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The purpose of this note is to present a unified treatment of the material contained in
Chapter 10 of [2] on roots and logarithms of prespectral operators. Our main result gives
a sufficient condition for an analytic function of a prespectral operator of class F to be
prespectral of class F. A result in the opposite direction for spectral operators has been
obtained by Apostol [1]. Terminology and notation in this paper are as in [2].
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The main result of the paper follows. Throughout X is a complex Banach space and

THEOREM 1. Let A be a prespectral operator on X with resolution of the identity E(-) of
class T. Let f be a function analytic on a region ft, such that a(A) £ /(ft) and /'(A) j= 0 for
all A in ft. Then there is an operator T on X such that T is prespectral of class F, cr(T) <= ft
and f{T) = A.

Proof. Let Aeo-(A). Then there is a point £ in ft such that /(£) = A. By Theorem
10.34 of [3, p.217], there exist open neighbourhoods Vc and Wx such that / is a
one-to-one mapping of Vc onto Wk. The set WK is open and A e Wk. Hence we can find an
open disc Dk which is properly contained in Wx and has A as its centre. Let 8(A) be the
open disc with centre A and radius half that of DK. As A runs through a{A), the
corresponding discs

{8(A):A6CT(A)}

cover <x(A). Since <r(A) is compact, there is a finite subcovering; that is

S(Ar).
l

For brevity, let Sr denote 8(Ar) and let Wr denote the open neighbourhood corresponding
to Ar. Let gr be the inverse of / on Wr. Define

T2 = (S2\5,)ncr(A),

rn = [Sn\\ U 8r no-(A).
V Lr=l J /
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Observe that {T, : r = 1 , . . . , n} is a family of pairwise disjoint sets such that Tre£p,

O"(A)S LJTr.
r = l

= 0 gr(A I E(rr)X).
r = l

Define

We know that

Also, by Theorem 14.2 of [2, pp 265-6], A | E(rr)X is a prespectral operator with
resolution of the identity E(-) | E(rr)X of class F.

Now, by Theorem 10.34 of [3, p. 217], gr is analytic on Wr, and so it follows from
Theorem 5.16 of [2, pp 130-1] that gr(A | E(rr)X) is also prespectral of class T. Also, the
resolution of the identity of class T for gr(A | E{rr)X) is Fr(-), where

Fr(S) = E(g7\5))\E(rr)X

= £(gr1(5) 0 Tr) | E(rr)X (8 e 2P, r - 1 , . . . , n).

Define

We wish to prove that T is a prespectral operator with resolution of the identity F(-) of
class r and that f(T) = A.

Let Sls S2eip . Observe that

= t E(g7l(81)nTr)E(g7l(S2)f)Tr)
r = l

It follows that

F(S, n S2) = I Fr(S,)Fr(82) = FidjFidJ (8U 82 e lp),
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using the fact that T,, . . . , TM are pairwise disjoint. Also

F(C)= t Fr(C)= t E(g;\C)Drr)
r = l r = l

Now let 8 e Sp. Observe that

F(C\5)=[Fr(C\S)
r = l

= l£(gr1(C\8)nrr)
r = 1

= t [H(gr1(C)nrr)-E(gr
1(s)nTr)]

r = l

= I E(gr-'(C)nTr)- t E(g;\8)nrr)

Let S,,82e2p. Then
F(5,US2) = F(C\(C\S 1 )n(C\S 2 ) )

= 7-F((C\S 1 )n(C\8 2 ) )

= 7-F(C\S1)F(C\S2)

= 7-(7-F(S1))U-F(Sa))

= F(81) + F(62)-F(81)F(«2).

Also if | |£ (T) | |<M<OO, then clearly ||F(T)||<MM<=*> ( T E 2 P ) .

We deduce that if {5m} is a pairwise disjoint sequence of sets in £p, then

8m)= t H8J.

Hence if x e X and y e F, then we obtain

X <F(5m)x,y)

= 1 1 (Fr(8m)x, y)
m = 1 r = 1

= I t<E(g;l(8jnTr)x,y)
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Let k —> <». Using the properties of the inverse image and the countable additivity of
(E(-)x, y) on Sp for x in X and y in F, we deduce that

(a) lim ( F ( U Sm)x, y) exists (xeX, y eF)

(b) lim ( F ( U 8m)x, y) = (F( \J 8n)x, y) (xeX, yeT).
(ĉ oo \ \ m = l / / \ \ m = l / /

This completes the proof that F(-) is a spectral measure of class (Sp, F).
Since gr is analytic on a neighbourhood of fr,

gr(A | E(rr)X) =-^r f &(A)((A/- A) | E(Tr)X)- dA,

where B is a suitable finite family of contours in p(A \ E(rr)X). Since A is prespectral, it
follows that

and so A | £(Tr)X commutes with £(•) | E(Tr)X. We deduce readily from this that Fr(-)
commutes with gr(A | E(rr)X) and consequently

TF(T) = F ( T ) T (reXp).

Also

F(5)X = © E(gT\8) n rr)X (5 e 2P).
r = l

Each of the subspaces on the right-hand side reduces T and so, by Proposition 1.37 of [2,
pp 25-6]

<r(T|F(5)X)= U cr(T\E(g7\8)nrr)X
r = l

= U o-((gr(A | E(Tr)X) | E(gr1(S)nrr)X

It follows that F(-) is a resolution of the identity for T. Finally

) gr(A | E(rr)X)^

= © (/ogr)(A|E(Tr)X)
r = l

= © A | E(rr)X
r = l

= A

and so the proof is complete.
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COROLLARY. Let A, in L(X), be a scalar-type operator of class T. Let Cl be a region
and let f be a function analytic on fl such that cr(A)s/(n) and /'(A) ^ 0 for all A in Cl.
Then there is a scalar-type operator S of class T such that o-(S) £ fl and f(S) = A.

Proof. In the notation of the proof of Theorem 1, A | E{jr)X is a scalar-type operator
of class F for each r = 1 , . . . , n. It follows that gr(A | £(rr)X) is also a scalar-type operator
of class F and hence that T is a scalar-type operator of class F. This completes the proof.

Finally, we state the special case of Theorem 1 for spectral operators combined with a
result of Apostol [1].

THEOREM 2. Let A, in L(X), be a spectral operator. Let Q, be a region and let f be a
function analytic on £1 such that <x(A)£/(fl) and / '(A)^0 for all A in fi. Then there is a
spectral operator To on X such that a(T0)sQ, and f{T0) = A. Moreover, if TeL(X) and
f(T) = A, then T is a spectral operator.
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