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WEIGHTED FACES OF POISSON
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Abstract

We study lower-dimensional volume-weighted typical faces of a stationary Poisson
hyperplane tessellation in d-dimensional Euclidean space. After showing how their
distribution can be derived from that of the zero cell, we obtain sharp lower and
upper bounds for the expected vertex number of the volume-weighted typical k-face
(k = 2, . . . , d). The bounds are respectively attained by parallel mosaics and by isotropic
tessellations. We conclude with a remark on expected face numbers and expected intrinsic
volumes of the zero cell.
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1. Introduction

A stationary Poisson hyperplane tessellation of Euclidean space Rd gives rise, in a natural
way, to two different random polytopes, the zero cell and the typical cell. The zero cell is defined
as the almost-surely unique cell of the tessellation that contains the origin. The distribution of
the typical cell is the grain distribution, with respect to some centre function, of the stationary
particle process defined by the cells of the tessellation. Intuitively and heuristically, the typical
cell is obtained, up to translations, if within a ‘large’ bounded part of space we randomly
choose a cell of the tessellation, giving equal weight to each of the cells, whereas the zero
cell is obtained, up to a random translation, if the weights are proportional to the volume. If
translations are disregarded, the distribution of the zero cell is the volume-weighted distribution
of the typical cell. The distinction between the two types of random polytopes was pointed out
in the early work on Poisson hyperplane processes (see [6]–[9]); in particular, Matheron [6],
[7, p. 168] emphasized the different viewpoints of the ‘number law’ and the ‘volume law’.
The fact that the distributions of the zero cell and the typical cell are closely related via the
volume, does not mean that both can be treated in a similar way. For example, Miles [8] found
explicit formulae for the expectations of the j th intrinsic volume, the number of j -faces and
the total volume of the j -faces of the typical cell in the isotropic case, whereas for the zero cell,
corresponding formulae for the expected j th intrinsic volume (except for j = 0, d − 1, d) or
the expected number of j -faces (except for j = 0, 1, d) are unknown if d > 3.

The purpose of this note is to extend known results on zero cells to k-volume weighted
typical k-faces of stationary Poisson hyperplane tessellations, for k = 1, . . . , d − 1. One
incentive for this was the recent investigation, by Baumstark and Last [2], of distributional
properties of a stationary Poisson–Voronoi tessellation, as seen from a randomly chosen (typical)
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point on a k-face of the tessellation. Baumstark and Last [1] have also obtained far-reaching
generalizations of earlier results on gamma distributions related to stationary Poisson k-flats.
Another motivation comes from the work of Weiss [13] and Favis and Weiss [5] on weighted
cells of Poisson hyperplane tessellations (for weighting, see also [10]).

We denote the underlying probability space by (�, A, P) and the mathematical expectation
by E. Measures on a topological space T are always measures on the Borel σ -algebra B(T )

of the space.
Let X̂ be a stationary Poisson hyperplane process in Rd , with intensity γ̂ > 0 and spherical

directional distribution ϕ̂. (For the employed notions from the theory of random tessellations,
we refer the reader to [11, Chapter 10].) We assume that ϕ̂, which is an even probability
measure on the unit sphere Sd−1, is not concentrated on some great subsphere. In this case,
the hyperplane process is called nondegenerate; almost surely, its hyperplanes are in general
position and induce a random mosaic. By X we denote this mosaic, that is, the stationary
particle process of its cells, and by X(k) the process of its k-faces, for k = 0, . . . , d (with
X(d) = X). Let γ (k) denote the intensity of X(k). With respect to a given centre function, the
grain distribution Q(k) of X(k) is defined, and a random polytope Z(k) with this distribution is
called the typical k-face of the tessellation X. In Section 2 we give a precise definition of the
weighted typical k-face Z

(k)
0 by means of a Palm distribution (we say ‘weighted’ briefly for

‘k-volume weighted’). In particular, Z
(d)
0 =: Z0 is the zero cell of X. Roughly speaking, Z

(k)
0

is the k-face of X containing 0 under the condition that a uniformly chosen random point on
the union of the k-faces of X coincides with 0.

It is well known that the distribution of the zero cell Z0 determines the distribution of
the nondegenerate, stationary Poisson hyperplane process X̂. (For example, by [11, p. 504],
the distribution of the radial function of Z0 determines the associated zonoid of X̂, and this
determines the distribution of X̂, by [11, Theorem 4.6.4].) In particular, the distribution of the
weighted typical k-face is also determined by the distribution of the zero cell. Our first aim is
to put this into evidence by an explicit formula. For this, we need some more notation.

For k ∈ {0, . . . , d − 1}, we denote by X̂d−k the intersection process of order d − k of X̂

(which is induced by the intersections of any d − k hyperplanes of X̂; see [11, Section 4.4]).
Thus, X̂d−k is almost surely (a.s.) a stationary process of k-flats. We denote its intensity by
γ̂d−k and its directional distribution by Q̂d−k . This is a probability measure on G(d, k), the
Grassmannian of k-dimensional linear subspaces of Rd .

Let P d denote the space of (nonempty, compact, convex) polytopes in Rd , with the topology
induced by the Hausdorff metric.

Theorem 1. Let k ∈ {1, . . . , d − 1}. The distribution of the weighted typical k-face of the
stationary Poisson hyperplane tessellation X is given by

P(Z
(k)
0 ∈ A) =

∫
G(d,k)

P(Z0 ∩ L ∈ A) Q̂d−k(dL)

for A ∈ B(P d).

The weighted typical k-face Z
(k)
0 is thus stochastically equivalent to the random polytope

Z0 ∩ L, where L is a random k-dimensional subspace of Rd , independent of X̂, with distribu-
tion Q̂d−k .

We point out a consequence in the isotropic case. If X̂ is isotropic (its distribution is invariant
under rotations) then there exists a random rotation ϑ such that ϑZ

(k)
0 has the same distribution

as the zero cell of a stationary isotropic Poisson hyperplane process in k-dimensional Euclidean
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space Rk (considered as a subspace of Rd ). Therefore, in the isotropic case, the study of motion
invariant characteristics of the weighted k-face is comprised by the study of the zero cell in Rk .

New aspects, however, arise in the anisotropic case. The following theorem on sharp
inequalities for the expected vertex number extends a result which is known for the zero cell
(cf. [11, Theorem 10.4.9]). By f0(P ) we denote the number of vertices of a polytope P . The
constant κk is the k-dimensional volume of the k-dimensional unit ball.

Theorem 2. Let k ∈ {2, . . . , d}. Then

2k ≤ E f0(Z
(k)
0 ) ≤ 2−kk! κ2

k . (1)

Equality holds on the left-hand side if and only if X is a parallel mosaic. Equality on the
right-hand side holds if X is isotropic.

A parallel mosaic in Rd is a hyperplane tessellation where the hyperplanes belong to d

fixed translation classes. Thus, all cells of a parallel mosaic are parallelepipeds. If they are
rectangular parallelepipeds, the hyperplane process has been called a cuboid process. Stationary
Poisson cuboid processes were studied by Favis [3], [4].

We conjecture that equality on the right-hand side of (1) holds only if X is isotropic with
respect to some Euclidean metric on Rd .

We point out that, for the typical k-face, E f0(Z
(k)) = 2k always, even without the Poisson

assumption, by a result of J. Mecke (see [11, Theorem 10.3.1]).

2. Palm distributions and weighted faces

We introduce the Palm distribution which we employ to give a precise definition of weighted
k-faces. We adopt and slightly extend the approach of Baumstark and Last [2] and first recall
some basic definitions and facts, closely following the presentation and terminology in [11];
in particular, notions and results from Chapters 3, 4, and 10 are used throughout. As there,
we identify a simple counting measure η with its support and use η({x}) = 1 and x ∈ η

synonymously. Recall that G(d, k) is the Grassmannian of k-dimensional linear subspaces and
A(d, k) is the affine Grassmannian of k-dimensional flats in Rd . In the following we abbreviate
B := B(Rd), Ns := Ns(A(d, d − 1)), and Ns := Ns(A(d, d − 1)), where Ns(E) is the set of
simple counting measures on a space E and Ns(E) is its usual σ -algebra (see [11, Section 3.1]).
We denote by M(Rd) the set of locally finite Borel measures on Rd and by M(Rd) its usual
σ -algebra. For 0 ≤ k < d , Hk is the k-dimensional Hausdorff measure on Rd , but we prefer
the notation λ for the Lebesgue measure on Rd .

Let X̂ be a nondegenerate stationary Poisson hyperplane process in Rd , with intensity
measure 	̂. The latter is a locally finite measure on A(d, d − 1). By [11, Theorem 4.4.2
and (4.30)], it has a decomposition such that

∫
A(d,d−1)

f d	̂ = γ̂

∫
Sd−1

∫ ∞

−∞
f (u⊥ + τu) dτ ϕ̂(du) (2)

for every nonnegative, measurable function f on A(d, d − 1), where γ̂ > 0 is the intensity and
ϕ̂ is the spherical directional distribution of X̂.

In the introduction we have already defined the induced tessellation X = X(d) and its
k-face processes X(k), with intensity γ (k) and grain distribution Q(k), k = 0, . . . , d, as well as
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the intersection process X̂d−k of order d − k with intensity γ̂d−k and directional distribution
Q̂d−k , for k ∈ {0, . . . , d − 1} (recall that the index d − k refers to the number of intersecting
hyperplanes and not to the dimension of the flats of X̂d−k).

Let m : Ns → M(Rd) be a measurable mapping satisfying m(η + x) = m(η) + x for all
η ∈ Ns and all x ∈ Rd (with the usual definition (µ + x)(A) := µ(A − x) for a measure µ if
Rd operates as a translation group on its domain). Then M := m ◦ X̂ is a stationary random
measure on Rd . Let γM denote its intensity. We assume that 0 < γM < ∞ (this will be
satisfied in the concrete cases studied below). We introduce the Palm distribution P0

M of the
pair (X̂, M), generalizing the usual procedure via the Campbell measure. For Ã ∈ B ⊗Ns , let

µ(Ã) := E
∫

Rd

1Ã(x, X̂ − x) M(dx), C(Ã) := E
∫

Rd

1Ã(x, X̂) M(dx). (3)

Then µ and C are measures. Let B ∈ B and A ∈ Ns . For y ∈ Rd , we obtain, substituting x

by x + y and using the stationarity of X̂ (and writing m(η)(·) = m(η, ·))

µ((B + y) × A) = E
∫

Rd

1B+y(x) 1A(X̂ − x) m(X̂, dx)

= E
∫

Rd

1B(x) 1A(X̂ − y − x) m(X̂ − y, dx)

= E
∫

Rd

1B(x) 1A(X̂ − x) M(dx)

= µ(B × A).

Thus, µ is translation invariant in its first argument. Since it is locally finite, we haveµ(B×A) =
α(A)λ(B) with a finite measure α. Furthermore,

µ(B × Ns) = E
∫

Rd

1B(x) M(dx) = E M(B) = γMλ(B).

Hence, if we put P0
M := γ −1

M µ(Cd × ·), where Cd := [0, 1]d is the unit cube, then P0
M is a

probability measure on Ns , and
µ = γMλ ⊗ P0

M . (4)

Thus, by (3),

γM P0
M(A) = E

∫
Rd

1B(x) 1A(X̂ − x) M(dx) (5)

for any set B ∈ B with λ(B) = 1. This defines the Palm distribution P0
M of the pair (X̂, M).

Since C(Ã) = µ(T −1Ã) for the map T : (x, η) 
→ (x, η + x), we see from (3) and (4) that

E[1A(X̂)M(B)] = C(B × A) = γM

∫
Rd

1B(x) P0
M(A − x) λ(dx)

for all B ∈ B and A ∈ Ns . The standard extension procedure gives the refined Campbell
theorem for the pair (X̂, M), namely

E
∫

Rd

f (x, X̂) M(dx) = γM

∫
Rd

∫
Ns

f (x, η + x) P0
M(dη) λ(dx) (6)

for every nonnegative, measurable function f on Rd × Ns .
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Now we introduce weighted typical k-faces, for k ∈ {1, . . . , d}. If η ∈ Ns , the hyperplanes
in the support of η induce a tessellation of Rd (possibly with unbounded cells), and we denote
by Fk(η) the set of k-faces of this tessellation (so that Fk(X̂) = X(k)). For η ∈ Ns , we define
Fk

0 (η) as the (necessarily unique) face F ∈ Fk(η) with 0 ∈ relint F , if such a face exists, and
Fk

0 (η) := {0} otherwise. Let YM be a hyperplane process with distribution P0
M , and define a

random polytope by
Z

(k)
M := Fk

0 (YM).

In the special cases considered below, Z
(k)
M is a.s. of dimension k. For the distribution of Z

(k)
M ,

from (5), we obtain

P(Z
(k)
M ∈ A) = 1

γM

E
∫

Rd

1B(x) 1A(F k
0 (X̂ − x)) M(dx) (7)

for A ∈ B(P d) and B ∈ B with λ(B) = 1.
For the first example, let s be the centre function defined by the Steiner point; then s(P ) ∈

relint P for all P ∈ P d . Let k ∈ {1, . . . , d}. For m, we take the measure valued map nk

defined by
nk(η) :=

∑
F∈Fk(η)

δs(F ), η ∈ Ns ,

and we write nk ◦ X̂ =: Nk . Then from (7) we obtain, noting that Fk
0 (X̂ − s(F )) = F − s(F )

for F ∈ X(k),

P(Z
(k)
Nk

∈ A) = 1

γ (k)
E

∑
F∈X(k)

1B(s(F )) 1A(F − s(F )) = Q(k)(A).

The last equation follows from [11, Definition (4.6) and Theorem 4.1.3(a)], (cf. also p. 106),
with ϕ(P ) := 1A(P − s(P )). Hence, Z

(k)
Nk

is stochastically equivalent to the typical k-face
Z(k), with respect to the Steiner point as the centre function.

Let m and M be general as before, and let h be a translation invariant, nonnegative,
measurable function on P d . (The translation invariance is not a severe restriction, since from
any h we can pass to the translation invariant function P 
→ h(P −s(P )).) Slightly extending a
remark in [2], we apply [11, Theorem 3.4.5] (Neveu’s exchange formula) to the probability space
(Ns , Ns , PX̂), the random measures m, nk , and the function f (y, η) := h(F k

0 (η)) 1Fk
0 (η)(−y).

(Observe that P0
M is now equal to the Palm distribution of the random measure m, in the sense

of [11, p. 80].) We obtain

γM

∫
Ns

∑
F∈Fk(η), 0∈F

h(F ) P0
M(dη) = γ (k)

∫
Ns

h(F k
0 (η))m(η)(F k

0 (η)) P0
Nk

(dη). (8)

For the second example, we take (denoting by ‘ ’ the restriction of a measure)

mk(η) :=
∑

F∈Fk(η)

Hk relint F, η ∈ Ns ,

and set mk ◦ X̂ =: Mk . We simplify the notation by writing

P0
Mk

=: P0
k, Z

(k)
Mk

=: Z
(k)
0 .
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Note that
γMk

= γ̂d−k. (9)

In fact, for B ∈ B, we have γMk
λ(B) = E Mk(B) = γ̂d−kλ(B) by [11, Theorem 4.4.3], applied

to X̂d−k .
Relation (8) can now be written in the form

E h(Z
(k)
0 ) = 1

E Vk(Z(k))
E[h(Z(k))Vk(Z

(k))], (10)

where Vk(K), for a k-dimensional convex set K , is its k-dimensional volume. This shows that
the distribution of Z

(k)
0 is, up to translations, the volume-weighted distribution of the typical

k-face Z(k). For this reason, the random polytope Z
(k)
0 is called the weighted typical k-face.

The connection with the heuristic explanation in the introduction can be seen from the
relation

P(Z
(k)
0 − s(Z

(k)
0 ) ∈ A) = lim

r→∞
E

∑
F∈X(k), F⊂rW 1A(F − s(F ))Vk(F )

E
∑

F∈X(k), F⊂rW Vk(F )
, (11)

valid for A ∈ B(P d) and any compact convex set W ⊂ Rd with λ(W) > 0. Relation (11)
follows from [11, Theorem 4.1.3(b)], together with (10).

In the proof of Theorem 1, we use a Slivnyak-type result, which we prove now. We need the
following transformation formula. Note that, for u ∈ Sd−1 and τ ∈ R,

u⊥ + τu = H(u, τ) := {x ∈ Rd : 〈x, u〉 = τ } (12)

is a hyperplane. Let k ∈ {1, . . . , d}. If f is a nonnegative measurable function on A(d, d −1)k ,
then, for linearly independent vectors u1, . . . , uk ∈ Sd−1 with U := lin{u1, . . . , uk},∫ ∞

−∞
· · ·

∫ ∞

−∞
f (H(u1, τ1), . . . , H(uk, τk)) dτ1 · · · dτk

= ∇k(u1, . . . , uk)

∫
U

f (u⊥
1 + z, . . . , u⊥

k + z) Hk(dz). (13)

Here ∇k(u1, . . . , uk) denotes the k-dimensional volume of the parallelepiped spanned by
u1, . . . , uk . For the proof of (13), we write

f (H(u1, τ1), . . . , H(uk, τk)) =: g(τ1, . . . , τk)

and define T (τ1, . . . , τk) := (z1, . . . , zk) = z, where z is the unique point in the intersection
H(u1, τ1) ∩ · · · ∩ H(uk, τk) ∩ U . The map T is injective; its inverse is given by T −1(z) =
(〈z, u1〉, . . . , 〈z, uk〉) and has Jacobian ∇k(u1, . . . , uk). Hence, the transformation formula for
multiple integrals gives∫

g(τ1, . . . , τk) dτ1 · · · dτk =
∫

g(T −1(z))∇k(u1, . . . , uk) λ(dz),

which together with g(T −1(z)) = g(〈z, u1〉, . . . , 〈z, uk〉) and (12) yields (13).
We define a measure φk on G(d, d − 1)k by

φk(A) := γ̂ k

k! γ̂k

∫
(Sd−1)k

1A(u⊥
1 , . . . , u⊥

k )∇k(u1, . . . , uk) ϕ̂ k(d(u1, . . . , uk)) (14)

for A ∈ B(G(d, d − 1)k).
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Since we identify simple counting measures with their supports, X̂ ∪ {H1, . . . , Hk} below
also denotes the counting measure X̂ + δH1 + · · · + δHk

, which is a random element of Ns . In
the next theorem we interchange, for convenience, the roles of k and d − k.

Theorem 3. Suppose that X̂ is a nondegenerate stationary Poisson hyperplane process. For
k = 1, . . . , d and A ∈ Ns ,

P0
d−k(A) =

∫
G(d,d−1)k

P(X̂ ∪ {H1, . . . , Hk} ∈ A) φk(d(H1, . . . , Hk)).

Proof. Let B ∈ B and A ∈ Ns . In the following we use, in this order, the refined Campbell
theorem (6) together with (9), the definition of the random measure Md−k , the Slivnyak–Mecke
formula (Corollary 3.2.3 of [11]), and decomposition (2) of the intensity measure 	̂. Since X̂

is a stationary Poisson hyperplane process, a.s. any k of its hyperplanes intersect either in the
empty set or in a (d − k)-flat [11, p. 134]. We obtain

λ(B) P0
d−k(A)

=
∫

Rd

∫
Ns

1B(x) 1A(η) P0
d−k(dη) λ(dx)

= 1

γ̂k

E
∫

Rd

1B(x) 1A(X̂ − x) Md−k(dx)

= 1

k! γ̂k

E
∑

(H1,...,Hk)∈X̂k�=

∫
H1∩···∩Hk

1B(x) 1A(X̂ − x) Hd−k(dx)

= 1

k! γ̂k

∫
A(d,d−1)k

E
∫

H1∩···∩Hk

1B(x) 1A((X̂ ∪ {H1, . . . , Hk}) − x) Hd−k(dx)

× 	̂k(d(H1, . . . , Hk))

= γ̂ k

k! γ̂k

∫
(Sd−1)k

∫ ∞

−∞
· · ·

∫ ∞

−∞
E

∫
H(u1,τ1)∩···∩H(uk,τk)

1B(x)

× 1A((X̂ ∪ {H(u1, τ1), . . . , H(uk, τk)}) − x) Hd−k(dx) dτ1 · · · dτk

× ϕ̂ k(d(u1, . . . , uk)).

By the transformation formula (13), we have∫ ∞

−∞
· · ·

∫ ∞

−∞
E

∫
H(u1,τ1)∩···∩H(uk,τk)

1B(x) 1A((X̂ ∪ {H(u1, τ1), . . . , H(uk, τk)}) − x)

× Hd−k(dx) dτ1 · · · dτk

= ∇k(u1, . . . , uk)

∫
lin{u1,...,uk}

∫
(u⊥

1 ∩···∩u⊥
k )+z

1B(x) E 1A((X̂ ∪ {u⊥
1 + z, . . . , u⊥

k + z}) − x)

× Hd−k(dx)Hk(dz)

= ∇k(u1, . . . , uk)

∫
lin{u1,...,uk}

∫
(u⊥

1 ∩···∩u⊥
k )+z

1B(x) E 1A((X̂ − x) ∪ {u⊥
1 , . . . , u⊥

k })

× Hd−k(dx)Hk(dz)

= ∇k(u1, . . . , uk)λ(B) P(X̂ ∪ {u⊥
1 , . . . , u⊥

k } ∈ A).
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Above, we have used the facts that x ∈ u⊥ + z implies that u⊥ + z − x = u⊥ and that X̂ is
stationary. In view of (14), the proof of Theorem 3 is complete.

3. Proof of Theorem 1

The weighted typical k-face of the tessellation X was defined (up to stochastic equivalence)
by Z

(k)
0 = Fk

0 (YMk
), where YMk

is a hyperplane process with distribution P0
Mk

= P0
k . (Note that

P0
d is the distribution of X and, hence, Z

(d)
0 is stochastically equivalent to the zero cell Z0.)

It follows from Theorem 3 (with k and d − k interchanged again) that, for any nonnegative
measurable function g on Ns , we have

E g(YMk
) =

∫
G(d,d−1)d−k

E g(X̂ ∪ {H1, . . . , Hd−k}) φd−k(d(H1, . . . , Hd−k)). (15)

Let f be a nonnegative measurable function on the space of k-dimensional polytopes. From
(15) we obtain

E f (Z
(k)
0 ) =

∫
G(d,d−1)d−k

E f (F k
0 (X̂ ∪ {H1, . . . , Hd−k})) φd−k(d(H1, . . . , Hd−k))

=
∫

G(d,d−1)d−k

E f (Z0 ∩ H1 ∩ · · · ∩ Hd−k) φd−k(d(H1, . . . , Hd−k)),

by the definition of Fk
0 , and, hence, for A ∈ B(P d),

P(Z
(k)
0 ∈ A) =

∫
G(d,d−1)d−k

P(Z0 ∩ H1 ∩ · · · ∩ Hd−k ∈ A) φd−k(d(H1, . . . , Hd−k)). (16)

According to [11, Theorem 4.4.8] and (14) we have

Q̂d−k(A) =
∫

G(d,d−1)d−k

1A(H1 ∩ · · · ∩ Hd−k) φd−k(d(H1, . . . , Hd−k))

for A ∈ B(G(d, k)). This together with (16) proves Theorem 1.
After the formulation of Theorem 1, we made a remark about the isotropic case, which we

now substantiate. Suppose that X̂ is isotropic. Let S ∈ G(d, k) be a fixed subspace. We can
choose a measurable mapping D : G(d, k) → SOd , where SOd is the rotation group, with the
property that D(L)L = S for all L ∈ G(d, k). Since the distribution of Z0 is rotation invariant,
we obtain, for A ∈ B(P d),

P(D(linZ
(k)
0 )Z

(k)
0 ∈ A) =

∫
G(d,k)

P(D(lin (Z0 ∩ L))(Z0 ∩ L) ∈ A) Q̂d−k(dL)

=
∫

G(d,k)

P(D(L)Z0 ∩ S ∈ A) Q̂d−k(dL)

= P(Z0 ∩ S ∈ A)

= P(Z0(X̂ ∩ S) ∈ A),

where Z0(X̂ ∩ S) is the zero cell of the section process X̂ ∩ S. The latter is a stationary and
isotropic Poisson hyperplane process in the k-dimensional space S. Thus, if X̂ is isotropic then
there is a random rotation ϑ (namely, ϑ(ω) = D(lin Z

(k)
0 (ω)) for ω ∈ �) such that ϑZ

(k)
0 has

the same distribution as the zero cell of a stationary, isotropic Poisson hyperplane process in Rk .
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4. Proof of Theorem 2

For the proof of Theorem 2, we note that Theorem 1 implies that

E f (Z
(k)
0 ) =

∫
G(d,k)

E f (Z0 ∩ L) Q̂d−k(dL)

for every nonnegative, measurable function f on P d . The intersection Z0 ∩ L is the zero cell
of the intersection process X̂ ∩ L, denoted by Z0(X̂ ∩ L); hence, for the vertex number f0, we
obtain

E f0(Z
(k)
0 ) =

∫
G(d,k)

E f0(Z0(X̂ ∩ L)) Q̂d−k(dL).

We recall the definition of the associated zonoid of the stationary hyperplane process X̂.
This is the convex body �X̂ with support function

h(�X̂, u) = γ̂

2

∫
Sd−1

|〈u, v〉| ϕ̂(dv)

for u ∈ Rd ; see [11, Equation (4.59)]. The section process X̂ ∩ L is a stationary Poisson
hyperplane process with respect to L. Its associated zonoid is given by

�X̂∩L = �X̂|L,

where ·|L denotes the orthogonal projection to L; see [11, Equation (4.61)]. From [11,
Theorem 10.4.9], applied in L, we deduce that

E f0(Z0(X̂ ∩ L)) = 2−kk! Vk(�X̂|L)Vk((�X̂|L)o).

Here, Vk denotes the k-dimensional volume of a convex body and Ko is the polar body of K in
the subspace L. Hence, we arrive at

E f0(Z
(k)
0 ) = 2−kk!

∫
G(d,k)

Vk(�X̂|L)Vk((�X̂|L)o) Q̂d−k(dL). (17)

For a k-dimensional zonoid K with centre 0, the inequalities

4k

k! ≤ Vk(K)Vk(K
o) ≤ κ2

k (18)

are valid. The right-hand side is the Blaschke–Santaló inequality, and the left-hand side, for
zonoids, is Reisner’s inequality (references are in [11, Chapter 14]). Equality on the left holds
if and only if K is a parallelepiped, and equality on the right holds if and only if K is an
ellipsoid. Applying (18) to �X̂|L in each L ∈ G(d, k), we obtain from (17) the inequalities of
Theorem 2.

Equality holds in the left- and right-hand inequalities of (1) if and only if equality holds in
the left- and right-hand inequalities, respectively, of

4k

k! ≤ Vk(�X̂|L)Vk((�X̂|L)o) ≤ κ2
k (19)

for all subspaces L in the support of the measure Q̂d−k .
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Suppose first that X and, therefore, X̂ is isotropic. Then ϕ̂ is rotation invariant and �X̂ is
a ball. Hence, for each L ∈ G(d, k), the projection �X̂|L is a ball, and equality holds on the
right-hand side of (19). Thus, equality holds on the right-hand side of (1). This is also true if
the associated zonoid �X̂ is an ellipsoid. We have not been able to decide whether this is the
only equality case for the right-hand side of (1).

Now suppose that X is a parallel mosaic. Then there are d linearly independent vec-
tors e1, . . . , ed ∈ Sd−1 such that the spherical directional distribution ϕ̂ is concentrated in
{±e1, . . . ,±ed}. The associated zonoid �X̂ is the sum of segments parallel to e1, . . . , ed

and, hence, is a parallelepiped with edges in these directions. Let L be in the support of
the measure Q̂d−k . Then, since ϕ̂ is discrete, L = u⊥

1 ∩ · · · ∩ u⊥
d−k with linearly independent

vectors u1, . . . , ud−k in the support of ϕ̂, say (u1, . . . , ud−k) = (e1, . . . , ed−k); thus, L =
lin{e1, . . . , ed−k}⊥. We have ei |L = 0 for i = 1, . . . , d − k; hence, the projection �X̂|L is
a parallelepiped with edges parallel to the projections of ed−k+1, . . . , ed . Therefore, equality
holds on the left-hand side of (1).

Conversely, suppose that equality holds on the left-hand side of (1), for some k ≥ 2. Let
u1, . . . , ud−k be linearly independent vectors in the support of the measure ϕ̂. Then L :=
u⊥

1 ∩· · ·∩u⊥
d−k is in the support of Q̂d−k . Therefore, equality holds on the left-hand side of (19);

hence, the orthogonal projection of the associated zonoid �X̂ to the subspace u⊥
1 ∩ · · · ∩ u⊥

d−k

is a parallelepiped. By the lemma proved below, it follows that �X̂ is itself a parallelepiped.
This implies that X is a parallel mosaic.

We prove the lemma that was needed in the proof of Theorem 2. This requires some
knowledge about projections of zonoids.

Let K be a zonoid with generating measure ρ, that is,

h(K, x) =
∫

Sd−1
|〈x, v〉| ρ(dv), x ∈ Rd , (20)

where ρ is an even finite measure on Sd−1. We assume that dim K = d. Then ρ is not
concentrated on a great subsphere. It is well known that the measure ρ is uniquely determined
by h(K, ·). In particular, if K is a parallelepiped then ρ is concentrated in d pairs of antipodal
points.

For e ∈ Sd−1, write Se := e⊥ ∩ Sd−1. Every vector x ∈ Sd−1 \ {e, −e} has a unique
representation x = te + √

1 − t2 xe with t ∈ (−1, 1) and xe ∈ Se. Define the measure ρ̃ on
Sd−1 by

ρ̃(A) :=
∫

A

|〈x, xe〉| ρ(dx)

for A ∈ B(Sd−1). The mapping projSe
: x 
→ xe is defined ρ̃-almost everywhere on Sd−1

and is measurable. Let ρe be the image measure of ρ̃ under projSe
. Then ρe is the generating

measure of the zonoid K|e⊥ (see [12]).

Lemma 1. Let d ≥ 3 and k ∈ {1, . . . , d − 2}. Let K be represented by (20) and suppose
that, for any k linearly independent vectors v1, . . . , vk in supp ρ, the orthogonal projection
K|v⊥

1 ∩ · · · ∩ v⊥
k is a parallelepiped. Then K itself is a parallelepiped.

Proof. First let k = 1. Let e ∈ supp ρ. Then K|e⊥ is a parallelepiped. Hence, there
are linearly independent vectors u1, . . . , ud−1 ∈ Se such that the generating measure ρe of
K|e⊥ is concentrated in {±u1, . . . ,±ud−1}. From the preceding description of this generating
measure, it follows that the support of the measure ρ is contained in Se,u1 ∪· · ·∪Se,ud−1 , where
Se,ui

:= lin{e, ui} ∩ Sd−1, and that ρ(Se,ui
\ {e, −e}) > 0 for i = 1, . . . , d − 1.
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We can choose a vector e′ ∈ (supp ρ) ∩ (Se,u1 \ {e, −e}). By the same argument as
above, there are linearly independent vectors u′

1, . . . , u
′
d−1 ∈ Se′ such that ρ is concentrated

on Se′,u′
1

∪ · · · ∪ Se′,u′
d−1

and that ρ(Se′,u′
i
\ {e′, −e′}) > 0 for i = 1, . . . , d − 1. One of

the sets Se′,u′
1
, . . . , Se′,u′

d−1
must coincide with Se,u1 , since otherwise e would not be in the

support of ρ; say Se′,u′
1

= Se,u1 . This implies that u′
1 ∈ lin{e, e′}. Moreover, each of the

sets Se′,u′
2
, . . . , Se′,u′

d−1
must meet one of the sets Se,u2 , . . . , Se,ud−1 . Suppose, for example,

that Se′,u′
2

and Se′,u′
3

both meet Se,up , with p ∈ {2, . . . , d − 1}. If x ∈ Se′,u′
2

∩ Se,up then
u′

2 ∈ lin{e′, x} and x ∈ lin{e, up}; hence, u′
2 ∈ lin{e, e′, up}. Similarly, u′

3 ∈ lin{e, e′, up}.
It follows that u′

1, u
′
2, u

′
3 ∈ lin{e, e′, up}. The latter subspace intersects (e′)⊥ in a two-

dimensional subspace. Thus, u′
1, u

′
2, and u′

3 are linearly dependent. This contradiction shows
that different sets Se′,u′

i
must meet different sets Se,uk

. After renumbering, we can assume
that Se′,u′

i
∩ Se,ui

= {vi, −vi} for i = 2, . . . , d − 1, and that Se′,u′
i
∩ Se,uj

= ∅ for i �= j .
Now it is clear that ρ is concentrated in {±e, ±e′, ±v2, . . . ,±vd−1} and, hence, that K is a
parallelepiped.

In particular, we have proved the lemma for d = 3. Now let d ≥ 4 and suppose that the
assertion is true in smaller dimensions. Choose e ∈ supp ρ. As before, ρe is the generating
measure of the zonoid K|e⊥.

Let k ∈ {1, . . . , d − 3}. Let u1, . . . , uk be linearly independent vectors in the support
of ρe. For i = 1, . . . , k, we have ρ(Se,ui

\ {e, −e}) > 0; hence, there exists a vector vi ∈
Se,ui

∩ supp ρ with vi �= ±e. The vectors e, v1, . . . , vk are linearly independent. By assump-
tion, the projection K|e⊥ ∩ v⊥

1 ∩ · · · ∩ v⊥
k is a parallelepiped. We have lin{e, v1, . . . , vk} =

lin{e, u1, . . . , uk}; hence, K|e⊥ ∩ u⊥
1 ∩ · · · ∩ u⊥

k is a parallelepiped. Therefore, (K|e⊥)|u⊥
1 ∩

· · ·∩u⊥
k is a parallelepiped. Since this is true for any linearly independent vectors u1, . . . , uk in

the support of ρe, it follows from the induction hypothesis that K|e⊥ is a parallelepiped. Since
this holds for each e ∈ supp ρ, the already settled case k = 1 shows that K is a parallelepiped.
This completes the proof.

To settle the equality case for the right-hand side of (1), we would need a counterpart to
Lemma 1, with ‘a parallelepiped’ replaced by ‘an ellipsoid’ (twice).

5. Remark on characteristics of the zero cell

We prove a formula for the expected number of (d − k)-faces of the zero cell, namely

E fd−k(Z0) = γ̂k

∫
G(d,d−k)

E Vk(Z0|L⊥) Q̂k(dL). (21)

Recall that, for a k-dimensional convex body K , we denote by Vk(K) = Hk(K) its
k-dimensional volume.

For the proof of (21), we note that, a.s., each (d − k)-face of Z0 is the intersection of Z0
with precisely k hyperplanes of X̂, and any intersection of k different hyperplanes of X̂ a.s.
intersects Z0 either in a (d − k)-face or in the empty set. Let χ denote the Euler characteristic.
As in the proof of Theorem 3, we use the Slivnyak–Mecke formula, the decomposition of the
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intensity measure 	̂ of X̂, and the transformation formula (13). Thus, we obtain

E fd−k(Z0)

= 1

k! E
∑

(H1,...,Hk)∈X̂k�=

χ(Z0 ∩ H1 ∩ · · · ∩ Hk)

= 1

k!
∫

A(d,d−1)k
E χ(Z0 ∩ H1 ∩ · · · ∩ Hk) 	̂k(d(H1, . . . , Hk))

= γ̂ k

k!
∫

(Sd−1)k

∫ ∞

−∞
· · ·

∫ ∞

−∞
E χ(Z0 ∩ H(u1, τ1) ∩ · · · ∩ H(uk, τk))

× dτ1 · · · dτk ϕ̂ k(d(u1, . . . , uk))

= γ̂ k

k!
∫

(Sd−1)k
E Vk(Z0|lin{u1, . . . , uk})∇k(u1, . . . , uk) ϕ̂ k(d(u1, . . . , uk))

= γ̂k

∫
G(d,d−k)

E Vk(Z0|L⊥) Q̂k(dL).

This proves (21).
Suppose now that X̂ is isotropic. Then ϑ−1Z0 has the same distribution as Z0, for every ϑ

in the rotation group SOd . Let ν denote the invariant probability measure on SOd . Using an
integral-geometric formula ([11, Equation (5.8)]), we conclude that

E Vk(Z0|L⊥) =
∫

SOd

E Vk(ϑ
−1Z0|L⊥) ν(dϑ)

=
∫

SOd

E Vk(Z0|ϑL⊥) ν(dϑ)

= cd,k E Vk(Z0),

where Vk on the right-hand side now denotes, more generally, the kth intrinsic volume, and
where

cd,k = κkκd−k

/(
d

k

)
κd .

We have obtained the formula

E fd−k(Z0) = cd,kγ̂k E Vk(Z0).

Thus, for the zero cell in the isotropic case, the determination of expected face numbers and
of expected intrinsic volumes are equivalent problems. We remark that, for k = 1, there is a
relation connecting the distributions of fd−1(Z0) and V1(Z0) (see [7, pp. 177–178]).

In the isotropic case, the value

E f0(Z0) = d!
2d

κ2
d

is known (see, e.g. [11, Equation (10.52)]). Since Z0 is a.s. a simple polytope, the relation
2f1 = df0 gives E f1(Z0). The values E Vd(Z0) and E Vd−1(Z0) (and second moments) were
already determined in [7]. For d = 3, the Euler relation f0 −f1+f2 = 2 further gives E f2(Z0)

and, thus, E V1(Z0). It appears that no other values are known.
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