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SUMMARY

The article reviews some basic statistical concepts
used in medicine, including the mean, standard
deviation, sensitivity and specificity. Using this
background the authors describe how these can
be applied to cognitive tests, taking the Montreal
Cognitive Assessment (MoCA) as an example.
Two different approaches to using the MoCA in
diagnosing dementia are considered: one using a
fixed cut-off score, the other taking account of nor-
mative data about the effects of age and educa-
tional level on MoCA scores. It is recommended
that clinicians assessing cognitive function should
not rely on a fixed cut-off score, but where possible
compare the patient’s result with those of people of
comparable age and educational background,
although normative data of this kind are not always
available.

LEARNING OBJECTIVES

After reading this article you will be able to:
• explain what makes a good cognitive test from a

psychometric perspective
• explain why it matters to choose a test with high

sensitivity and specificity
• explain why it matters to compare the patient’s

result with normative data, using the MoCA as
an example.
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In our previous article in this issue (Burns 2024) we
discussed the role of neurocognitive testing in the
assessment of fitness to stand trial, reviewing some
of the shorter cognitive tests that are available and
suggesting which to use and when. This second
article considers the value – and hazards – of using
cut-offs in such tests.

Why use cognitive tests?
Cognitive assessments are used in a wide variety of
clinical situations. In primary care they are helpful in
identifying people who might benefit from referral to
secondary care for further investigation, as well as
being a helpful tool in reassuring the ‘worried well’

that their cognitive function may be no different from
that of other people of their age. In accident and emer-
gency departments they can help to identify delirium
and dementia. In general medicine and neurology
they can help to identify the development of dementia
in conditions that are often regarded as primarily phys-
ical, such as multiple sclerosis or Parkinson’s disease.
Making an assessment of cognitive function is an

essential part of assessing and diagnosing dementia.
In the context of a memory clinic, one is often trying
to place a patient somewhere on a spectrum of
cognitive impairment that runs from ‘within the
normal range’ through ‘normal ageing’ (sometimes
referred to as ‘age-associated cognitive impairment’
or ‘benign senescent forgetfulness’), to mild cogni-
tive impairment, to dementia of one kind or another.
There are a vast number of possible causes of cogni-
tive impairment, both functional and organic.
Making an assessment of the severity of the impair-
ment is often critical to making an accurate diagno-
sis and offering appropriate advice and treatment.
Assessing cognitive function is key not only in

diagnosing dementia, but also in tracking its pro-
gression. The degree of impairment is likely to
affect the advice given and the medication offered.
It may also assist in diagnosis: a cognitive impair-
ment that shows no signs of progression over
several years is less likely to be due to dementia
than to some other cause. Some cognitive impair-
ments following strokes may be very stable, and
these are perhaps better described as ‘vascular cog-
nitive impairment’ than as ‘vascular dementia’.
Cognitive impairments may be seen in disorders
that can improve, such as depression and psychotic
disorders. If a cognitive impairment improves over
time it is relatively unlikely to be due to dementia.
Many disciplines outside psychiatry make use of

cognitive assessments. Neurologists, geriatricians
and psychologists in particular are likely to employ
them. In primary care, short cognitive assessments
can be a helpful guide to referral.

Cognitive tests as a diagnostic tool

How they help
As we have seen, cognitive tests are a key part of a
diagnostic assessment of dementia and in determin-
ing its severity. Given that impairment of cognitive
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function across multiple domains is a key element of
the diagnosis of dementia it is difficult to see how a
dementia diagnosis could be made without using
some form of cognitive assessment.

How they can hinder
Cognitive tests can be misleading. There can be sub-
stantial variations in the results on a given test from
one occasion to another. Some of the variables arise
within the patient (for example, change or fluctu-
ation in disease severity, anxiety, tiredness, fear,
inattention, side-effects of medication or alcohol,
age), and some may be located in the test procedure
(test–retest learning, approach of the examiner, test
version used, scoring method, testing environment,
distractions).

The importance of normative data
In any measurement made in medicine, as doctors
we need to know whether it is within the range
expected, or is sufficiently abnormal to suggest
that there may be a problem. So, we have to
compare the person’s result with those of a group
of similar people. But similar in what way?
That depends on what we think are the kinds of pro-
blems that might be present. For people with cogni-
tive impairment, ‘similar’ would certainly include
similar in age and education, both of which are
known to have substantial effects on cognitive
function. Many other variables might be relevant –
cultural group, language spoken, physical illnesses,
state of alertness, sensory impairments – but in
practice it is not possible to take everything into
account in a quantitative way, so we have to
choose the best normative data available for the
person’s condition.
As doctors we consider a very wide range of test

results in the course of our practice. In many cases,
we rely on our knowledge of published normal
values to determine whether a result is abnormal.
This is particularly true in relation to blood tests,
although even there, for some blood tests it is
important to take into account age or racial group
or time of day. There is sufficient consistency in
many results between different groups of people
that identifying an appropriate control group for a
particular patient is often not necessary. The aim
of this article is to explain why in relation to cogni-
tive tests that approach is insufficient.

Choosing a normative data-set
The perfect normative data-set would consist of a
large number of people identical to the patient in
every respect except the one under study. That is
of course not possible in practice. We would
suggest that age and educational level are key

variables to consider, as both of those factors have
substantial effects on cognitive performance.
For many other variables, one can try to minimise

departure from norms by making adjustments to the
test procedure. For example, if the person has poor
hearing, ensure that they have their hearing aids
(if used), that the room is quiet and that the assessor
has the person’s full attention. If the person has poor
sight, ensure that they have their glasses, that the
light is good and that they can see the test paper
as necessary. If the person is anxious, consider
whether having a trusted person with them would
help. If the person has done the particular test
before, consider whether there is an alternative
version to use (many tests, including the MoCA,
come in several versions to reduce test–retest learn-
ing effects).

Comparing a test result with a normative
score

Above or below average?
The simplest, though not necessarily the best, way to
use a test result is to compare it with the average
score for a similar group of people.
This approach has the obvious shortcoming that

in any population, half the population is above
average and half below, although this should be
qualified according to the type of average quoted.
It is by definition true only of the median.
Averages may be calculated as the mean, median
or mode of a set of data.
The mean will be weighted by outlying values,

which can pull the mean in either direction. This
can be a particular problem in data-sets that are
small or contain extreme outlying values. Some of
those outliers may arise from errors in the data col-
lection, and so researchersmay reasonably choose to
exclude some outliers. Nevertheless, the mean is
used in many statistical analyses and is therefore
an important and often-used figure.
The median is the middle value of a data-set (the

50th centile), and in the context of medical assess-
ments may be a more useful measure as it is much
less likely to be influenced by outliers.
The mode is the most common value, and less

likely to be used in this type of analysis.
For many tests, there is not much good-quality

normative data for different groups, so one has to
use whatever is available.

How far above or below? Standard deviation and
variance
Simply deciding whether a result is above or below
average is of limited help, unless one can say how
far above or below it is. This can be measured by
considering the spread of the data around the
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average. Two common measures of spread are
standard deviation (s.d.) and variance (which is
the square of the standard deviation). The standard
deviation is the square root of the mean of the
squared deviations of each value from the mean,
sometimes referred to as the root mean square
(r.m.s.) deviation. These numbers are key in many
statistical tests. In considering them, it is essential
to understand whether it is the variance or standard
deviation that is quoted, as the size of the two
numbers is likely to be very different.
Another statistic often used is the standard error,

which is defined as the standard deviation of the
sampling distribution. If the statistic is the sample
mean, it is referred to as the standard error of the
mean (s.e.m.). The sampling distribution of the
mean is obtained by taking repeated samples from
the same population and recording the mean of
each sample. This forms a distribution with its
own mean and variance. The variance of the sam-
pling mean is equal to the variance of the original
population divided by the sample size. For a given
set of data, the s.e.m. is therefore likely to be much
smaller than the s.d. (it will be the standard devi-
ation of the sample divided by the square root of n,
where n is the size of the sample). Studies may
report results in terms of mean and either s.d. or
s.e.m. (either as numbers in tables or as error bars
on figures), so it is important to understand which
is being used. Error bars showing s.e.m. will be
much smaller than error bars showing s.d..
The s.d. is a particularly helpful statistic to con-

sider in a population in which the variable is distrib-
uted normally or near normally (the bell-shaped
function or ‘bell curve’). If the distribution of the
variable is not normal, it may be possible to
convert it to a near normal distribution, for
example by using the log of the measurement.
Figure 1 shows an example of a normal distribu-

tion. Provided that the population from which the
data are drawn is normal (an assumption that is
often made about much biological data), it is pos-
sible to calculate how many per cent above or
below the mean the test result lies. In many cases
in medicine, a result is regarded as significant if it
lies outside the central 95% of the population.
There is a difference between a one-tailed calcula-
tion, in which one is interested only in deviations
in one direction (the top or bottom 5% as the case
may be), and two-tailed calculations, in which one
is interested in deviations in either direction
(values falling into either the top or the bottom
2.5%). It can be seen in Fig. 1 that 2.27% (0.13%
+ 2.14%) lie more than 2 s.d. below the mean;
68.27% lie within 1 s.d. either way of the mean,
and 95.45% lie within 2 s.d. of the mean. A conveni-
ent figure to remember is that approximately 5% of

data points lie more than 2 s.d. from the mean in a
two-tailed test, and approximately 2.5% lie more
than 2 s.d. below the mean in a one-tailed test.
A simple way to express data of this kind is in

terms of centiles (or percentiles, which are the
same thing). Imagine that there are 100 data
points, one measurement from each of 100 indivi-
duals, lined up in order of magnitude. A person on
the 50th centile is exactly in the middle (the
median), whereas a person on the 5th centile is
very low in the distribution, the fifth one along
from the bottom value. The line marking 2 s.d.
below the mean is at about the 2.5th centile.

What is a ‘cut-off’?
A cut-off is a score level in a given test below which
(or sometimes above which) it is suggested that an
individual’s score is significantly different from
expected. If it is a diagnostic test, it is the level that
divides those who are test positive (i.e. those who
are identified by the test as having the disorder)
from those who are test negative (i.e. those who are
identified by the test as being free from the disorder).
But that simple idea conceals a number of

questions:

• what is meant by ‘significant’?
• can any test be 100% reliable (or accurate)?
• what does reliable mean?
• since no test is entirely accurate, how do you take

account of people you miss (false negatives) or
those who are incorrectly diagnosed as having
the condition (false positives)?

How are cut-offs derived?

Sensitivity and specificity
Consider a test that is being used to diagnose a spe-
cific condition. It is important to understand how
accurate the test is. Accuracy is often considered in
terms of the sensitivity and specificity of a test,
although as we shall see some other calculations
can be more useful.
Consider a test, T, used to diagnose a disorder, D.

In a study examining the reliability of the test
against some gold standard method of diagnosis in
a total of A + B + C +D individuals, the results
shown in Table 1 are obtained.
The sensitivity of the test is A/(A + C). In other

words it is the proportion of all those who actually
have the disease who test positive. It is the ability
of the test to classify individuals correctly as ‘dis-
eased’. It is the same as the true-positive rate. If a
diagnostic test has a sensitivity (Sn) of 100%, then
a negative (N) test result rules out (Out) the disorder
(acronym ‘SnNOut’).

Cognitive testing and the hazards of cut‐offs
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The specificity of the test is D/(B +D). In other
words it is the proportion of all those who do not
have the disease who test negative. It is the ability
of the test to classify individuals correctly as
disease-free. If a diagnostic test has a specificity
(Sp) of 100%, then a positive (P) test result rules in
(In) the disorder (acronym ‘SpPIn’).
Another way of considering the accuracy of a test

is by using its positive and negative predictive value
(PPV and NPV). The PPV is the probability that an
individual with a positive test result truly has the
condition. The NPV is the probability that an indi-
vidual who tests negative truly does not have that
condition. These are very useful probabilities to
know if you are discussing a test result with the
patient in a clinic, but they are less often quoted in
validation studies than the sensitivity and specifi-
city, and they are affected by the prevalence of the
disease in the population studied:

PPV ¼ A=A þ B
¼ true positives=(true positives
þ false positives)

NPV ¼ D=C þ D
¼ true negatives=(true negatives
þ false negatives)

The term ‘false-positive rate’ is used in different
ways, but often means 1− specificity (= B/B +D),
which is the meaning we have adopted here.

ROC calculations
In practice, few clinicians have the time or access to
the data to make these calculations in the course of a
busy clinic. So it can be convenient to calculate a cut-
off score for a test, which is a simple way of dividing
those who are likely to have a condition from those
who probably do not have it. A standard way of cal-
culating a cut-off for a test is by means of a receiver
operating characteristic (ROC) curve.
Figure 2 shows a ROC curve of the true-positive

rate against the false-positive rate. As the cut-off
score separating diseased from not diseased is
adjusted, sensitivity and specificity are affected.
With increasing sensitivity the true-positive rate
improves, but the false-positive rate also increases.
The broken line in the figure would indicate that
the test is incapable of separating those with the
disease from those without it. The further away the
test (solid) line is from the broken line (or more
accurately, the larger the area under the curve) the
better the test is at separating those with the disorder
from those without it. The optimal cut-off is the one
that achieves the best compromise of sensitivity and
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FIG 1 A graph of a normal distribution showing 1, 2 and 3 standard deviations (σ) from the mean (μ), where P is the probability of
a value occurring at that deviation from the mean. Adapted from original by Wolfgang Kowarschick (https://commons.
wikimedia.org/wiki/File:Normal_Distribution_Sigma.svg), under a Creative Commons licence (https://creativecommons.
org/licenses/by-sa/4.0/deed.en).

TABLE 1 In A + B + C + D individuals, the numbers with or without a disorder who test positive or negative in a diagnostic test

With the disorder Without the disorder Row totals

Test positive A (true positive) B (false positive) A + B
Test negative C (false negative) D (true negative) C + D
Column totals A + C B + D A + B + C + D
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specificity. That may depend on whether it is more
important to detect as many cases as possible so
that they can go on for further investigation (as in
screening), or to be as confident as possible that
anyone who tests positive actually has the disorder
(which may have implications for treatment and
prognosis). In the context of a memory clinic, it
may be helpful to consider that expressing uncer-
tainty about a diagnosis and waiting for some time
to reassess the patient may be a better approach
than to risk giving a patient what might turn out
to be a wrong diagnosis of dementia, with all the
very serious implications that that can have, includ-
ing litigation and the patient’s exposure to treatment
that may in fact not be appropriate. For this reason,
our preference is, if in doubt, to delay diagnosis and
reassess after a period of time. This might be differ-
ent if we had access to disease-modifying treatments,
where a delay in diagnosis might affect long-term
outcome.
Constructing and using ROC curves depends on

some very complex considerations that are outside
the scope of this article, but it is important to under-
stand that the optimal balance of sensitivity and spe-
cificity will depend on the purpose for which the test
is being used, and there is no single best solution. For
screening tests, it is important to choose high sensi-
tivity in order not to miss cases, but for prescribing
treatments it is more important to choose high speci-
ficity in order to avoid giving potentially hazardous
treatment to people who do not in fact have the
disease.

Significance
‘Significance’ is a widely used concept in probability
theory that identifies how likely it is that a given

result showing a difference from an expected value,
such as the population mean, has arisen by
chance. This has a clear application in a treatment
study where one is interested in whether or not a
new treatment is in fact effective, or whether in
reality it is ineffective but by chance the trial
happens to have shown a difference from the
control group. But it also has application in diagnos-
tic settings in which one wants to know how likely it
is that a given test result is significantly different
from normal.
By convention, a 5% level of significance has come

to be accepted as a convenient indication that it is
unlikely that a particular result has arisen by
chance and is therefore more likely to reflect a true
(‘significant’) difference. The 5% level was described
by Sir Ronald Fisher in 1925 in his influential book
Statistical Methods for Research Workers (Fisher
1925). Although the 5% figure is a useful and
widely accepted marker, it is an arbitrary one. As
noted above, there is a difference between a 5%
level applied in a two-tailed test from a 5% level
applied in a one-tailed test. In a memory clinic,
one is concerned with cognitive test results that are
below expected values, and so a one-tailed test is
appropriate.

The Montreal Cognitive Assessment (MoCA)
As an example of how cut-offs might be applied in a
cognitive test, we consider the use of the Montreal
Cognitive Assessment (MoCA). In our view, the
MoCA is an extremely useful test and we both use
it in our clinical practice. It is relatively quick to
administer and does not require additional materials
other than the test sheet itself. It has been very care-
fully developed, and is available in many languages
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FIG 2 A receiver operating characteristic (ROC) curve of the true-positive rate (sensitivity) versus the false-positive rate
(1 − specificity).
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and versions. A number of sets of normative data are
available. It is widely used. MoCA Cognition states
that completion of their Training & Certification
Program is necessary to administer, interpret and
score test results.
The test sheet itself identifies a normal result as

being 26/30 or more. One point may be added to
the total score if the individual has ≤12 years of
education.
By way of an example of a normative data-set we

consider a large community study of the MoCA by
Kenny et al (2013) as part of a longitudinal study
of older adults. The paper states that people with
known dementia, Parkinson’s disease or severe cog-
nitive impairment were excluded. The MoCA was
administered to 5802 individuals, and the results
are presented split by 5-year age bands over age
50, and level of education. Table 2 is from that
study. The P values listed in the first column (P95,
P90, etc.) are percentiles (not to be confused with
the P-value in a statistical significance test).

It can be seen by running the eye along any of the
rows that as age increases, scores decrease. This is
unlikely to be due to increased prevalence of
dementia in older age groups, as those known to
have dementia or severe cognitive impairment
were excluded. Similarly, by comparing scores in
the three education bands for people of similar
age it can be seen that scores increase with increas-
ing levels of education. The effects of age and edu-
cation are very substantial, not only in their effect
on median (P50) results within any one group,
but even more strikingly when the upper and
lower ends (5th and 95th centiles) of the distribu-
tions are considered. The effect of education is sub-
stantially larger than the 1 point allowance in the
published MoCA. The suggested fixed cut-off of
26/30 does not allow any adjustment for age,
whereas the normative data suggest that the
effects of age between 50 and 85+ account on
average for at least a 4 point change and could be
as much as 8 points.

TABLE 2 Montreal Cognitive Assessment Scores stratified according to highest educational attainment, based on a sample of
5802 individuals aged 50 and older representative of the community-dwelling population of Ireland without known
dementia, Parkinson’s disease or severe cognitive impairment

Age

Percentile 50 55 60 65 70 75 80 85

Primary or no education
P95 29 29 29 28 28 28 27 27
P90 28 28 28 28 27 27 26 26
P75 27 26 26 26 26 25 24 23
P50 24 24 24 24 23 22 21 20
P25 22 22 21 21 20 19 18 16
P10 19 19 19 18 17 16 14 12
P05 17 17 17 16 15 13 12 9
Mean ± s.d. 24.0 ± 3.5 23.8 ± 3.6 23.5 ± 3.7 23.1 ± 3.9 22.5 ± 4.1 21.7 ± 4.5 20.7 ± 4.9 19.3 ± 5.5
Secondary education
P95 29 29 29 29 29 29 28 28
P90 29 29 29 29 28 28 27 27
P75 27 28 27 27 27 26 26 25
P50 26 26 26 26 25 24 23 22
P25 24 24 24 23 23 22 20 18
P10 22 22 21 21 20 19 17 15
P05 20 20 20 19 19 17 15 12
Mean ± s.d. 25.4 ± 2.9 25.4 ± 2.9 25.3 ± 2.9 25.1 ± 3.0 24.6 ± 3.2 23.8 ± 3.6 22.7 ± 4.1 21.1 ± 4.7
Tertiary or higher education
P95 30 30 30 30 29 29 29 29
P90 30 29 29 29 29 29 28 28
P75 29 29 28 28 28 27 27 27
P50 28 27 27 27 26 26 25 24
P25 26 26 25 25 24 24 23 22
P10 25 24 24 23 22 21 20 19
P05 24 23 22 22 21 20 19 17
Mean ± s.d. 27.3 ± 2.0 27.0 ± 2.1 26 7 ± 2.3 26.3 ± 2 5 25.8 ± 2.7 25.3 ± 2.9 24.7 ± 3.2 23.9 ± 3.5

Source: Kenny et al (2013). Reproduced by kind permission of the American Geriatrics Society.
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Other normative data-sets for the MoCA exist.
Another (Rosetti 2011) is a US study of 2653 ethnic-
ally diverse individuals, the results also split by age
and educational level. The published values are gen-
erally slightly lower in the comparable groups than
in the Kenny study, but this may be in part
because those with known dementia or cognitive
impairment were not excluded. As in the Kenny
study, the effects of age and educational level on
MoCA score are clear.
Wong et al (2015) compared single versus age-

and education-corrected cut-off scores using the
MoCA in patients after stroke or transient ischaemic
attack. They found high levels (>50%) of misclassi-
fication when comparing the use of a single fixed
cut-off with using age- and education-corrected
norms. In other words, using a single fixed cut-off
score often identified patients as having normal/
abnormal cognitive function differently from using
age- and education-adjusted values.
Interestingly, Yeung et al (2020) compared the

ability of single cut-off scores (21/22 on the Hong
Kong version of the MoCA) versus norm-derived
age- and education-adjusted scores in classifying
cognitive impairment as normal (cut-off at the
16th centile), mild cognitive impairment (cut-off at
7th centile) or dementia (cut-off at 2nd centile) in a
Chinese older adult population. They found that
the single cut-off score method hadmuch higher sen-
sitivity than using the 2nd centile norm in classifying
people as ‘dementia’ versus ‘normal’ (92.2% v.
35.9%), and only slightly lower specificity (92.3%
v. 98.5%). Their conclusion was that using a fixed
cut-off score was a simple and effective method of
screening using the MoCA. Although specificity
was lower using a fixed cut-off than using age- and
education-corrected values, most of the misclassifi-
cations were false positives, which meant that
individuals could be referred for more careful inves-
tigation (as would be expected in a screening
process) rather than missed altogether. One reason
for the high sensitivity using a fixed cut-off score
may have been that (following DSM-5) in the age-
and education-adjusted calculation, they used a
threshold of 2 standard deviations below the mean
to diagnose dementia. As we have seen above,
assuming a normal distribution, this means that
only 2.5% of that group would be classed as test
positive, which is perhaps a much more stringent
condition than many clinicians might adopt in prac-
tice. It is important to note that using a very strin-
gent norm to diagnose dementia (as DSM-5
suggests) can potentially lead to many missed or
delayed diagnoses.
Davis et al (2021) have carried out a Cochrane

review of the diagnostic accuracy of the MoCA at

various cut-offs for dementia subtypes. They identi-
fied four studies that applied the threshold of 26 or
above (Smith 2007; Lee 2008; Lu 2011; Larner
2012), as recommended on the MoCA test sheet.
In each of these studies, although the sensitivity
was high (0.94–1.00), the specificity was low
(0.50–0.60). A study with a specificity of 0.5
would mean that of those who tested negative, half
would have the disorder and half would not – no
better than a random guess. However, in a valid-
ation study by Nasreddine et al (2005) (the lead
author of the group that created the MoCA test in
the mid-1990s) using a cut-off of 25/26, the sensitiv-
ity of the MoCA in detecting Alzheimer’s dementia
was 100% and the specificity was 87%, rather
better than in the studies reviewed in the Cochrane
paper.

Hazards of cut-offs
Using a cut-off to interpret a cognitive test is very
simple and straightforward, but it can be hazard-
ous. A cut-off may not take into account many of
the variables that can influence an individual’s
performance on a test, as discussed above. A
problem that we have been concerned with in
this article is that fixed cut-off scores provided
for cognitive tests are likely to ignore the effects
of age and education, both of which powerfully
affect a person’s results. Finally, it is important
to remember that any cognitive test result relates
to only one part of the information that a doctor
needs to consider in making a diagnosis. In diag-
nosing dementia it is essential to consider not
only cognitive test results, but also the history
and presentation of the patient, the history from
an informant, the medical history, blood test
results and neuroimaging.

Conclusions
When choosing a test, we need to think about what it
is being used for and whether the one we choose has
been adequately validated in a group of people
similar to the ones we are testing. We need to be
careful about factors that may influence results. In
cognitive testing, age and education are very signifi-
cant factors. Tests that appear to be better or more
detailed may lack good normative data and so be
more difficult to interpret reliably, although they
may still be helpful in tracking changes in a given
person over time.

Data availability
Data availability is not applicable to this article
as no new data were created or analysed in this
study.
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MCQs
Select the single best option for each question stem

1 The sensitivity of a test:
a is a measure of how likely it is that a test result

predicts a correct diagnosis
b is the same as positive predictive value
c is a measure of how good the test is at identi-

fying all those who have the disorder
d is the reciprocal of the specificity
e is the same as the false-negative rate.

2 The specificity of a test:
a is a measure of how good test is at identifying all

those who have the disorder
b is a measure of how likely it is that if a person

tests positive they have the disorder
c is the proportion of all those who do not have the

disease who are test negative
d is the same as positive predictive value
e is the same as the false-positive rate.

3 A good cognitive test:
a has high sensitivity and high specificity
b has a low area under its receiver operating

characteristic (ROC) curve
c can safely be relied on to make a diagnosis of

dementia
d will not be affected if the patient has difficulty

hearing
e does not need validation.

4 In a normal distribution:
a approximately 60% of results lie within 2 s.d. of

the mean
b approximately 2.5% of results lie more than 2 s.d.

below the mean
c two-tailed tests give the same result as one-

tailed tests
d the mean and standard error of the mean are the

same
e error bars always show standard deviation.

5 In interpreting a cognitive test result:
a the age of the person is not relevant
b the educational level of the person is not relevant
c it is helpful to compare the result with normative

data
d the test conditions do not matter
e most people will score the same on consecutive

test occasions close together.

MCQ answers
1 c 2 c 3 a 4 b 5 c

Series & Burns
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