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Abstract. We study the measurable dynamical properties of the interval map generated by
the model-case erasing substitution ρ, defined by

ρ(00) = empty word, ρ(01) = 1, ρ(10) = 0, ρ(11) = 01.

We prove that, although the map is singular, its square preserves the Lebesgue measure
and is strongly mixing, thus ergodic, with respect to it. We discuss the extension of the
results to more general erasing maps.
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1. Introduction
Dynamical systems defined by means of substitutions represent a well-developed research
field, with rich interactions with ergodic theory, spectral analysis, chaos theory and number
theory. In the usual meaning, substitutions are rules for replacing symbols or words on a
given alphabet by non-empty words. The iterated application of the substitution rule to a
given finite or infinite word determines a discrete dynamical system (see [13, 19] for useful
reference works on substitutive dynamics).

In the recent past, some attention has been devoted to the more general case in which
also the empty word is allowed as an output. These maps are called erasing substitutions,
and the corresponding morphism, induced by concatenation on {0, 1}∞, has a dense set of
discontinuities in the standard product topology.

Some works within theoretical computer science have addressed the problem of extend-
ing classical results on substitutions to the erasing case (see, for instance, [10, 11, 20]).
On a more specifically dynamical ground, the study of maps generated by the action of
erasing substitutions on the binary expansion of reals was begun in [5, 6]. In our opinion,
the main interest of these systems arises from the combination of very simple defining

https://doi.org/10.1017/etds.2023.16 Published online by Cambridge University Press

http://dx.doi.org/10.1017/etds.2023.16
https://orcid.org/0000-0002-7575-710X
https://orcid.org/0000-0002-1782-0270
mailto:dario.corona@unicam.it
mailto:alessandro.dellacorte@unicam.it
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/etds.2023.16&domain=pdf
https://doi.org/10.1017/etds.2023.16
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rules with rich properties and dynamical behavior. This makes them a good model case
for the investigation of dynamical properties of densely discontinuous maps, which are
attracting increasing attention in the last years (see, for instance, [15, 21, 22]).

The present paper extends the results of [5, 6] by widening the perspective from purely
topological to measurable dynamical properties, specifically mixing.

The paper is organized as follows: in §2, we define the erasing interval maps, give some
background concepts and prove that the iterates of even order of the model-case erasing
map preserve the Lebesgue measure; in §3, we prove that the above map is strongly mixing,
thus weakly mixing and ergodic, with respect to the Lebesgue measure; in §4, we discuss
some possible generalization of our results to other erasing interval maps.

2. Erasing interval maps
We start by defining what we mean herein by erasing substitution. The notation used
throughout the paper is summarized in Appendix A.

Definition 2.1. We call simple substitution a map σ : {0, 1} → {0, 1}∗. For every integer
k ≥ 2, we call a map σ : {0, 1}k → {0, 1}∗ a k-block substitution. By erasing k-block
substitution we mean a k-block substitution σ such that there exists a unique w ∈ {0, 1}k
verifying σ(w) = ε. We indicate the unique word w whose σ -image is the empty word by
the symbol wε .

We say that w ∈ {0, 1}∞ is a binary expansion for x ∈ [0, 1] if

x = (0.w)2 :=
|w|∑
i=1

2−iwi . (2.1)

Note that the previous equation applies whether the length of w is finite or infinite. For
x ∈ (0, 1], we indicate by wx ∈ {0, 1}ω the unique infinite binary expansion of x not ending
with 0∞.

Let us denote the concatenation of words multiplicatively. Assuming σ(ε) = ε, the
k-block substitution σ can be extended by concatenation to a map over (

⋃
n∈N0

{0, 1}nk) ∪
{0, 1}ω by setting, for every w belonging to this set,

σ(w) =
|w|
k

−1∏
i=0

σ(wki+1wki+2 . . . wki+k),

where the concatenation index has to be intended to be up to ∞ if w ∈ {0, 1}ω.
We are now ready to introduce what we call the erasing interval maps, which are maps

from [0, 1] to itself generated by the symbolic action of an erasing substitution on the
binary expansion of reals.

Definition 2.2. Given an erasing substitution σ , the interval map generated by it, indicated
by fσ , is defined as follows:

fσ (x) :=

⎧⎪⎨
⎪⎩

|σ(wx)|∑
h=1

(σ (wx))h

2h
= (0.σ(wx))2 if x ∈ (0, 1] and wx �= w∞

ε ,

0 if wx = w∞
ε or x = 0.

(2.2)
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In the following, the main objects of our analysis are the model-case erasing block
substitution

ρ : {0, 1}2 → {0, 1}∗

defined as follows:

ρ(00) = ε, ρ(01) = 1, ρ(10) = 0, ρ(11) = 01, (2.3)

and the corresponding erasing interval map fρ : [0, 1] → [0, 1], defined using (2.2).
Some properties of this map were already investigated in [6], where it was denoted by R.

We point out that the map R was a slightly different object than fρ . Indeed, R maps 0 to
2/3 and this makes its combinatorial dynamical properties more uniform. In the present
paper, this slight discrepancy makes no difference as we are interested in measurable
dynamical properties concerning absolutely continuous measures, which are unaffected
by what happens at single points.

Let us now consider the following map ρe : {0, 1}∞ → {0, 1}∞:

ρe :

⎧⎪⎪⎨
⎪⎪⎩

0 	→ ε,

1 	→ 0 in odd positions,

1 	→ 1 in even positions.

(2.4)

As the action of ρe coincides with that of ρ on the words of even or infinite length, it can
be taken as an extension of ρ. In the following, we write simply ρ(w) instead of ρe(w) for
words of any length.

The definition of ρ given through (2.4) shows why ρ can be considered the model-case
erasing substitution. Indeed, ρ is defined using the simplest non-trivial alphabet, namely
{0, 1}, and acts by sending the digit 0 to the empty word and the digit 1 to 0 or 1 according
to the parity of its position in the original word, which is arguably the simplest possible
choice.

For the reader convenience, we recall here the main results of the two aforementioned
papers, namely [5, 6], because we are now ready to formulate them more precisely:
• in [6] it has been proven that fρ is Devaney chaotic, exhibits distributional chaos of

type 1 (in the sense of [1]), has infinite topological entropy and uncountably many
periodic cycles for every order; moreover, it is Borel-singular and not bi-measurable,
because there are sets of Lebesgue measure zero whose fρ-image is not measurable;

• in [5], Li–Yorke and Devaney chaos, as well as infinite topological entropy, have been
established for maps generated by a more general class of erasing substitutions.

As the results that we are going to show will concern the even-order iterates of fρ ,
and f 2

ρ is equal to fρ2 Lebesgue-almost everywhere (as we prove in Lemma 3.5), a
legitimate question is whether ρ2 itself can be rewritten as a block substitution. However,
the following lemma shows that this is not the case, even asking only that ρ2 coincide with
a block substitution on infinite words.

LEMMA 2.3. The map ρ2 : {0, 1}ω → {0, 1}∞ is not expressible as a block substitution.
That is, there is no k-block substitution ς , with k ≥ 2, such that ρ2(w) = ς(w) for every
w ∈ {0, 1}ω.
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Proof. Suppose, towards a contradiction, that there exists k ∈ N such that ρ2 coincides
with the k-block substitution ς when both are extended to a morphism over {0, 1}ω. Note
that, because ρ2(0k) = ε, the equality ρ2(0∞) = ς(0∞) implies ς(0k) = ε. Moreover, it
should be

ρ2(w) = ς(w) for every w ∈ {0, 1}k , (2.5)

because

ς(w) = ς(w0∞) = ρ2(w0∞) = ρ2(w).

Set now a = 0k−1 and take b ∈ {0, 1}k such that ς(b) �= ε. Such a word b must exist,
because otherwise the block substitution ς would send all words to the empty word. Take
also c ∈ {0, 1}ω.

Recalling (2.5), and because, in particular, ς(1a) = ρ2(1a) = ε, we have

ρ2(0abc) = ς(0abc) = ς(0k)ς(b)ς(c) = ς(1a)ς(b)ς(c) = ς(1abc)

= ρ2(1abc).
(2.6)

Note now that

ρ2(0abc) = ρ(ρ(0k)uρ(c)) = ρ(u)w, (2.7)

where:
• u is equal to ρ(b) or its bitwise negation ρ̃(b), depending on the parity of k;
• w is equal to ρ2(c) or ρ̃2(c), depending on the parity of |u|.
On the other hand, we have

ρ2(1abc) = ρ(ρ(1a)uρ(c)) = ρ(0uρ(c)) = ρ̃(u)w̃ = ρ̃(u)w, (2.8)

where u, v, w are defined similarly as before.
By equation (2.6), the right-hand sides of equations (2.7) and (2.8) must be equal, so it

should be

ρ2(0abc) = ρ2(1abc) = ε,

which is absurd because, again by the chain of equalities in equation (2.6), both have
ς(b) �= ε as a subword.

The previous result tells us that we cannot hope to straightforwardly apply to ρ2 the
tools developed in [5], so that we must study this map and the corresponding interval map
(fρ)2 in itself.

As an immediate consequence of [6, Proposition 5.3], the fρ-preimages of single points
has Lebesgue measure zero. However, the map fρ is not very well-behaved with respect to
the Lebesgue measure, being a singular map. To show this, let us define the set of points
whose binary expansion does not contain the word 00:

M := {x ∈ [0, 1] : wx does not have pairs of consecutive 0s}.
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As the subword 00 has no effect in the ρ-image of any word, it is clear that fρ(M) = [0, 1].
On the other hand, the Lebesgue measure of M is 0, because none of its points can be
in N2, namely in the set of normal real numbers in base 2 (see [18] for a reference work on
normal numbers). Moreover, in [6, Proposition 5.2] it has also been proven that fρ(N2) ⊂
[0, 1] \ N2. Therefore, fρ displaces all the Lebesgue-mass in the null set [0, 1] \ N2,
whereas at the same time it maps the null set M to the whole interval [0, 1]. Quite
surprisingly, it does so in such a way that in two iterations ‘things are set right again’.
More precisely, we have the following result.

THEOREM 2.4. The interval map f 2
ρ preserves the Lebesgue measure.

The proof of Theorem 2.4 is given later, after having proven some needed lemmas.
Let us first look at some numerical computations to get a sense of what is going on. The
behavior of the even and odd iterates of fρ is graphically shown by the numerical results
presented in Figure 1, where the substantial difference between the odd and even iterates of
fρ can be appreciated. As already recalled, fρ is singular and, therefore, it cannot preserve
any absolutely continuous measure. The graphs corresponding to the odd iterates can give
some hint on a singular-continuous measure possibly preserved by it. Whether it exists is
an open question for the authors. The self-similarities shown by the plots corresponding
to the odd iterates are linked to the self-similarity properties of the graph of fρ , which are
investigated in some depth in §4 of [6].

Before giving the proof of Theorem 2.4, let us introduce some useful notation.
For every w ∈ {0, 1}∗, we indicate by [w] the real cylinder set corresponding to w, that

is the dyadic subinterval of [0, 1] whose points have a binary expansion that starts with w:

[w] = {x ∈ [0, 1] : x = (0.wv)2 for some v ∈ {0, 1}∞}. (2.9)

We remark that, with this definition, [ε] = [0, 1] and all real cylinder sets are closed
intervals whose endpoints are dyadic rationals.

For w ∈ {0, 1}∗, we indicate by 〈〈w〉〉 the (countable) set of all distinct words obtained
by inserting (in any position, but not as a suffix) any finite number of subwords of type
00 in w. More formally, for w = w1w2 . . . wk ∈ {0, 1}k , a word v is in 〈〈w〉〉 if it can be
written as

v = (00)h1w1(00)h2w2 . . . (00)hkwk , (2.10)

for some choice of the k non-negative integers h1, . . . , hk . Thus, for instance,

〈〈1〉〉 = {w ∈ {0, 1}∗ : w = 02k1, k ∈ N0},
and

〈〈101〉〉 = {w ∈ {0, 1}∗ : w = 02k102h01, k, h ∈ N0}.
For every w ∈ {0, 1}∗, we indicate by [[w]] the countable union of the real cylinder sets
characterized by words in 〈〈w〉〉, namely

[[w]] =
⋃

v∈〈〈w〉〉
[v]. (2.11)
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FIGURE 1. Numerical results on the first five iterates of fρ([0, 1]). The graphs show how many, out of
approximately 150,000 randomly selected points from [0, 1], occupy the subintervals of length 2−8 at each iterate.

We prove now a technical result which shows an element of regularity in ρ2 that is
missing in ρ.

LEMMA 2.5. Let u, v, w ∈ {0, 1}∗ be such that

ρ(u) = v and ρ(v) = w,

with both u and v not containing 00 as a subword and ending with 1. Then |u| = 2|w|.
Proof. We proceed by induction on the length of w. Consider first the two words, 0 and 1,
having length 1.
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It is straightforward to check that 01 and 11 are the only two words such that:
(1) their ρ2-images are respectively 0 and 1;
(2) both they and their ρ-images do not have 00 as a subword;
(3) they and their ρ-images end with 1.
This settles the case of words with length 1.

Suppose now to have established the result for every word of length k. Fix w ∈ {0, 1}k
and let u and v have the properties indicated in the statement. As u has even length, we have

ρ(u01) = v1, ρ(v1) = wx,

where x is 0 or 1 according to |v| being even or odd, respectively. Moreover, we have

ρ(u11) = v01, ρ(v01) = wx,

where x is 0 or 1 according to |v| being odd or even, respectively. The words u01 and u11
are such that:
(1) their ρ2-images are respectively w0 and w1 (if |v| is even) or respectively w1 and

w0 (if |v| is odd);
(2) both they and their ρ-images do not have 00 as a subword;
(3) they and their ρ-images end with 1.
It is easy to check that they are the unique words with these properties. As |u| = 2|w|
by the inductive assumption, we have |u01| = |u11| = 2|wx|, so we have established the
result for the two words w0 and w1 whatever the parity of v is, which completes the
induction procedure.

Under the assumptions of Lemma 2.5, we call v and u the minimal preimages of order
1 and 2 of w under ρ, respectively.

Before giving the proof of Theorem 2.4, we need another result.

LEMMA 2.6. For every w ∈ {0, 1}∗, let W ⊂ {0, 1}∗ be defined as follows:

W = {q ∈ {0, 1}∗ : ρ2(q) = w and both q and ρ(q) do not end in 0}. (2.12)

Then, |q| is even for every q ∈ W . Moreover, for every q, q ′ ∈ W such that q �= q ′,
[q] ∩ [q ′] contains at most one point.

Proof. As a first step, let us show that |q| is even for every q ∈ W by a contradiction
argument. If |q| is odd, then q can be written as q = v1, with |v| even. As a consequence,
ρ(q) = ρ(v)0, so it ends in 0 and q /∈ W by definition.

Now, let us consider q, q ′ ∈ W such that q �= q ′. Looking again for a contradiction, let
us assume that [q] ∩ [q ′] contains more than one point. This implies that one of them is
strictly contained in the other. Without loss of generality, let us assume that [q ′] � [q], so
q is a prefix of q ′, namely there exists v ∈ {0, 1}+ (hence v �= ε) such that

q ′ = qv.

As both ρ2(q) and ρ2(q ′) = w, we have that ρ2(v) = ε. Moreover, because both |q| and
|q ′| are even, |v| is even too. Hence, there exists v′ ∈ {0, 1}+ such that |v′| is odd and

v = v′1.
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As a consequence, ρ(v) = ρ(v′)1 and

ρ2(v) = ρ2(v′)a,

where a is 0 or 1 depending on the parity of |ρ(v′)|. Therefore, |ρ2(v)| ≥ |a| = 1 >

0 = |ε|, so ρ2(v) �= ε, that is a contradiction.

Now, we are ready to prove Theorem 2.4.

Proof of Theorem 2.4. In the following computations, it is useful to recall that the number
of ways in which one can arrange m indistinguishable objects in n distinguishable sites is
given by (

m + n − 1
m

)
.

In our case, the objects will be subwords of type 00 and the sites can be thought of as
the places ‘at the left of the digits 1’ in a given word. Moreover, we are going to use the
following equality:

∞∑
m=0

(
m + n − 1

m

)
4−m =

(
4
3

)n

. (2.13)

We proceed by induction.
(1) First, we check the result in the case of the real cylinder set [0] = [0, 1/2]. Its

fρ-preimage is the set [[1]] = ⋃∞
k=0[02k1]. Therefore, the f 2

ρ -preimage of [0] is the set

[[01]] ∪
( ∞⋃

k=0

[[(10)2k+111]]
)

.

Let us calculate its Lebesgue measure. We have

m([[01]]) = 4−1
∞∑

j=0

4−j = 1
3

, (2.14)

and, using also (2.13), we have also

m([[(10)2k+111]]) = 4−2k−2
∞∑

j=0

((
j + 2k + 2

j

)
4−j

)
= 4

32k+3 .

Thus, we obtain

m

( ∞⋃
k=0

[[(10)2k+111]]
)

=
∞∑

k=0

4
32k+3 = 1

6
, (2.15)

which leads to m(f −2
ρ ([0])) = m([0]) = 1/2, as claimed.

(2) From the previous step, it immediately follows that m(f −2
ρ ([1])) = m([0, 1] \

f −2
ρ ([0])) = 1/2.

(3) Having established the claim for real cylinder sets associated to words of length
N = 1, let us fix N ≥ 1 and suppose that for every w ∈ {0, 1}N we have m(f −2

ρ ([w])) =
m([w]). We are going to prove that both [w0] and [w1] have f 2

ρ -preimages having
Lebesgue measure 2−|w|−1, which suffices to prove the theorem.
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Let P = {p ∈ {0, 1}∗ : ρ2(p) = w and both p and ρ(p) do not end in 0}. By Lemma 2.6
the length of every p ∈ P is even and [p] ∩ [p′] consists of at most one point for every
p, p′ ∈ P such that p �= p′. Using the induction hypothesis we obtain

m

( ⋃
p∈P

[p]
)

=
∑
p∈P

2−|p| = 2−|w|.

Let v and u be the minimal preimages of w under ρ of order 1 and 2, respectively, so that
ρ(u) = v, ρ(v) = w and neither u or v have 00 as a subword. Let a ∈ {0, 1}. The minimal
ρ-preimage of wa is of type v1 or v01 depending on a and on the parity of the length of v.
Let us analyze the two cases separately.
(i) The minimal ρ-preimage of wa is of type v01. The minimal ρ-preimage of v01

is u11, because by Lemma 2.5 u has even length. Set

Q = {q ∈ {0, 1}∗ : ρ2(q) = wa and both q and ρ(q) do not end in 0}.
Every word in Q is of type pr where r ∈ 〈〈1(01)2k1〉〉 for some integer k ≥ 0,
because |p| is even and this implies that the subword (01)2k in r goes to the empty
word in two iterations of ρ. Therefore, recalling (2.13), m(f −2

ρ ([wa])) can be written
as follows:

m(f −2
ρ ([wa])) =

∑
p∈P

(
m([p])

∞∑
j ,k=0

(
j + 2k + 1

j

)
2−2−2j−4k

)

= 2−|w|
∞∑

j ,k=0

(
j + 2k + 1

j

)
2−2−2j−4k

= 2−|w|
∞∑

k=0

4
9k+1

= 2−|w|−1.

(ii) The minimal ρ-preimage of wa is of type v1. The minimal ρ-preimage of v1 is
u01, because again by Lemma 2.5 u has even length. Let P and Q be defined as
previously. Arguing as before (and recalling that |p| is even), every word in Q is of
type pr ′ where r ′ ∈ [[01]] or r ′ ∈ [[1(01)2k−11]] for some integer k ≥ 1. Therefore,
m(f −2

ρ ([wa])) can be computed as follows:

m(f −2
ρ ([wa])) =

∑
p∈P

m([p])
( ∞∑

j=0

2−2−2j +
∞∑

j=0

∞∑
k=1

(
j + 2k

j

)
2−2j−4k

)

= 2−|w|
(

1
3

+ 4
3

∞∑
k=1

1
9k

)

= 2−|w|−1.

As a consequence, the inductive step is proven and this concludes the proof.
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3. Dynamical properties of f 2
ρ

In defining the map fρ , we exploited the fact that, using (2.4), the erasing block substitution
ρ can be extended to a morphism on {0, 1}∞. However, we remark that ρ does not commute
with the operation of concatenation of words. Indeed, for any v ∈ {0, 1}∗ and w ∈ {0, 1}∞
with w containing at least one digit 1, the word equality

ρ(vw) = ρ(v)ρ(w)

holds if and only if |v| is even, whereas for |v| odd we have

ρ(vw) = ρ(v)ρ̃(w),

where ρ̃ is defined as follows:

ρ̃ :

⎧⎪⎪⎨
⎪⎪⎩

0 	→ ε,

1 	→ 1 in odd positions,

1 	→ 0 in even positions.

(3.1)

By Lemma 2.5 for every finite binary word w, there is k ∈ N such that ρk(w) = ε,
because the length of subsequent iterates of ρ applied to w has to strictly decrease every
two steps of iteration. This means that ρ is completely erasing in the sense of [5] (a formal
definition of this concept will be given in §4). The following result is then an immediate
consequence of [5, Theorem 4], the key point here being that both ρ and ρ̃ are surjective
as maps on {0, 1}ω.

PROPOSITION 3.1. The map fρ is topologically exact (otherwise said locally eventually
onto), that is, for every non-empty open set A ⊂ [0, 1], there exists a positive integer n such
that f n

ρ (A) = [0, 1]. Consequently, f 2
ρ is topologically exact too.

In the definition given in [16], a function f : [0, 1] → [0, 1] is called turbulent if there
exist two compact subintervals I1, I2 ⊂ [0, 1] with at most one point in common such that

I1 ∪ I2 ⊂ f (I1) ∩ f (I2).

PROPOSITION 3.2. The function f 2
ρ is turbulent.

Proof. It is enough to observe that f 2
ρ ([00]) = f 2

ρ ([10]) = [0, 1].

In [4] it has been proven that every turbulent interval map whose graph is a connected
Gδ set has positive topological entropy. This does not apply to fρ , because its graph is
totally disconnected; however, it has been proven that its topological entropy is infinite
(both results are proven in [6]).

A map f preserving the measure μ is said to be exact with respect to μ if
limn→∞ μ(f n(A)) = 1 for every set of positive measure A. For a measure-preserving
transformation, topological exactness and exactness are scarcely related. For instance,
in [2] it is proven that the typical continuous non-invertible Lebesgue-preserving interval
map is topologically exact, whereas the set of strongly mixing maps is of first category.
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In the following, we prove that ([0, 1], m, f 2
ρ ) is a strong mixing, which is a weaker

property than exactness with respect to the preserved measure. Let us recall the definition
of strong mixing.

Definition 3.3. Let (X, M, μ) be a measure space and f : X → X a measure-preserving
map. Then f is said strongly mixing if for every A, B ∈ M the following holds:

lim
n→∞ μ(A ∩ f −n(B)) = μ(A)μ(B). (3.2)

Our main result is the following.

THEOREM 3.4. The map f 2
ρ is strongly mixing.

The fact that f 2
ρ is strongly mixing looks surprising, at first. Roughly speaking, if the

Lebesgue measure is considered, the strongly mixing property requires that the preimages
of increasing order of every measurable set tend to ‘spread’ uniformly on [0, 1]. Now,
the ρ-preimage of a real cylinder set [w] is obtained in two steps: finding the minimal
preimage v of w and then generating the set [[v]]. The latter is obtained inserting pairs of
consecutive 0s in v, an operation which seems to be non-uniform, favoring instead a global
transfer of Lebesgue-mass towards the left of the interval. However, this rough intuition is
wrong because the minimal preimage of 00 is 101 (inserted in such a way that the 1s are at
odd-indexed places) and at the second iteration for the construction of the ρ2-preimage
the Lebesgue-mass can move again towards the right of the interval. Nevertheless, a
perfect uniformity of finite-order ρ2-preimages cannot be expected in general and it will
be achieved only through a limit process (see the proof of Lemma 3.8 for more details).

To prove the strongly mixing property of f 2
ρ we do not need to work with all the

Lebesgue measurable subset of [0, 1]. Let us indicate by Id the set of all subintervals
of [0, 1] (open, closed, half-open) consisting of points x whose binary expansion begins
with a given w ∈ {0, 1}∗, plus the empty set and the degenerate cases in which the interval
becomes a single dyadic rational point. More precisely, every element of Id has one of the
following forms for some w ∈ {0, 1}∗:

{x ∈ [0, 1] : (0.w0∞)2 ≤ x ≤ (0.w1∞)2};
{x ∈ [0, 1] : (0.w0∞)2 < x ≤ (0.w1∞)2};
{x ∈ [0, 1] : (0.w0∞)2 ≤ x < (0.w1∞)2};
{x ∈ [0, 1] : (0.w0∞)2 < x < (0.w1∞)2};

{(0.w0∞)2}, {1}, ∅.

We call the elements of Id the dyadic intervals.
It is immediate to check that Id is a semi-algebra (see [14]), that is:

• ∅ ∈ Id ;
• J ∈ Id implies that [0, 1] \ J is a finite union of pairwise disjoint members of Id ;
• Id is closed with respect to finite intersection.
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Therefore (see, for instance, [12, p. 52]), to establish that f 2
ρ is strongly mixing it is enough

to prove that

lim
n→∞ m(I ∩ f −2n

ρ (J )) = m(I)m(J ) (3.3)

holds for every I , J ∈ Id . As Theorem 2.4 ensures that

m(f −2
ρ (x)) = 0 for every x ∈ [0, 1], (3.4)

it is enough to check that (3.3) holds for non-degenerate closed intervals, which we can
identify with real cylinder sets [w] such that w is a finite, possibly empty binary word.
This will be done in the following. However, before addressing the proof of Theorem 3.4,
it is convenient to prove some lemmas.

In the following, we usually construct the preimages of a dyadic interval [w] under the
action of (fρ)2 by finding the words v such that ρ2(v) = w. However, it is not always true
that fρ2 coincides with (fρ)2. For instance, let

x = 0.1111(10)∞,

so that

fρ(x) = 0.ρ(wx) = 0.0101(0)∞ = 0.0101.

As a consequence, wfρ(x) = 0100(1)∞, so we have

f 2
ρ (x) = fρ(0.wfρ(x)) = 0.(10)∞ �= 0.11 = 0.ρ2(x).

The next lemma ensures, however, that fρ2 coincides with (fρ)2 Lebesgue-almost
everywhere on [0, 1], as f 2

ρ (x) �= fρ2(x) = 0.ρ2(wx) only if ρ(wx) ends with 0∞, so that
wfρ(x) �= ρ(wx).

LEMMA 3.5. The set

S = {x ∈ [0, 1] : f 2
ρ (x) �= (0.ρ2(wx))2} (3.5)

has Lebesgue measure 0.

Proof. If fρ(x) /∈ Q2 and x �= 0, then, by (2.2),

f 2
ρ (x) = (0.ρ(wfρ(x)))2 = (0.ρ2(wx))2.

It is then sufficient to prove that m(f −1
ρ (Q2)) = 0. As |Q2| = ℵ0, this follows from

the fact that the fρ-preimages of single points has Lebesgue measure zero (see [6,
Proposition 5.3]).

LEMMA 3.6. For every finite word w ∈ {0, 1}∗ such that |w| is even and every dyadic
interval J, we have

m([w] ∩ f −2
ρ (J )) = 2|ρ2(w)|−|w|m([ρ2(w)] ∩ J ). (3.6)

Proof. We divide the proof in different cases. Indeed, because both [ρ2(w)] and J are
dyadic intervals, their intersection could either contain at most one point, or be equal to
one of the two sets.
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(i) [ρ2(w)] ∩ J is the empty set or it contains exactly one point. In this case, recalling
Lemma 3.5, we have that [w] ∩ f −2

ρ (J ) is a Lebesgue-null set, hence (3.6) trivially holds
as 0 = 0. Indeed, a point x is in [w] ∩ f −2

ρ (J ) if and only if wx = wq for some q ∈ {0, 1}∞
and f 2

ρ (x) = 0.ρ2(wq) = 0.ρ2(w)̃q ∈ J , (with q̃ equal to either ρ2(q) or ρ̃(ρ(q))), and
this is not possible by assumption.

(ii) [ρ2(w)] ⊂ J . In this case, [ρ2(w)] ∩ J = [ρ2(w)], thus the word wJ ∈ {0, 1}∗ that
characterizes J is a prefix of ρ2(w), namely there exists v ∈ {0, 1}∗ (eventually v = ε if
[ρ2(w)] = J ) such that

ρ2(w) = wJ v.

As a consequence, by Lemma 3.5, [w] ∩ f −2
ρ (J ) = [w] except for a Lebesgue-null set.

Indeed, for Lebesgue-almost every x ∈ [w] we have that

f 2
ρ (x) = 0.ρ2(wx) = 0.ρ2(wq) = 0.ρ2(w)̃q = 0.wJ vq̃ ∈ [wJ ] = J ,

hence, x ∈ f −2
ρ (J ). Therefore, in this case (3.6) holds because m([w]) = 2−|w| and

m([ρ2(w)]) = 2−|ρ2(w)|.
(iii) J � [ρ2(w)]. In this case, ρ2(w) is a prefix of wJ and there exists v ∈ {0, 1}+ (so v

is different from ε) such that

wJ = ρ2(w)v.

Therefore, we have

m([ρ2(w)] ∩ J ) = m([ρ2(w)v]) = 2−|ρ2(w)|m(v). (3.7)

Let us define the set V ⊂ {0, 1}+ as

V = {q ∈ {0, 1}+ : ρ2(wq) = ρ2(w)v},
so that, again neglecting a Lebesgue-null set by Lemma 3.5,

[w] ∩ f −2
ρ (J ) =

⋃
q∈V

[wq].

As w is even by hypothesis, ρ(wq) = ρ(w)ρ(q) for every q ∈ V . Now, if ρ(w) is
even we have ρ2(wq) = ρ2(w)ρ2(q). Otherwise, if ρ(w) is odd we have ρ2(wq) =
ρ2(w)ρ̃(ρ(q)). Hence, we have either

V = ρ−2(v) or V = ρ−1(ρ̃−1(v)). (3.8)

By Theorem 2.4, both f 2
ρ and fρ̃ ◦ fρ = (1 − x) ◦ f 2

ρ preserve the Lebesgue measure.
Therefore, in both cases we obtain

m

( ⋃
q∈V

[q]
)

= m([v]).

As for all q1, q2 ∈ V with q1 �= q2 the sets [wq1] and [wq2] are disjoint, Lemma 3.5
implies that we have
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m([w] ∩ f −2
ρ (J )) =

∑
q∈V

m([wq]) = 2−|w| ∑
q∈V

m(q) = 2−|w|m([v]). (3.9)

Combining (3.7) and (3.9) we have that (3.6) holds.

COROLLARY 3.7. For every dyadic interval J and every word w such that |w| is even, the
following holds:

m([w] ∩ f −2n
ρ (J )) = 2|ρ2(w)|−|w|m([ρ2(w)] ∩ f −2n+2(J )) for all n ≥ 1. (3.10)

Proof. If n = 1, then (3.10) reduces to (3.6). If n > 1, then, neglecting the intersection
with the Lebesgue-null set S defined in (3.5), f −2n+2

ρ (J ) can be written as a countable
union of disjoint dyadic intervals (Wk)k∈N, namely

f −2n+2
ρ (J ) =

∞⋃
k=1

Wk .

Hence, applying (3.6) to every Wk , we obtain

m([w] ∩ f −2n
ρ (J )) =

∞∑
k=1

m([w] ∩ f −2
ρ (Wk))

= 2|ρ2(w)|−|w|
∞∑

k=1

m([ρ2(w)] ∩ Wk)

= 2|ρ2(w)|−|w|m([ρ2(w)] ∩ f −2n+2(J )).

LEMMA 3.8. For every dyadic interval J ⊂ [0, 1] we have

lim
n→∞ m([0] ∩ f −2n

ρ (J )) = 1
2m(J ) = m([0])m(J ) (3.11)

and, consequently,

lim
n→∞ m([1] ∩ f −2n

ρ (J )) = 1
2m(J ) = m([1])m(J ). (3.12)

The numerical results presented in Figure 2 show the mixing property ensured by
Lemma 3.8. Indeed, it can be seen how a randomly selected set of points in [0] spreads
uniformly to the whole interval [0, 1] under the action of subsequent iterations of f 2

ρ .

Proof of Lemma 3.8. If J = [0, 1] or J = ∅, then the thesis immediately follows from
f −2

ρ (J ) = J .
Let us consider a dyadic interval W different from [0, 1] and ∅. Hence, neglecting

degenerate cases of Lebesgue measure zero, W is characterized by a finite word w of length
greater or equal than 1, namely W = [w] with 1 ≤ |w| < ∞. Hence, either w = 0v or
w = 1v, for some v ∈ {0, 1}∗. As a first step, let us consider w = 0v. To obtain f −2

ρ (W),
we can follow the same construction given in the first step of the proof of Theorem 2.4.
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FIGURE 2. Numerical results on the first five iterates of f 2
ρ ([0]). The graphs show how many, out of approximately

150,000 randomly selected points from [0, 1/2], occupy the subintervals of length 2−8 at each iterate.

Hence, recalling Lemma 3.5, for Lebesgue almost every point x in f −2
ρ (W), we have that

wx = aqr , where

a ∈
(

〈〈01〉〉
⋃ ( ∞⋃

k=1

〈〈(10)2k+111〉〉
))

= ρ−2(0),

q ∈ {0, 1}+ is such that ρ2(aq) = 0v and r is a general infinite binary word. As |a| is even
for every a ∈ ρ−2(0), by Lemma 3.6 we obtain

m([a] ∩ f −2
ρ (W)) = 2m(W)

2|a| for all a ∈ ρ−2(0). (3.13)
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To compute m([0] ∩ f −2
ρ (W)), it suffices to apply the previous equation for every a ∈

ρ−2(0) that has 0 as first letter. Let A1 be the set of words in 〈〈01〉〉, A2 the set of words in
〈〈(10)2k+111〉〉 and Ai

2 the subset of A2 of words that start with i = 0, 1. Using both (2.14)
and (3.13), and recalling Lemma 3.5, we obtain∑

a∈A1

m([a] ∩ f −2
ρ (W)) = 2m(W)

∑
a∈A1

1
2|a| = 2

3
m(W). (3.14)

Using (2.15), we have that ∑
a∈A2

1
2|a| = 1

6
.

As ∑
a∈A2

1
2|a| = 4

3

∑
a∈A1

2

1
2|a| and

∑
a∈A0

2

1
2|a| = 1

3

∑
a∈A1

2

1
2|a| ,

we obtain ∑
a∈A0

2

m([a] ∩ f −2
ρ (W)) = 2m(W)

∑
a∈A0

2

1
2|a| = 1

12
m(W), (3.15)

where we have neglected again a set of measure zero by Lemma 3.5.
Using (3.14) and (3.15), we have

m([0] ∩ f −2
ρ (W)) =

∑
a∈A1

m([a] ∩ f −2
ρ (W)) +

∑
a∈A0

2

m([a] ∩ f −2
ρ (W))

= 2
3
m(W) + 1

12
m(W) = 3

4
m(W).

By the generality of W = [0v], we conclude that, for every v ∈ {0, 1}∗,

m([0] ∩ f −2
ρ (W)) = 3

4m(W) if W = [0v]. (3.16)

Using a similar procedure, for every v ∈ {0, 1}∗ we obtain that

m([0] ∩ f −2
ρ (W)) = 1

4m(W) if W = [1v]. (3.17)

Now we are ready to prove (3.11) for every dyadic interval J different from [0, 1] and ∅.
In the following, we neglect systematically the intersection of the subsets of [0, 1] under
consideration with the Lebesgue-null set S defined in (3.5). The idea is to exploit (3.16)
and (3.17) to see that m([0] ∩ f −2n

ρ (J )) converges to m(J )/2 as n → ∞. Let us define the
sequence (yn)n∈N ⊂ [0, 1] as follows:

yn = m([0] ∩ f −2n
ρ (J ))

m(J )
.

As J is a dyadic interval different from [0, 1] and ∅, we have that y0 is either 0 or 1. For
every n ≥ 1, f −2n

ρ (J ) is a countable union of dyadic intervals. More precisely, there are
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two infinite countable sets of disjoint dyadic intervals, say (W 0
i )i∈N and (W 1

i )i∈N, such
that

[0] ∩ f −2n
ρ (J ) =

∞⋃
i=0

W 0
i and [1] ∩ f −2n

ρ (J ) =
∞⋃
i=0

W 1
i .

As a consequence, we can write

f −2(n+1)
ρ (J ) =

∞⋃
i=0

f −2
ρ (W 0

i ) ∪
∞⋃
i=0

f −2
ρ (W 1

i ),

and we have also
∞∑
i=0

m(W 0
i ) = ynm(J ) and

∞∑
i=0

m(W 1
i ) = (1 − yn)m(J ).

For every W 0
i we can apply (3.16), so we obtain

∞∑
i=0

m([0] ∩ f −2
ρ (W 0

i )) = 3
4

∞∑
i=0

m(W 0
i ) = 3

4
ynm(J ). (3.18)

Similarly, for every W 1
i we can apply (3.17), so we have

∞∑
i=0

m([0] ∩ f −2
ρ (W 1

i )) = 1
4

∞∑
i=0

m(W 1
i ) = 1

4
(1 − yn)m(J ). (3.19)

As a consequence, summing (3.18) and (3.19), we obtain

yn+1m(J ) = m([0] ∩ f −2(n+1)
ρ (J ))

=
∞∑
i=0

m([0] ∩ f −2
ρ (W 0

i )) +
∞∑
i=0

m([0] ∩ f −2
ρ (W 1

i ))

= 3
4
ynm(J ) + 1

4
(1 − yn)m(J ) =

(
1
4

+ 1
2
yn

)
m(J ). (3.20)

Therefore, (yn)n∈N can be computed using the following discrete dynamical system

yn+1 = 1
4

+ 1
2
yn,

thus, we obtain

lim
n→∞ yn = 1

2
,

from which (3.11) follows.

Now, we are ready to give a proof of the strongly mixing property of f 2
ρ .

Proof of Theorem 3.4. As discussed previously, it is enough to show that (3.3) holds
for every pair of non-degenerate dyadic intervals I , J ⊆ [0, 1]. The proof is given by an
induction argument on the length of the word w that characterizes the interval I (namely
I = [w]).
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By Theorem 2.4, we have that

m([ε] ∩ f −2n
ρ (J )) = m(J ) = m([ε])m(J )

for every n ∈ N, hence the equality holds for n → ∞. Using also Lemma 3.8, we have that
(3.3) holds for every I that is characterized by a word w such that |w| ≤ 1 = 20.

Let us show that if (3.3) holds for every I that is characterized by a word w such that
|w| ≤ 2n, then it holds also for every I = [w] with |w| ≤ 2n+1.

As a first step, let w be a word of length 2n+1, so I = [w] and m(I) = 2−|w|. It follows
immediately from Lemma 2.5 that |ρ2(w)| ≤ |w|/2 = 2n. By Corollary 3.7, in particular
by applying (3.10), and using the induction hypothesis we obtain

lim
n→∞ m([w] ∩ f −2n

ρ (J )) = 2|ρ2(w)|−|w| lim
n→∞ m([ρ2(w)] ∩ f −2n+2

ρ (J ))

= 2|ρ2(w)|−|w| m(J )

2|ρ2(w)| = m(J )

2|w| = m(I)m(J ),

so (3.3) holds.
As a second step, let I be a dyadic interval that is characterized by a word w of length

between 2n and 2n+1. As I can be obtained as a finite union of intervals of the type
Ij = [wj ] with |wj | = 2n+1 for every j, then (3.3) holds. This concludes the inductive
step, so we are done.

In the proof of Lemma 3.6 we had to consider the composition fρ̃ ◦ fρ (see (3.8)), and
we exploited the fact that it preserves the Lebesgue measure. A graphic illustration of this
fact is shown in Figure 3.

In the proof of Lemma 3.6 we could neglect the interval maps generated by the other
compositions of ρ and ρ̃, that is, fρ ◦ fρ̃ and f 2

ρ̃ . However, in order to investigate further
dynamical properties of the model-case erasing interval map, such as exactness, rate
of mixing and metric entropy, it seems relevant to study also these compositions. The
Lebesgue measure is not preserved by them. Instead, the numerical results in Figure 4 and
in Figure 5 suggest respectively that:
• f 2

ρ̃ preserves the probability measure supported and uniformly distributed on the set
[1];

• fρ ◦ fρ̃ preserves a probability measure μ uniformly distributed on both [0] and [1]
and such that μ([0]) > μ([1]); most likely, μ([0]) = 2/3 and μ([1]) = 1/3.

We conclude this section with some thoughts on the entropy of the map f 2
ρ . As we

already said, the topological entropy of fρ (thus, of f 2
ρ ) is infinite. The link between

topological entropy and metric entropy, in a compact metric space, is expressed by the
well-known variational principle:

h(f ) = sup{hμ(f ) : μ is an f -invariant Borel measure}, (3.21)

where h(f ) is the topological entropy and hμ(f ) is the metric entropy with respect to μ.
Classically, the variational principle is stated assuming that the map f is continuous (the
elegant proof by M. Misiurewicz is given, for instance, in [17]).
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FIGURE 3. Numerical results on the first iterates of fρ̃ ◦ fρ . The graphs show how many, out of approximately
150,000 randomly selected points from [0, 1], occupy the subintervals of length 2−8 at each iterate.

A remarkable result of the already cited (and, in our opinion, somewhat underestimated)
work [4] is that the variational principle holds in far greater generality. In fact, if we use the
metric definition of topological entropy given by Bowen and Dinaburg [3, 7], Theorem 3.18
in [4] shows that the variational principle holds for completely general self-maps of a
compact metric space.

Another relatively recent development, whose application to our model-case erasing
map looks interesting, is the theory of entropy structure due to Downarowicz (see [8]),
which studies how the entropy emerges when improving the topological resolution power,
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FIGURE 4. Numerical results on the first iterates of fρ̃ . The graphs show how many, out of approximately 150,000
randomly selected points from [0, 1], occupy the subintervals of length 2−8 at each iterate.

and allows to define some powerful dynamical invariants. The theory can be applied to
discontinuous maps through the passage to an extension of the system (preserving the
entropy of invariant measures) in which the map is continuous. This is a viable approach
if the set of discontinuities has measure zero for all invariant measures of positive metric
entropy (see [9], especially Chs. 6–9), which seems like a reasonable hope in the case of
f 2

ρ , whereas things are more difficult for fρ .
The investigation of invariant measures for f 2

ρ (which, we recall, has a dense set of
discontinuities), other than the Lebesgue measure, seems particularly interesting in view
of the aforementioned results.

https://doi.org/10.1017/etds.2023.16 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.16


428 D. Corona and A. Della Corte

FIGURE 5. Numerical results on the first iterates of fρ ◦ fρ̃ . The graphs show how many, out of approximately
150,000 randomly selected points from [0, 1], occupy the subintervals of length 2−8 at each iterate.

4. More general erasing maps
In this section we address the problem of generalizing the results proven up to now to a
larger class of interval maps generated by erasing substitutions.

We start by defining more formally a concept already introduced at the beginning
of §3.

Definition 4.1. We say that the k-block substitution σ is alternating if there exist k simple
substitutions σ1, σ2, . . . , σk such that the map σe defined below is an extension of σ on
{0, 1}∞:
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σe(u) =
n−1∏
j=0

( k∏
i=1

σi(ui+jk)

) m∏
i=1

σi(ui+nk), (4.1)

where |u| = nk + m (n, m ∈ N0, m < k) and the first (last) product has to be taken as
empty if n = 0 (m = 0).

The substitution ρ is indeed alternating, as shown by (2.4) and subsequent comments.
In [5], erasing substitutions have been classified in a hierarchy according to the

‘strength’ of their erasing character. In particular, a k-block substitution σ is defined as
follows.
(1) Completely erasing if it is alternating (in the sense of Definition 4.1) and, for every

w ∈ {0, 1}∗, there is n ∈ N such that

σn(w) = ε. (4.2)

The smallest positive integer n verifying (4.2), indicated by ε(w), is called vanishing
order of w. The topological entropy of fσ depends on the asymptotic behavior of the
vanishing order of words of increasing length.

(2) Boundedly erasing if σ is completely erasing and ε(·) is bounded over {0, 1}∗.
In [5] the concept of strongly erasing substitution was also introduced, an intermediate

property between being erasing and completely erasing, but it is not relevant herein.
Boundedly erasing substitutions can be interpreted as an extreme, uninteresting case,

because the dynamics of boundedly erasing maps is almost trivial (see [5, Lemma 4.1]).
Completely erasing substitutions, instead, show the richest topological dynamical proper-
ties. Thus, it is natural to try to establish the strong mixing property for the class of interval
maps generated by completely erasing substitutions. However, things do not look easy.

First, understanding whether fσ is always Borel singular if σ is completely erasing
seems not trivial. In [6], the singularity of the map fρ was established through a quite
ad hoc argument connected to normal real numbers in base 2. The argument has a
combinatorial nature and it boils down to showing that the fρ-image of a 2-normal real
number cannot be 2-normal by upper/lower bounding the asymptotic frequencies of blocks
of length 8 (see [6, Proposition 5.2]). None of that can be straightforwardly extended to a
generic completely erasing substitution.

The existence of an absolutely continuous measure which is preserved by f 2
σ under the

sole hypothesis that σ is completely erasing looks also far from trivial to establish. The
reasoning in Theorem 2.4 is based on the possibility of counting explicitly the number of
distinguishable insertions of the pair 00 in a given binary word which does not have any
00 subword. To achieve this, it was enough to consider the insertions made at the left of
every digit 1 in the original word.

In the case of general completely erasing substitutions, indicating as usual by wε the
word mapped to the empty word, this amounts to counting the distinguishable insertions
of suitable circular permutations of wε in the original word w. The difficulty, here, lies in
the identification of indistinguishable cases. For instance, let us consider the completely
erasing k-block substitution σ and the case in which we have just one insertion of
(a suitable circular permutation of) the word mapped to ε in a given word u ∈ {0, 1}n.
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In this case, we should check how many of the following word (non-)equalities hold for
0 ≤ h ≤ k, 0 ≤ j ≤ k and m, m′ such that mk + h + 1 ≤ n and m′k + j + 1 ≤ n:

u1 . . . umk+h(wε)h+1 . . . (wε)k(wε)1 . . . (wε)humk+h+1 . . . un

�= u1 . . . um′k+j (wε)j+1 . . . (wε)k(wε)1 . . . (wε)jum′k+j+1 . . . un.

where by (wε)i we mean the ith digit of the word wε .
The problem becomes much more intricate when we consider multiple insertions of

the circular permutations of wε . This would ultimately lead to a countable family of word
equalities, and it seems unlikely that this approach will prove suitable to achieve the result.
Probably, in order to study the existence of absolutely continuous invariant measures for
(the square of) general erasing maps, new ideas have to be used.
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A. Appendix. Notation

N the set of positive integers
N0 the set of non-negative integers
Q the set of rational numbers
Q2 the dyadic rationals in [0, 1], that is the set [0, 1] ∩ {n/2k : n, k ∈ N0}
R the set of real numbers
ε the empty word
{0, 1}∗ the set of all finite words on the alphabet {0, 1}
{0, 1}+ the set of all finite non-empty words on the alphabet {0, 1}
{0, 1}ω the set of all infinite words on the alphabet {0, 1}
{0, 1}∞ the set {0, 1}∗ ∪ {0, 1}ω
{0, 1}∞+ the set {0, 1}∞ \ ε

wk the kth digit of the non-empty word w
|w| the length of the finite word w, that is, the non-negative integer n if

w = w1 . . . wn and 0 if w = ε

w̃ the bitwise negation of w, namely w̃k = 1 − wk for every k = 1, . . . , |w|
w(n), w(n) a word indexed by the non-negative integer n∏n

i=1 w(i) the concatenation w(1) . . . w(n)∏∞
i=1 w(i) the infinite concatenation w(1)w(2) . . .

{0, 1}≤n the set of all finite words on the alphabet {0, 1} with length less than or
equal to n

{0, 1}≥n the set of all infinite words and of all finite words on the alphabet {0, 1}
with length greater than or equal to n

wn the concatenation of n copies of the finite word w
w∞ the concatenation of infinitely many copies of the finite word w
(0.w)2 for w ∈ {0, 1}∞+, the real number

∑|w|
i=1 2−iwi ∈ [0, 1]

N2 the subset of [0, 1] consisting of real numbers which are normal in
base 2

σ the symbol used for a generic erasing block substitution (see
Definition 2.1)
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wε the unique word that is mapped to the empty word by an erasing block
substitution

wx for x ∈ (0, 1], the unique element of {0, 1}ω which is a binary expansion
for x and does not end with 0∞

[w] the real cylinder set generated by w ∈ {0, 1}∗ (see (2.9))
〈〈w〉〉 the set of all distinct words obtained by inserting any finite number of

subwords of type 00 in w (see (2.10))
[[w]] the union of dyadic intervals characterized by words in 〈〈w〉〉 (see (2.11))
fσ the interval map generated by the erasing substitution σ (see (2.2))
ρ the model-case erasing block substitution (see (2.3))
Id the semi-algebra of dyadic subintervals of [0, 1]
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