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LP-BOUNDEDNESS OF A SINGULAR INTEGRAL OPERATOR

ABDELNASER J. AL-HASAN AND DASHAN FAN

ABSTRACT. Let b(t) be an L* function on R, Q(y’) be an H! function on the unit
sphere satisfying the mean zero property (1) and Qm(t) be a real polynomia on R of
degree m satisfying Qm(0) = 0. We prove that the singular integral operator

Taus(109 = [ BV (= Qulyhy) o

isbounded in LP(R") for 1 < p < oo, and the bound is independent of the coefficients
of Qm(t).

Let S™1 be the unit spherein R?, n > 2, with normalized L ebesgue measure do =
do(x') . Let Q(x) be a homogeneousfunction of degree zero, with Q € LY(S1) and

@) ‘ /S () do(x) =0,

wherex’ = x/|x| for any x # 0.
Suppose b(t) is an L*>°(R) function. In this paper we investigate the LP boundedness
of the singular integral operator

2 Tonb()(X) = p.v. /R K(y) f(x— Qm(|yl)y) dy

wherey’ =y/|y| € S K(y) = b(|y)Q(y)ly| ™" and Qm(t) = =2, Sut“ isreal.
The study of such kind of operators has along history. Readers can see [5] for more
detailed background. In particular, the following theorem can be found in [5].

THEOREM A. Let Tq,» be the singular integral operator defined in (2). If Q €
HY(S" 1) satisfies (1), then this operator is boundedin L2(R").

The proof of Theorem A is based on the Plancherel theorem, so that the authorsin [5]
were only able to obtain the L? boundedness. The main purpose of this noteis to extend
Theorem A to the following LP boundednesstheorem.

THEOREM 1. Let T, b bethe singular integral operator defined by (2) and 1 < p <
00. If Q € HY(S"1) satisfies (1) then this operator is bounded in LP(R").
More precisely, we have

3 Tanb(Hllp < Cl Qe [ Fllo
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where C is a constant independent of Q, f and the coefficients of Q.

The proof of Theorem 1 is based on alemmain [4] by Fan and Pan (see Lemma 3
below).

Throughout this paper, the letter C will denote a positive constant that may vary at
each occurrence but is independent of the essential variables.

To prove Theorem 1, we recall the definition of Hardy spaces on the unit sphere, as
well as some lemmas.

The Poisson kernel on S™1 is defined by

Py (X) = (1= r?)/ry =x|"

where0 <r <landx.y € S*1
For any Q € LY(S™1), we define the radial maximal function P*Q(x’) by

PQ(X) = sup | [, Q(Y)Pue(¥) do(y)):
o<r<al”
If ||P*Ql| 1sn1) < 00, wesay that Q belongsto the Hardy space H(S™*) with H!-norm
”Q”Hl(S”*l) = ||P+Q||L1(9H)-
The space H'(S"1) was studied in [1] (see also [2]). In particular, it is known that

LY(S™ ) D HYS™™) D LLog" L(S™) 2 LYS™)

forany q > 1.

Another important property of H1(S"1) is the atomic decomposition, which will be
reviewed below.

An exceptional atom is an L> function E(x) satisfying ||E||o, < 1.

An oco-atomisan L* function a(.) that satisfies

(4) supp(a) C {X' € S™L, |X — x}| < p for somex;, € S™* and p > 0};
(5) . a€)do(e) =0,
(6) 8]0 < p~ Y.

From [1] or [2], we find that any Q € HY(S™!) has an atomic decomposition
Q = ¥ \jg;, where the a’s are either exceptional atoms or co-atoms and ¥ |)j| <
Cl|Ql|sn1y- In particular, if Q € HY(S™!) has the mean zero property (1) then all the
atoms g; in the atomic decomposition can be chosen to be co-atoms.

LEMMA 1 [VAN DER CORPUT [8]]. Suppose ¢ and h are smooth functions on [a, b]
and ¢ isreal-valued. If | (x)| > 1 for x € [a, b] then

[ e On@at] < GUAF (Il + ]
holds when

(i) k>2
(i) or k=1, if in addition it is assumed that ¢’(t) is monotonic.
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LEMMA 2 [sEE [7]]. SupposeP(Y) = X|qj<m a8y isa polynomial of degreemin R"
ande < x. Then
Sy PO dy <A( S Jaul) ™

|o]<m

The bound A, may depend on e, m, and the dimension n, but it is independent of the
coefficients {a, }.

We shall need the following results from [4] (see also [3]).

LEMMA 3. Letme N,s=0,1,..., m, k € Z and {osx} be a family of measures
on R" with 6o = O for everyk € Z. Let {ag : s=1,2,....mandj = 1,2} C R*,
{ns:s=212....m CR"\{1},{Ns:s=22.....m} C N,and Lg R" — R" be
linear transformationsfor s=1,2,....m. Supposefor s=1,.2,....m

(@) |oskl] <1forke Z;

(b) [Gsk(€)] < Clr|LsEl) < for ¢ € R" and k € Z;

(©) [5sk(6) — s 14(6)| < CnILsg])™ for & € R"andk € Z;
(d) For someq > 1 thereexists Aq > 0 such that

su *f H < f n
Jsupllosel ] < Al s

for all f € LYR").
Then for every p € (ﬂ ﬂ) there exists a positive constant C, such that

a+l’ g-1
@ I kezz Ok * | gy < Coll Flloer)
and
2\%
®) |32 lomic F12) 2] gy < Col fllogee
kez

holds for all f € LP(R"). The constant C,, is independent of the linear transformations
{Lst-

Now we are in the position to prove Theorem 1.

Note that Tq, b(f) isequal to

9 o MBAyDRY) T (x = QullyD)Y) dy

where Q € H}(S™1) satisfies the mean zero property (1). We can write Q = ¥ \jq;,
where 3~ |\j| < C||Ql|j4yg-+) and each g; is an co-atom.
So
ITanb(Dllo < X2 INIIBI(DIlp
where

Bi(NM = [, bUYDIYI " (¥)  (x— QullyDy) dy

with & being an oo-atom.
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Therefore, it suffices to show
(10) 1Bifllp < Cl[fllp

where C is independent of the coefficients of the polynomial Qm(t) and the atoms &(.).
For simplicity, we denote &(.) by a(.) and B;j(f) by B(f). Noting that supp(a) is in
the ball B(x), p) N S for some x; € S™2, without loss of generality we may assume
X=1=(1,0,...,0).
Let I, = (2, 21y, then B(f)(x) isequa to

s b(lyl)lyl‘”a(y)k_i X1 YD f(x = Qmly)y') dy=k§ omk * F(X)

where

k() = [ by Dly|"a(y)eQDY-E) dy

ZkSMSZK*'l

with m being the degree of the polynomial Qp,.
Define

2k+1 . m [ X
&W&k(g) - /2k b(t)t71e7| EFwsﬂ Bt (x,€) ./971 a( y/)elenFs(t)<)/-5> dO'( )/) dt

s=12....,m— 1. Noting that Qu(t) = T, A«t*, we have Qo(t) = 0.
So we define

dor@= [ bOU* [, aly)e @O¥ do(y) ot

then

ket

* bt [, aly)do(y)dt=0. by ()

2k

ook(§) =

Also, we easily see

lomsill < [ 16OI [ a(y)]do(y)ct < C

foralke Zands=0.,1,...,m— 1.

In the rest of this paper, for any non-zero &€ = (¢1,.... &) € R, wewrite &/[¢] =
€= (... e

Supposen > 3and a(.) is an oo-atom on S with supp(a) C St N B(¢'. p), where
B(¢/, p) istheball in R" centered at £'. Let

Fa(r.€) = (1 =" 3210 [, a(r. @ = )Y2y) do(y).

Then, we have the following estimates for F; whenn > 3.
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LEMMA 4. Up to a constant multiplier independent of a(.), Fa(7, ¢’) is an co-atom
on R. More precisely, thereis a constant C which isindependent of a(.) such that

supp(Fa) C (3 — 2r(€). €1 + 2r(€));
IFallo < C/r(¢);
/R Fa(r)dr =0,

wherer(¢') = [¢]7H ALl and AL = (pP61, péa, - . pln).

Thefunction F, canbesimilarly definedinthecasen = 2. Supposen = 2and a(.) isan
oo-atom on St satisfying (4)—(6). The center of the support of a(.) is ¢ = (£7, &5) € St
Let

folr.€) = (1 =) 1) (a(r. @ - Y2) +a(r —@ - )Y?)).

Similar to Lemma 4, we have

LEMMA 5. Up to a constant multiplier independent of a(.), fa(7. ¢’) is a g-atom
on R, where g is any fixed number in the interval (1, 2). The radius of its support is
r(€") = |71 p*€2 + p?¢3}%/?, and the center of its support is €.

The proofs of the above two Lemmas can be found in [6].
By inspecting the proof of Theorem 1 using Lemma3, we only need to check that the
family {om_sx} satisfiesthefollowing conditions: fors=0,1,2,....m—1
(i) [6m-sk| < CI2™ AL Brn-s| 5 and Bin-s 7 O;
(i1) [6m-sk(€) — Gm-s1(E)] < CI2™ KA B o];
(iii) HSUpkeZ |om-sk *f|HLp(Rn) <CJ|f HU’(R")
where C > 0O isindependent of k € Z, ¢ € R", and the coefficients of the polynomial
Qm-s.
We will only prove the case n > 2, since the proof for n = 2 is essentially the same
(using Lemma5 instead of Lemma4) with a slight modification.
Infactfors=1.2,....m— 1wehave

[Gm-sk(&) = Fm-s-1(6)|

2k+1 . m i
./2k b()t e 'E,wsuﬂﬂ‘%f)/

Jon-t

a( y’)e*iQrms(t)()/-E) do(y') dt

2k+1 . m .
_ /2 k b(t)t e Xm0t 00:0) /SH a(y)e Q=109 do(y) dt|.

Let O bethe rotation such that O(¢) = |¢]1 and O~ beitsinverse. Noting that a(y’) has
support in B(1, p), so by an argument of rotation

/9171 a( y/)e_ierks(t)Q/f) dO’( y/) = /9171 a(o_ly')e_iQrTFs(t)‘5|<>/~l> dO’( y’)
= /S'H A(Y)e QI D) gy
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where A(Y') is an oo-atom supported in B(¢', p). Thus, let Yy = (7,V5.....V,), then by
the definition of Fa(7. £’) and Lemma 4, we have

|Gm-sk(€) — Tm-s-1k(E)]

2kl R irur y !
= I/Zk b(t)t_le—l Ditmsr1 Bt (5:€) /R Fa(T, 5’)e iIQns()|¢] dr dit
2k+1 . m . - ‘
— / b(t)tile—lZj:nksﬁjﬂ(xo-g) / Fa(’T. gl)elenFyl(t)lﬁlT dfrdt|
J2k Jr )

2
A

% /R Fa(r, €){em ™ 0660 _ 1 det‘

ket

1 b(t)tLe Zimm-s it (-0 giQn-sOlEI7

<[ I [ IFatr )l 06 — 3yt
<[ Ot [ IFatr €)1 |- o™ 16l — (%)) ]
Sincex6 =1= (1. O, A .O), then

€1 — (%, €)] = [I€lr = (1.)] = [1€Ir — [¢]¢3]
= [|€ltr — €p)| < Cliglr()].  for all T € supp(Fa).

Thus

L i [ Fatr.€)

|&m—sk(£) - am—s—l,k(g)l <C

o™ (€I e

2k+1
< CllbllaolBm-s 1€ 11N [ ™=l
< C2™ |G o] Ay

Similarly, we can prove that

|Gmk(€) — Fm-1k(E)| < C2™|Bml[AE].

This proves (ii).
Now

K+

2kl L —m .
Fm-sk(&) = /2  bt)tte! Zeman i) /R Fa(r, €")e~ Q<O dr dt.

By Lemmad4, without loss of generality we may assumethat F, isa2-atom with support
in (—2r(¢). 2r(¢")), wherer(¢) = [€] YA€), and A€ = (0%t pa. - . . pén)-

Thus A(T) = r(g/)Fa(r(g’)T, g’) is a2-atom with support in the interval (—1, 1). After
change of variableswe have

ke+

2 t H m v B %
Fmsk(€) :/2k b(t)t—le—lZj:nwlﬂjt’%,f)/RA(T)e—IQm(t)r(ﬁ)\SITdet_
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By Holder’s inequality,

om-a©] < Clbl2™2{ [ e @O e at)

- —k/2ok/2 [ [? —iQm-s2Or (el g2
Cl|b]|027/22 {/1 | Ame dr| d
= C||bl|Ox.

}1/2

To estimate ©y, we choose afunction ¢ € C*(R) satisfying

¥(t) = Lfor |t] <1, () =O0for |t > 2.

Define Ty by _
(TF)(O = x@2 (V) /R e Qs IEl (1) £ (7) .
Then
TTEf(t) = /R L(t.7) f () dr.
where

L(t.7) = [ @@= s@IONly2(v) dvyaz (xaz (r)-

We easily see that
IL(t.7)| < Cxaa®x@a()-
On the other hand, by Lemma 1, we have

IL(t. 7)| < C{|Qm-s(2) — Qu-s(2D)| I(€)] |¢ I}_IX(l.Z)(t)X(LZ) (7).
Thus
IL(t.7)| < C{|Qm-s(20) — Qum-s(27)| [r(€)] ¢ |}a;":$X(1,2)(t)X(1.2)(T).

By invoking Lemma 2 we have

su L(t.7)| dt >~ su L(r.t)| dr
sup [ IL(t.Dldt = sup [ LG Y]

IN

C{|r(€/)| |§|}ﬁ ?;g‘/R“Qm—s(sz) — Qm_s(zkt)”m dr

—1

< C{Ir(€N] [€]} 7™ |2 Bme| 75

This shows L
I Ticfll2 < Clr(€)I€12|Bm-sl ™
which leadsto

Gm-sk(©)] < CrENE128ms] ™ = ClIAEI2 sl ™.

Thisshows, fors=0.1,2.....m— 2,

G5 < [2mo| [AE] ™.
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For s= m— 1, following the same argument above, we easily obtain

614(€)] < [2984] IApill_%-

This proves (i).
Finally, we need to check (iii).
Fors=1,2,....m— 1, wecanwrite

om-skx ()= [

2k<|y| <2t

DYDY o) (x= QoY = > 5iyP)) dy.

j=m—s+

Write Qm-s(IY)Y + X e BilVIX6 = (P1(YD). Pa(IY]): - - - - Pa(ly])), where each P is a

polynomial of |y| whose coefficients dependson y', x; and 3/s.
We denote P(y|) = (P1(lyl). P2(|y)- - .- - Pa(|y])), then

om-skxF0) = [ b(yDlyI"a(y)  (x — P(ly)) dy.

<y <2kt
Thus
—nk ~
?;Zpbm—sk *f(x)| < EEJQHbHOOZ ./2k§\y\§2k+1 a(y)f(x— P(|y|))’dy
~ —k B
xspzt [ [N f(x— P) de(y)dt
So we have

1 . p
(suplom-ai+ f(9)" < /snfl(?;g’; L 1f(x=Pw)|dt) lay)] da(y).
Therefore, we have

= Jor1

la(y)| H?‘iop% Fle(- ﬁ(t))}dtHip(Rn) do(y).

Hfég |Um—sk * f|HEP(R") = /

It was shown that

1 ~ P
sup - [[[F(.—PO)|dt| < Clflfuy fori<p<oo

with C independent of the coefficients of P (thus independent of y/, X, and Bjs) (see
[8, pp. 476-478]). Sowe havefors=1,2,....m—1

Hfggkywsk *f|HLp(Rn) < C||f|lery for 1< p < oo.

Using the exact same argument, we can check that

Sup [omk * f ~ < C|f|jLery  forl<p<oo.
erzl m. |HLp(R) || || P(RY)

The theorem is proved.
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