define

a" = Yl a'e' = (• • • - °- a-«' • • . a«. 0, ...
i=-n

and

- an\L-1 = sup —— -* 0 as \n\ - • oo.
w(0
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Since a commutative Banach algebra which is the closed linear span of its idem-
potents is weakly amenable [9], then co(Z, co~x) is weakly amenable, and by [3,
Proposition 1.4] &/*, the unitisation of &/ = co(Z, co~x) is also weakly amenable.

NOTE. In this paper every weight w on 2 which we consider must satisfy the
condition inf {&>(/)} = 0, because if inf {&>(/)} ^ 0, then co~l is a bounded weight and
so c0(Z, a)~x) = c0(2) which is amenable.

Throughout &/* means the unitisation of srf — co(Z, co~l). Let 1 be the unit element
of^#. Suppose EN is the closed linear span of {e,}£L,. Then EN is a closed subalgebra
of jrf*. If a € srf*, then a = a' + a l , where a' = {a'n}n£l is in co(Z, co~l) and a e C.
The norm on srf* is defined by ||a||w-i = ||a'IU-i + |a|. Also for every a = a' + a l
and fc = tf + 01 in ^ # we define ab = a'b' + aV + 0a' + a01. Clearly EN = CN and
since a direct sum of amenable algebras is amenable, then EN is an amenable closed
subalgebra of srf*.

Note that for every 0 € ^ " ( ^ # , ( J / # ) ' ) , the space of all bounded n-cocycles,
by [11] there exists yfrN in < ^"" 1 (^ # , (^#) ' ) such that

( 0 — 8\lrN)(a\, . . . , an) — 0 if any one of ai, ... ,an lies in EN.

But we will show that this is not true for the whole of srf*, in fact for every n > 2 we
will find a (cyclic) cocycle 0 e 2fn{srf*, (&?*)') which does not co-bound.

The weak homological bi-dimension of a Banach algebra s&', denoted by wdb &/, is
the smallest integer n such that J4?m(£/, X') = 0 for all Banach ^/-bimodules X and
all m > n, or wdb •ef = oo if there is no such n. If ^ / is an amenable Banach algebra,
then wdb.etf' = 0 [7, Section 2.5]. The weak homological bi-dimension of a Banach
algebra is a number that measures how much this algebra is homologically worse than
amenable. The homological bi-dimension of a Banach algebra stf', denoted by db &/,
is the smallest integer n such that Jfm{£/, X) = 0 for all Banach ^/-bimodules X
and all m > n, or wdb^/ = oo if there is no such n. For every Banach algebra #/,
we have wdb s/ < db &f (see [7, VII, Section 3.4] and [13]).

A consequence of the main results of this paper (Theorem 2.2 and Theorem 3.4) is
that the weak homological bi-dimension of co(Z, a>~1) is infinity, that is,

wdbco(Z, aT1) = oo.

The paper is organized as follows. In Section 2 we calculate the even dimensional
cyclic and Hochschild cohomology groups of &/* with coefficients in (#/*) , the dual
space of srf*. In Section 3 we will continue our argument for the odd dimensional
case.

https://doi.org/10.1017/S1446788700003475 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003475


60 A. Pourabbas [4]

2. Even dimensional cohomology groups of
weighted sequence algebras

In this section we prove that Jff^iji/*, (&/*)') £ 0 and JW2* {*/*) ^ 0 for every
n € N.

LEMMA 2.1. Let X^-oo a< ^e an absolutely convergent series of real numbers, and
let

2/i times

0 : sf* x ^ # x • • • x

the function defined by
00 /

a,,,
I = -00

ik = a'k + & 1 and a'k = {a^-},-€z (it = 1 , 2 , . . . , 2n + 1). 77ien 0 w a bounded
cyclic 2n-cocycle for every n e N.

PROOF. It is easy to see that 0 is a 2n-linear map. Also

00 i / i I

1 =—OO

( la'-I ) ( W T 7 °°

—— [ • • • sup | —n* '-
00

V la
i=—oo

Thus <p is bounded and ||</>|| < ^ ^ . Q Q |a,-|. Now we want to show that 0 is a
2n-cocycle, that is,

, . . . , a2n+i)(a2n+2) = ai(p(a2, . . . ,

In

( = 1

+ (- l ) 2"+ 1(0(a , , . . . , a2n)a2n+])(a2n+2) = 0.

Now we calculate all terms on the right-hand side of the above equation and we obtain
the following (In + 2) terms respectively;

0 0

i=-oo
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~ (a'\i • • • a(2n+2)i + P\a2i • • ' a(2n+2)i + M\i^il ' ' ' a'(2n+2)i)

± : :
( + li ' " ' a(2n-l)ia(2n+l)ia(2n+2)i

a(2n+2)i + ^(2n+l)fli,- ' ' * fl(2n)ifl(2ii+2)i

So all terms in the above equation cancel in pairs. Thus 0 is a 2n-cocycle, and
obviously it is cyclic, that is,

<j)(au ... , a2n){a2n+\) = (-l)2n<t>(a2 a2n, a2n+])(ax). D

THEOREM 2.2. Let cobea weight on 1 such that inf {&»(/)} = 0. Then

J4?2n (£/*, (&/*)') £ 0 and also 3%>c€ln {srf*) £ 0

for every n € N.

PROOF. Let </> be the bounded cyclic 2n-cocycle which was introduced in Lemma 2.1
and let a, be defined as below. Since inf{a>(/)} = 0, then there exist numbers mk,
(k = 1,2,...) such that m, ^ ntj whenever i ^ j and co(mk) < l/2fc. Now we
define

\/k2 if i = mk (A; = 1,2, . . . ) ;

0 otherwise

and so XI^-oo a« = Y1T=\ V^2 which converges. Thus by Lemma 2.1

0 0 „' ~l
\ / \ \ intk (2n+l)mt

, . . . , a2n){a2n+i) =

is a bounded cyclic 2«-cocycle for every n e N. Now if there exists a \J/ in
l \ \ ) ' ) such that
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where ak e &/* (k = 1, 2, . . . , In + 1), in particular, if ax = • • • = a2n+i = emj,
(j = 1 , 2 , . . . ) , then

2?i times 2n—1 times

ij i • • • > ^mj )\€ntj ) = = Y\£n\j t • • • » ^m7 )\^mj ) =

So since co(j) < \/2j

In times

> sup

[ 1 1 \2J\

which is a contradiction. So ^ 2 " ( ^ # , (^#)') / 0 and also JW1"^*) ^ 0 . D

3. Odd dimensional cohomology groups of
weighted sequence algebras

In this section we will show that 3Vln+x (sf\ (tf*)')^0 and also Jt?<tf2n+1

for every n > 1. Note that the structure of the function 0 which is a base for
Theorem 3.4, for the three dimensional case is different from the structure of the
corresponding functions in the other cases.

LEMMA 3.1. Let X^-oo a< ^e an absolutely convergent series of real numbers, and
let <p : srf* x .G/# x srf* —> {srf*)' be the function defined by

^ a'b'^d'- a'ftdd'
4>(a,b,cKd)= T J2 \ /

where a = a' + al, b — b' + $\, c •=• d + y\ and d = d' + XI. Then 0 is a bounded
cyclic 3-cocycle.

PROOF. It is easy to see that 0 is a trilinear map and also

\<f>(a,b,c)(d)\<
dA

co(i)2co(j
i=-ooj=-oo ^

* 2
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Thus 0 is bounded and ||0|| < 2{ XI^-oo |a,-|} . Now we want to show that 0 satisfies

(1) a<j)(b, c, d)(h) - 4>(ab, c, d){h) + <f>(a, be, d)(h)

- 0(a, b, cd){h) + (0(a, b, c)d)(h) = 0,

where a = a' + a l , b = b' + 01, c = d + y l , d = d' + XI and h = h' + 61. By
definition of 0 and (1)

V ^ V ^ OtiC(j (.

^^co(iyaj(j)2V j ' ' ; j j ' ' ;

- (ydd.tijd +aydd'h'i
i i j j j i i j j

- {(a^d^h'j +ayjdid[h'j+fla'jdid'ih'])

— (djb'jdd'jh'j -f otydd'jh': + Ba'jdd'jh':
* * * J J * * J J * * J J

and so 0 is a 3-cocycle. Also 0 is cyclic, since

o)(i)a>(j)

-^ co(i)2co(j)2 ' J1
 J ' J

= —<p(a, b, c, d) = (—l)30(a, b, c, d).

Now we are going to construct the 2n + 1-cocycle 0 for higher dimensions.
In times

LEMMA 3.2. L r̂ Vy : ^ # x ̂ # x • • • x ̂ # -> ( ^ # ) ' Z?e a 2n-linear function
defined by

2n+\

fij (fl,, . . . , fl2n
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where ak = a'k + f$kl and a'k = {a'ki}ieI (k = 1 , . . . , 2n + 1).

(au...

PROOF. By the coboundary formula we have

(2) 8\J/ij (au ..., a2n+i)(a2n+2) = ^ (a2, . . .

2/i

[ , . . . , a t « t + l , • • • » «2/.+l)(«2/i+2)

, • • •, aln){a2n+xa2n+2).

Using the definition of i/̂ y we obtain the value of all terms on the right-hand side of
the above equation as follows

(a2,... ,
2/1+1

— a2i • • • "(2/,+l)i"(2/i+2);"i; "•" 2—i u " kj "(2/i+2)i
k=2

2n+2 2/1+1

fln-^-n; 4" 7 P2n+2a\i ' ' ' akj ' ' ' a(2n+\)i'

k=2

For /= 1 2n,

\\ri} ( a i , . . . , a i a i + u ••• , a 2 n + i ) ( a 2 n + 2 )

2n+2

— aXi • • • a / y a ( / + 1 ) ; • • • "(2^+2)1 ' / , an ' ' ' akj ' ' ' "(2/i+2)i

*=i

2/1+2 2n+2

2< •••a'kj---a'r-- a{2n+2)i + ] T ^3/+,«',,. • • • akj,
k=\

kl

where symbol ^ shows the element in that position is removed.

1, . . . ,a2n)(a2n+ia2n+2)

= a'\i • • • a{2n)ia'(2n+\)j a'(2n+2)j
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2n+2 2n+l

akj '" a'(2n)ia(2n+2)i + Z2 Pl»+laU '"a'kj"' a'(2n+\)i-
k=\ k=\

Substitute the values for xf/y obtained above in (2). Then all summations with
(k = / , . . . , 2n + 2) coefficients cancel in pairs, and we obtain

, ... , a2n+l){a2n+2)

2n+l

= a'\ja>2i • • ' a{2n+l)ia{2n+2)j + X ] ( - 1 ) * « W ' ' " "'hi a(k+l)j * ' " a(2n+2)i
k=\

2n+\ 2n+l 2n+2

^ Z ^ 1' "kj
k=2 /=1 *=1

and the sum of the last two terms is zero because, they contain 2n terms like
a'u " ' a'kj " ' a(2n+2)i f°r e v e r v ^ = 1, • • •, 2n 4- 2, half with a positive sign and the
other half with a negative sign which cancel in pairs. So this finishes the proof. •

LEMMA 3.3. Let £V a, be an absolutely convergent series of real numbers, and let
0 : $4* x srf* x • • • x &/* -> {srf*)' be the function defined by

2n+l times

<p{au . . . , a2n+i){a2n+2) = > > 8\J/ij{au . . . , a2n+i){a2n+2),
t-^11—1 co{i)2n(o{jy

i j v

where rj/y is defined as in Lemma 3.2. Then 0 is a bounded cyclic {2n 4- \)-cocycle
for every n > 1.

PROOF. It is easy to see that 0 is a 2n + 1-linear map and also

I, . . . , fl2n+l)(fl2ii+2)l < (2/1 H

Thus 0 is bounded and ||0|| < (2n + 2)( £ * _ « , |a,|)2- Also 0 is a (2w 4- l)-cocycle,
that is,

- ' co{i)2ni

because 5 5 ^ = 0. Furthermore we show that 0 is cyclic, that is, it satisfies

i , . . . , a2n+\){a2n+2) = (-1)2"+10(«2, • • •, a2n+2){a\).
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For this we have to calculate the right-hand side of the above equation. We have the
following:

<p(a2, ... ,

<2n+2>

a2ia3ja4j * * ' a'(2n+2)iaU ^ i * ' " a(2n+l)ia(2n+2)y flu) J

aiajI ( i i i i , 1 1 1

) co(i)^co(j)2 ( ~ °lJ °2i''' a ( 2"+ 1>'a ( 2"+2» + aV "V a3i

• • • - au • • • a(2n)j a'(2n+l)j a'(2n+2)i + a\. • • • a'{2n)ia[2n+l)j a[2n+2)j

, . . . , aln+\){aln+2).

Therefore 0 is a cyclic (2n + l)-cocycle. D

THEOREM 3.4. Let cobe a weight on 1 such that inf {&>(/)} = 0. Then

and also Jt?<tf2n+l (tf*) / Ofor every n e N.

PROOF. Let 0 be the bounded 2n + 1-cocycle which was introduced in Lemma 3.1
for n = 1 and in Lemma 3.3 for n > 1. Consider the sequence a, which was defined
in the proof of Theorem 2.2. Note that m, ^ m̂  whenever / ^ j and co(mk) < 1/2*.
Also if / < 7 , since 1/2J < 1/2', then max{ct»(/n,), a>(w;)} < 1/2'.

Now if ir € ^ 2 " ( ^ # , (^#) ' ) such that 0 = 5^ , then by the definition of 0 and the
coboundary formula we have

2/i times 2n times

j) = \lr(emn ..., em.)(em.)

2/1—1 times

j, emi emi)(emj) ± h \fr(em., emi, ..., emi)(emj

2/1-1 times 2/i-l times

m,, • • •, em.){em.) + \fr(emj,emi,..., emi)(emj)

2/i—l times

= \(r(emi + emj ,emn... , em,)(emj).

Therefore by the definition of <p

2/i— 1 times

ocmiamj
mi + emj, emi, ..., em*)(emj) =

| .^2

https://doi.org/10.1017/S1446788700003475 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003475


[11] Higher dimensional cohomology 67

Suppose min{o;(/n(), o){nij)} = Cy, then

\\Cij(em. + emj)\\(o-i = 1 and ||w(m,)em.|U-i = 1.

If we let i < j , then

\\xJ/\\ > sup {l^ (Qj(emt + em.), (o{mt)emn ..., a>(m,-)em,)

= sup
co(mi)co(mj) J

[ * 1 (2'
= sup < \ > sup < —

tj Imax{a)(m,-),a)(my)}i272) u I ; 4

In particular, for./ = / + 1, we have ||^r|| > sup,- 2'/(i + I)4 = oo which contradicts
f € c€ln{^\ (^#) ' ) . So ^ 2 " + 1 (^ # , (^#) ') ^ 0 and JWln+x(£?*) ^ 0. D

REMARK. Consider the short exact sequence 0 -> J2̂  ->• J ^ # ->• C ->• 0. The dual
of this short exact sequence, is the short exact sequence,

This gives the long exact sequence of cohomology (see [6, III. Corollary 4.11])

From this, one can show that J4?n(£/*, C) ^ 0 for every n > 2.

As we noticed in Section 1, EN is an amenable closed subalgebra of sz/*. So £/*
satisfies the conditions of [12, Theorem 2.6 and Theorem 5.1]. We can therefore
apply Theorem 2.2 and Theorem 3.4 to conclude that for each n > 2, the E^-relative
(cyclic) cohomology of srf* does not vanish.
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