Geometrical Note, II.

By R. Tucker, M.A.

Figure 15.

In continuation of the results given in Vol. XI. of the Proceedings I note that the equations to $\mathrm{AP}, \mathrm{BQ}, \mathrm{CR}$ are respectively

$$
\beta / n c=\gamma / m b: \gamma / n a=a / m c: a / n b=\beta / m a:
$$

and to $\mathrm{AP}^{\prime}, \mathrm{BQ}^{\prime}, \mathrm{CR}^{\prime}$ are

$$
\beta / m c=\gamma / n b: \gamma / m a=a / n c: a / m b=\beta / n a .
$$

Now $\left.\left.\begin{array}{lll}\mathrm{BQ}, \mathrm{CR} \\ \mathrm{CR}, \mathrm{AP} & \beta_{1} ; \\ \mathrm{AP}, \mathrm{BQ} & \gamma_{1}\end{array}\right\} \begin{array}{lll}\end{array}\right\} \begin{array}{ll}\text { and } & \mathrm{BQ}^{\prime}, \mathrm{CR}^{\prime} \\ & \mathrm{CR}^{\prime}, \mathrm{AP}^{\prime}\end{array}$
where the points are given by the following

$$
\left.\left.\begin{array}{ccc}
\left(a_{1}\right), & m n b c, & m^{2} c a, \\
\left(\beta_{1}\right), & n^{2} a b, \\
\left(\gamma_{1}\right), & m^{2} b c, & m n c a, \\
m^{2} a b, \\
n^{2} c a, & m n a b,
\end{array}\right\} \begin{array}{ccc}
\left(a_{2}\right), & m n b c, & n^{2} c a, \\
\left(\beta_{2}\right), & m^{2} a b c, & m n c a, \\
n^{2} a b \\
\left(\gamma_{2}\right), & n^{2} b c, & m^{2} c a, \\
m n a b,
\end{array}\right\}
$$

where the common modulus is $2 \triangle /\left(m^{2}+m n+n^{2}\right) a b c$. Hence the triangles $a_{3} \beta_{1} \gamma_{1}, a_{2} \beta_{2} \gamma_{2}$, are concentroidal with ABC.

The straight lines $a_{1} \alpha_{2}, \beta_{1} \beta_{2}, \gamma_{1} \gamma_{2}$ are parallel to the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ respectively, and since the equation to $\alpha_{1} \alpha_{2}$ is

$$
-a \alpha\left(m^{2}+n^{2}\right)+m n(b \beta+c \gamma)=0
$$

it is seen that the above lines intersect in points $a_{3}, \beta_{3}, \gamma_{3}$ where α_{3} is given by $a \alpha m n /\left(m^{2}-m n+n^{2}\right)=b \beta=c \gamma$, i.e., the points are on the respective medians. From these coordinates we at once obtain that the modulus of similarity for the triangle $\alpha_{3} \beta_{3} \gamma_{3}$ is

$$
(m-n)^{2} /\left(m^{2}+m n+n^{2}\right) .
$$

The equations to the circles $\alpha_{1} \beta_{1} \gamma_{1} ; \alpha_{2}, \beta_{2}, \gamma_{2} ;$ are

$$
\begin{aligned}
& a b c\left(m^{2}+m n+n^{2}\right)^{2} \sum a \beta \gamma=\Sigma a a . \Sigma\left\{a \alpha .\left(m^{2} b^{2}+n^{2} c^{2}+2 m n b c \cos \mathrm{~A}\right)\right\} \\
& a b c\left(m^{2}+m n+n^{2}\right)^{2} \Sigma a \beta \gamma=\Sigma a \alpha . \Sigma\left\{a \alpha .\left(n^{2} b^{2}+m^{2} c^{2}+2 m n b c \cos \mathrm{~A}\right)\right\}
\end{aligned}
$$

and their radical is $\quad \Sigma\left[a \alpha\left(b^{2}-c^{2}\right)\right]=0, c . f .(1)$.

The equation to the conic through the last-named six points is

$$
m n\left(a^{2} \alpha^{2}+b^{2} \beta^{2}+c^{2} \gamma^{2}\right)=\left(m^{2}-m n+n^{2}\right)(b c \beta \gamma+c a \gamma \alpha+a b a \beta) ;
$$

this is an in-ellipse if $m^{2}-3 m n+n^{2}=0$, i.e., if

$$
m / n=(3 \pm \sqrt{5}) / 2
$$

It is similar and similarly situated to (4). The triangles $\alpha_{1} \beta_{1} \gamma_{2}, \alpha_{2} \beta_{2} \gamma_{2}$, are equal to one another and

$$
=(m-n)^{2} \mathrm{ABC} /\left(m^{2}+n \imath n+n^{2}\right) .
$$

The perimeter of the hexagon $a_{1} \beta_{2} \gamma_{1} a_{2} \beta_{1} \gamma_{2}$

$$
=(m-n)\left(m^{2}+n^{2}\right) /\left(m^{2}+m n+n^{2}\right) \times \text { the perimeter of } \mathrm{ABC} .
$$

The lines $\alpha_{1} \beta_{2}, a_{1} \gamma_{2}$; are parallel respectively to AB, AC; with like results for the analogous lines.

The equation to $a_{1} \alpha_{3}$ is

$$
-m n(m+n) a \alpha+n^{3} b \beta+m^{3} c \gamma=0
$$

whence we see that if this line cuts $C B$ in W, then

$$
\mathrm{CW}: \mathrm{BW}=m^{3}: n^{3} \text {. }
$$

If $\mathbf{B Q}^{\prime}, \mathbf{C R} ; \mathbf{C R}^{\prime}, \mathbf{A P} ; \mathrm{AP}^{\prime}, \mathrm{BQ}$; intersect in $\alpha_{4}, \beta_{4}, \gamma_{4}$, these points are given by

and the modulus of similarity for $a_{4} \beta_{+} \gamma_{+}$is $(m-n) /(2 m+n)$.

The equation to the circle $\alpha_{1} \beta_{4} \gamma_{4}$ is

$$
(2 m+n)^{2} a b c \Sigma a \beta \gamma=\Sigma a \alpha \cdot \Sigma\left[m a \alpha\left\{-m a^{2}+(m+n)\left(b^{2}+c^{2}\right)\right\}\right] .
$$

Again, if $\mathrm{CR}^{\prime}, \mathrm{BQ} ; \mathrm{AP}^{\prime}, \mathrm{CR} ; \mathrm{BQ}^{\prime}, \mathrm{AP}$; intersect in $\alpha_{5,} \beta_{5,} \gamma_{5}$, these points are given by

$$
\left.\begin{array}{lll}
\left(\alpha_{5}\right) & m b c, & n c a, \\
\left(\beta_{5}\right) & n a b c, & n c a, \\
\left(\gamma_{5}\right) & n b c, & n a b, \\
n c a, & m a b,
\end{array}\right\}
$$

and the modulus of similarity for $\alpha_{5} \beta_{5} \gamma_{5}$ is

$$
(m-n) /(m+2 n)
$$

The equation to the circle $\alpha_{5} \beta_{5} \gamma_{5}$ is

$$
(2 n+m)^{2} a b c \Sigma a \beta \gamma=\Sigma a \alpha \cdot \Sigma\left[n a \alpha\left\{-m a^{2}+(m+n)\left(b^{2}+c^{2}\right)\right\}\right] .
$$

All the triangles are concentroidal with ABC.

If $\mathrm{AP}^{\prime}(\beta / m c=\gamma / n b)$ cuts $\mathrm{QR}\left(-m n a \alpha+n^{2} b \beta+m^{2} c \gamma=0\right)$ in p^{\prime}, this point is given by

$$
a a /(m+n)=b \beta / m=c \gamma / n=\Delta
$$

i.e., p^{\prime} is on the mid-parallel to BC , ($\operatorname{say} Z \mathrm{Y}$), and is the mid point of QR. It is also readily seen that

$$
\mathbf{Z} p^{\prime}=n . \mathbf{Z Y}
$$

Hence $p^{\prime}, q^{\prime}, r^{\prime}$ (analogous points to p^{\prime}) form the medial triangle of PQR .

In like manner if $A P$ cuts $Q^{\prime} R^{\prime}$ in p, then $p q r$ is the medial triangle of $P^{\prime} Q^{\prime} R^{\prime}$, and $Z p=m . Z Y$.

We see then that $p q r p^{\prime} q^{\prime} r^{\prime}$ are the exact analogues on $Y Z, Z X, X Y$ of $P Q R P^{\prime} Q^{\prime} R^{\prime}$ on $B C, C A, A B$.

I consider two envelopes, viz., of $\beta_{1} \gamma_{4}, \beta_{3} \gamma_{2}$.
The line $\beta_{1} \gamma_{4}$ is given by

$$
m a a(m+n)-b \beta\left(m^{2}+m n+n^{2}\right)+c \gamma m n=0,
$$

or, as it may be written,

$$
m^{2}(b \beta+c \gamma)-m(a a+b \beta+c \gamma)+b \beta=0
$$

The envelope, therefore, is

$$
(a a+b \beta+c \gamma)^{2}=-4 b \beta(b \beta+c \gamma),
$$

an hyperbola of which the asymptotes are

$$
\beta=0, \beta b+c \gamma=0
$$

i.e., CA , and the parallel to BC through A .

The line $\beta_{4} \gamma_{3}$ is given by

$$
n^{2} a a+m(m-n) b \beta-m n c \gamma=0,
$$

or by

$$
n^{2}(a a+2 b \beta+c \gamma)-n(3 b \beta+c \gamma)+b \beta=0 .
$$

The envelope of which is

$$
(b \beta+c \gamma)^{2}=4 a b a \beta,
$$

which is also an hyperbola, the asymptotes being given by

$$
a=0,3 b \beta+c \gamma=0 .
$$

