
Depth-graded motivic multiple zeta values

Francis Brown

Compositio Math. 157 (2021), 529–572.

doi:10.1112/S0010437X20007654

https://doi.org/10.1112/S0010437X20007654 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007654
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1112/S0010437X20007654&domain=pdf
https://doi.org/10.1112/S0010437X20007654


Compositio Math. 157 (2021) 529–572
doi:10.1112/S0010437X20007654

Depth-graded motivic multiple zeta values

Francis Brown

Abstract

We study the depth filtration on multiple zeta values, on the motivic Galois group of
mixed Tate motives over Z and on the Grothendieck–Teichmüller group, and its relation
to modular forms. Using period polynomials for cusp forms for SL2(Z), we construct an
explicit Lie algebra of solutions to the linearized double shuffle equations, which gives
a conjectural description of all identities between multiple zeta values modulo ζ(2) and
modulo lower depth. We formulate a single conjecture about the homology of this Lie
algebra which implies conjectures due to Broadhurst and Kreimer, Racinet, Zagier, and
Drinfeld on the structure of multiple zeta values and on the Grothendieck–Teichmüller
Lie algebra.

1. Introduction

We begin by motivating the results of this paper from two apparently different, but in fact
equivalent, perspectives.

1.1 Depth filtration on multiple zeta values
Multiple zeta values are defined for integers n1, . . . , nr−1 ≥ 1 and nr ≥ 2 by

ζ(n1, . . . , nr) =
∑

1≤k1<···<kr

1
kn1

1 . . . knr
r

.

Their weight is the quantity n1 + · · · + nr, and their depth is the number of indices r. Relations
between multiple zeta values of depth 2 were first studied by Euler. Let ZN denote the Q-vector
space spanned by multiple zeta values in weight N . Zagier conjectured, firstly, that the space Z
of multiple zeta values is isomorphic to the direct sum of the ZN (in other words, the weight is
a grading), and secondly, that the dimension of ZN can be expressed using the generating series∑

N≥0

dimQ (ZN )sN =
1

1 − s2 − s3
. (1.1)

Using the theory [Lev93, DG05] of mixed Tate motives over Z, Goncharov [Gon01a] and Terasoma
[Ter02] independently showed that dimQ ZN is bounded above by the coefficient of sN in the
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F. Brown

right-hand side of (1.1). Furthermore, if one replaces ZN with the Q-vector space of motivic
multiple zeta values ζm(n1, . . . , nr) of weight N , then (1.1) is a theorem [Bro12, Del13]. The
rational function on the right-hand side of (1.1) can be interpreted as follows: it is the Poincaré
series of the free graded module, generated by ζm(2n) for n ≥ 1, over the graded dual of the
universal enveloping algebra of the Lie algebra of the category of mixed Tate motives over Z,
which is free with one generator in every odd degree ≤ −3 (see [DG05, Del13] for further details).

Based on numerical experiments, Broadhurst and Kreimer [BK97] formulated a fascinating
and more refined conjecture which takes into account the depth. The depth, by contrast with
the conjectural properties of the weight, is only a filtration, and not a grading. Let ZN,d denote
the Q-vector space spanned by multiple zeta values in weight N and depth d, modulo multiple
zeta values of weight N and strictly lower depth. They propose that∑

N,d≥0

dimQ (ZN,d)sN td =
1 + E(s)t

1 − O(s)t + S(s)t2 − S(s)t4
, (1.2)

where, using the notation from [IKZ06, Appendix],

E(s) =
s2

1 − s2
, O(s) =

s3

1 − s2
, S(s) =

s12

(1 − s4)(1 − s6)
. (1.3)

Formula (1.2) specializes to the statement (1.1) upon setting t = 1.
The meaning of this conjecture is still mysterious, but one goal of this paper is to offer a

homological interpretation of (1.2). The series E(s) and O(s) are the generating series for the
dimensions of the spaces of even and odd single zeta values respectively, and S(s) is the generating
series for the dimensions of the space of cusp forms for the full modular group SL2(Z). The first
prediction of (1.2), due to the presence of a non-trivial coefficient of t2 in the denominator of
the right-hand side, is the existence of an extra relation between double zeta values of even
weight for every cusp form, modulo multiple zeta values of lower depth (single zeta values).
These relations have indeed been shown to exist and are well understood by the work of Gangl
et al. [GKZ06], who exhibited an infinite family of such relations. The smallest one corresponds
to the Ramanujan cusp form of weight 12:

28 ζ(3, 9) + 150 ζ(5, 7) + 168 ζ(7, 5) =
5197
691

ζ(12). (1.4)

The coefficients in this and all such equations can be related to period polynomials for cusp
forms, or equivalently, to group cocycles for SL2(Z). Furthermore, a geometric mechanism for
these relations is by now fairly well understood [Bro14b].

The situation in higher depths remains very unclear. It is known by work of Zagier [Zag93]
and Goncharov [Gon01b] that (1.2) is true (in a suitable setting, i.e. for solutions to the double
shuffle equations as discussed below) in depths 2 and 3, respectively. Nevertheless, the presence
of the term in t4 in the right-hand side of (1.2) suggests a new phenomenon in depth 4. If we
interpret the right-hand side of (1.2) in terms of the Poincaré series of a depth-graded version
of the Lie algebra of the category of mixed Tate motives over Z, the term in t4 suggests the
existence of new generators in this Lie algebra in depth 4, corresponding to cusp forms for the
full modular group.

In this paper we supply candidates for these ‘exceptional’ generators by constructing them
explicitly out of period polynomials of cusp forms. As a result, we can formulate a much more
precise conjecture than (1.2) which predicts not only the dimensions of the spaces of multiple
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zeta values in all weights and depths, but also their relations and modulo lower depths. In
order to get some sense of these exceptional generators, consider the first one, which occurs
in depth 4 and weight 12. It turns out that all multiple zeta values in weight 12 and depth 4
are proportional to a single element ζ(1, 1, 2, 8) modulo terms of lower depth and products, for
example,

ζ(4, 3, 3, 2) ≡ 116 ζ(1, 1, 2, 8).

The exceptional generator corresponding to the Ramanujan cusp form Δ annihilates every such
relation, and therefore gives an interpretation of the coefficients (in this case, the number 116)
in terms of ratios of critical values of the L-function of Δ.

1.2 The projective line minus three points
Let GdR

MT (Z) = Aut⊗MT (Z)(ωdR) denote the motivic Galois group of the Tannakian category
MT (Z) of mixed Tate motives over the integers [DG05], and let UdR

MT (Z) ≤ GdR
MT (Z) denote its

unipotent radical. One has a canonical isomorphism GdR
MT (Z) = UdR

MT (Z) � Gm. Let

0Π0 = πdR
1 (P1\{0, 1,∞},

→
10) and 0Π1 = πdR

1 (P1\{0, 1,∞},
→
10,−

→
11)

denote the de Rham fundamental group (respectively, torsor of paths) at a tangential base point
at 0 (respectively, between tangential basepoints at 0 and 1) [Del89]. The latter is a torsor
over the former, via composition1 of paths 0Π0 × 0Π1 → 0Π1. Since 0Π0, 0Π1 are the de Rham
realizations of (pro)-objects in the category of mixed Tate motives over Z, the group GdR

MT (Z)

acts upon them, and there is a canonical representation

GdR
MT (Z) −→ Aut

(
0Π0 × 0Π1

)
,

where the group of automorphisms on the right denotes those automorphisms which respect
the structure 0Π0 × 0Πx → 0Πx for x ∈ {0, 1}. This action is the motivic version of the outer
action of the absolute Galois group Gal(Q̄/Q) on the pro-� completion of the fundamental
group of X which was first studied extensively by Deligne, Drinfeld, and Ihara [Del13, Dri90,
Iha02]. Deligne conjectured that this action is faithful, or equivalently, that the motivic tor-
sor of paths on X generates the category MT (Z), which was shown in [Bro12, Del13]. The
graded Lie algebra2 of 0Π0 is the free graded Lie algebra L(e0, e1) on two generators e0, e1.
Therefore, the infinitesimal version of the action of UdR

MT (Z) on 0Π0 gives a very concrete way
to study the motivic Galois group, or equivalently, its graded Lie algebra gm together with its
representation:

gm := LieUdR
MT (Z) −→ DerLie 0Π0 = Der L(e0, e1).

One shows that the image of gm lies in the Lie subalgebra of derivations which are in the image
of the linear map

L(e0, e1) �→ Der L(e0, e1)

f �→ Df ,

1 We use the topologist’s convention: αβ denotes the path α followed by the path β.
2 Throughout this paper, the notation Lie will denote a (weight)-graded Lie algebra, that is, a Lie algebra graded
for the action of Gm.
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where Df (e0) = 0 and Df (e1) = [f, e1]. One can equip L(e0, e1) with a new Lie algebra structure
{ , }, called the Ihara bracket, such that the previous map becomes a morphism of Lie algebras
(i.e. D{f,g} = [Df , Dg]), where the bracket on the right is the usual Lie bracket on derivations.
Let us denote the graded vector space L(e0, e1) together with this new Lie algebra structure by
g := (L(e0, e1), { , }).

One obtains from all this a canonical embedding of the motivic Lie algebra

gm ⊂ g.

By abuse of notation, we shall identify gm with its image in g. The injectivity of gm → g follows
from [Bro12].

A major problem is to describe this Lie algebra as precisely as possible. We know that it has
generators called ‘zeta elements’ for every n ≥ 1:

σ2n+1 = (ad e0)2n e1 + (terms of degree ≥ 2 in e1)

but they are not canonical3 (e.g. σ11 is only well defined up to addition of rational multiples of
{σ3, {σ5, σ3}}). Deligne’s conjecture in its originally stated form was that the �-adic versions of
the σ2n+1, which are elements in a certain Lie algebra constructed out of Gal(Q̄/Q), form a free
Lie algebra for the Ihara bracket.

Theorem 1.1 [Bro12]. The graded Lie algebra gm is a free Lie algebra on (some choice of)

generators σ2n+1 in each degree −(2n + 1) for n ≥ 1.

Only the classes [σ2n+1] in the abelianization (gm)ab = gm/{gm, gm} are canonical. Since
H1(gm; Q) = (gm)ab, one can rephrase the previous theorem by saying that

H1(gm; Q) ∼=
⊕
n≥1

[σ2n+1]Q,

Hi(gm; Q) = 0, for i ≥ 2.

(1.5)

The abstract structure of the Lie algebra gm is therefore very simple, but the information about
linear relations between multiple zeta values is encoded in the coefficients of the generators σ2n+1,
which are not known explicitly. In this paper we study the associated graded version dgm of this
Lie algebra for a filtration called the depth, which is related to the depth filtration on multiple
zeta values. By contrast with the case of gm, we will provide an explicit conjectural description
of all the generators of dgm. It is not a free Lie algebra, but a little more complicated.

1.3 Depth filtration on the motivic Lie algebra
As defined in [DG05], the depth filtration is induced geometrically by the inclusion P1\{0, 1,∞} ⊂
Gm and is the decreasing filtration D on L(e0, e1), where Dr consists of Lie brackets containing
at least r occurrences of the letter e1. It is preserved by the Ihara bracket { , }, and therefore
defines a filtration on g. One defines the depth filtration Drgm to be the induced filtration. An
element in gm lies in Drgm if and only if the corresponding derivation of Lie 0Π0 = L(e0, e1) sends

3 In fact, one can define canonical generators σ2n+1 to be the coefficient of ζm(3, 2, . . . , 2), with n − 1 twos, in a
motivic Drinfeld associator Φm =

∑
w ζm(w)w. However, this definition is not explicit and most of the coefficients

of σ2n+1 defined in this way are not known.
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Ds to Ds+r for all s. This makes the motivic nature of D clear since the σ2n+1 increase the depth
by at least 1.

We consider the associated graded Lie algebra:

dgm = grDgm.

It is bigraded by weight and depth: the depth will be indicated by a subscript, thus dgm
r = grr

Dgm.
We identify dgm with a Lie subalgebra of grDg which as a bigraded vector space is identified with
L(e0, e1). Note that, in fact, the Ihara bracket { , } respects the depth grading on the free Lie
algebra L(e0, e1), so the Lie bracket on grDg is given by the identical formula to that for { , }.

In depth 1, dgm inherits canonical ‘zeta’ generators which are the images of σ2n+1:

σ̄2n+1 = (ad e0)2ne1 ∈ dgm
1 . (1.6)

Ihara discovered, astonishingly, that in the depth-graded Lie algebra the generators σ̄2n+1 are
not free. The first relation occurs in weight 12:

{σ̄3, σ̄9} − 3{σ̄5, σ̄7} = 0. (1.7)

In order to reconcile this relation with the freeness theorem (Theorem 1.1), there must exist an
extra generator in dgm in weight 12 to compensate for it: the new generator is given by the lowest
depth part of {σ3, σ9} − 3{σ5, σ7}, which is in depth ≥ 4. Exceptional generators such as these
(but defined in a direct and somewhat different manner) are one of the main objects of study of
this paper.

The general quadratic relations between the σ̄2n+1 have been known explicitly for some
time [IT93, Sch06, Gon05, GKZ06] and will be re-derived as an immediate consequence of the
formalism we introduce below. To describe them, let Vn =

⊕
i+j=n QXiY j denote the vector

space of homogeneous polynomials of degree n in two variables, with its right action of SL2(Z).
Evaluating cocycles on the matrix

(
0 −1
1 0

)
induces an isomorphism

H1
cusp(SL2(Z), V2n−2)+∼=S2n,

where + denotes invariants under the involution which sends a cocycle γ �→ Cγ to the cocycle
γ �→ Cεγε−1

∣∣
ε
, where ε =

(
1 0
0 −1

)
. One can show that this involution is induced by the action

of complex conjugation on (C\R)/GL2(Z). The space S2n ⊂ Q[X, Y ] is the space of even-period
polynomials: it is the space of antisymmetric homogeneous polynomials P (X, Y ) of degree 2n − 2,
divisible by Y , satisfying P (±X,±Y ) = P (X, Y ) and

P (X, Y ) + P (X − Y, X) + P (−Y, X − Y ) = 0.

One shows that the quadratic relations between σ̄2i+1 in weight 2n + 2 are completely described
by period polynomials in S2n:∑

i<j

λi,j{σ̄2i+1, σ̄2j+1} = 0 ⇐⇒
∑
i<j

λi,j

(
X2iY 2j − X2jY 2i

)
∈ S2n, (1.8)

where i + j = n in both equations. The first goal of this paper is to provide a complete conjectural
description of dgm.
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1.4 Results
1.4.1 Missing generators. Firstly, we construct the candidate exceptional generators in depth

4 using period polynomials for cusp forms. We define an explicit map

e : H1
cusp(SL2(Z); V2n−2)+ −→ D4g

which, to every even-period polynomial associates a Lie word in two generators e0, e1, of degree
4 in e1. A different source of extra generators in depth 4 are the lowest- depth part of expressions
of the form

∑
i<j λi,j{σ2i+1, σ2j+1} where the λi,j are as in (1.8) (these expressions have depth

≥ 4) but such generators depend on a choice of generators σ2n+1. A canonical choice of such
generators was given in [Bro17a], but the relationship with the elements e, which are introduced
in the present paper and defined very differently, is not completely understood. For instance,
even if one works modulo commutators, these two possible definitions of generators in depth 4
are related by a non-trivial isomorphism on the space of period polynomials (see §§ 1.4.3, 8.4).

The simplest possible conjecture that one can make is that the depth-graded motivic Lie
algebra is generated by the canonical generators σ̄2n+1 in depth 1, the image of the exceptional
map e in depth 4 and subject only to the known quadratic relations between the σ̄2n+1 in depth
2. This is equivalent to a statement about Hi(dgm; Q) for i = 1, 2, and suggests the following
reformulation of the Broadhurst–Kreimer conjecture.

Conjecture 1. The image of e lies in dgm, and

H1(dgm; Q) ∼=
⊕
n≥1

σ̄2n+1Q ⊕
⊕

n

e(S2n),

H2(dgm; Q) ∼=
⊕

n

S2n,

Hi(dgm; Q) = 0, for i ≥ 3.

(1.9)

We show in § 10.2 that Conjecture 1 implies the version of (1.2) in which multiple zeta values
are replaced by motivic multiple zeta values. This is in turn equivalent to (1.2) if one assumes
the period conjecture for mixed Tate motives over Z.

Conjecture 1 describes all relations between depth-graded motivic multiple zeta values (mod-
ulo products and ζm(2)). More precisely, consider the ring H of shuffle-regularized motivic
multiple zeta values ζm(w) where w is a word in {e0, e1}. It is weight-graded, and also has
a depth filtration D, which counts the number of e1’s. Let grDH denote the associated graded
ring and let grDI denote its augmentation ideal. Then a linear relation of weight N and depth
d of the form ∑

w

λw ζm(w) ≡ 0,

where λw ∈ Q and w ranges over words in e0, e1 of length N with d letters e1, holds in the quo-
tient4 (grDH)/((grDI)2 + (ζm(2))) if and only if, for all x ∈ dgm

d of weight N and depth d of the

4 This is equal to the depth-graded of the quotient H/((I)2 + (ζm(2))), where I is the augmentation ideal in H. This
follows from the fact that (depth graded) motivic multiple zeta values form a polynomial ring (shown in § 4.2) –
one can choose a system of motivic multiple zeta values, whose images in the depth-graded are algebraically
independent generators for grDH. Note that there is presently no explicitly known candidate for a family of such
generators.
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form x =
∑

w cww, one has
∑

w cwλw = 0. Since Conjecture 1 provides an explicit presentation
for dgm, it conjecturally describes all such relations between (motivic) depth-graded multiple
zeta values (see Example 8.4).

In fact, the formalism developed here enables one to describe all relations between depth-
graded motivic multiple zeta values (and not necessarily modulo products or modulo ζm(2)).
These are described by the linear forms which vanish not on dgm but rather on the bigraded
right-module over the universal enveloping algebra Udgm generated by the depth 1 components
of a rational associator τ (1) (defined in [Bro17a]). This can be made completely explicit: see § 6.7.

1.4.2 Linearized double shuffle equations. The main evidence for the previous conjecture
comes from the double shuffle equations. It is known that

gm ⊂ grt ⊂ dm0,

where grt is Drinfeld’s Grothendieck–Teichmüller Lie algebra, and dm0 is Racinet’s regularized
double shuffle Lie algebra, both of which are defined by explicit equations. The inclusion of gm

in grt and dm0 follow from Theorem 1.1 and results of Drinfeld [Dri90] and Racinet [Rac02],
respectively. The inclusion grt ⊂ dm0 is due to Furusho [Fur11].

If we pass to the depth-graded Lie algebras, we have

dgm ⊂ grDdm0 ⊂ ls,

where ls are the linearized double shuffle equations defined in [IKZ06]. The advantage of these
equations are that they are extremely simple to define: ls is essentially the intersection of two
shuffle algebras. Hitherto, ls was studied merely as a vector space, but it turns out, as a con-
sequence of the work of Racinet, that it also inherits a Lie algebra structure for the linearized
Ihara bracket. We offer a complete conjectural description of ls below.

The first theorem states that the exceptional elements are solutions to the linearized double
shuffle equations in depth 4.

Theorem 1.2. There is an explicit injective linear map

e : S2n −→ ls4. (1.10)

The formula for the map e is given in § 8, and associates to every even-period polynomial f

a solution ef of the linearized double shuffle equations. The question of whether the elements ef

are motivic (i.e. whether they lie in the subspace dgm) is open.

Conjecture 2. One has

H1(ls; Q) ∼=
⊕
n≥1

σ̄2n+1Q ⊕
⊕

n

e(S2n),

H2(ls; Q) ∼=
⊕

n

S2n,

Hi(ls; Q) = 0, for i ≥ 3.

(1.11)

This conjecture states, in particular, that ls is generated by zeta elements and the excep-
tional generators in depth 4 subject only to the known quadratic relations between zeta elements.
It is at the same time, the simplest and the strongest conjecture that one can formulate.
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It implies several open conjectures about relations between multiple zeta values. For example, it
implies: Conjecture 1, and hence the motivic version of the Broadhurst–Kreimer conjecture; the
conjecture dgm = ls (which in turn implies a conjecture in [IKZ06]); and the conjectures gm = grt

(Drinfeld) and gm = dm0 (Zagier, Racinet). The proofs of these implications use Theorem 1.1
and Furusho’s theorem [Fur11] in an essential way. Since the Lie algebra ls is defined in a very
simple and completely elementary way, the previous conjecture suggest a possibility of seeking
a proof of all of the above conjectures intrinsically within the theory of modular forms.

1.4.3 Discussion. Note that the vanishing of Hi(ls) for i ≥ 3 is equivalent to the vanishing
for i = 3. This follows from the well-known fact that the vanishing of a Yoneda Ext group causes
all higher Ext groups to vanish ([EL16], [Bro17a, Remark 8.6]).

The exceptional elements e satisfy a range of special properties which are studied in §§ 8
and 9. Using these, we can prove that they satisfy no quadratic relations, which provides some
meagre evidence in favour of the previous conjectures. We do not know, however, that the ef

are non-trivial in the abelianization of ls, nor can we presently rule out the existence of relations
among the elements of the form

{ef , σ̄2n+1} and {σ̄2i1+1, {σ̄2i2+1, {σ̄2i3+1, {σ̄2i4+1, σ̄2i5+1}}}}

which are in depth 5 and in weights ≥ 15 (respectively, 17). Relations which are quadratic in
the ef could first occur in weight 28 and depth 8. Viewed from this perspective, the current
numerical data in favour of the standard conjectures on multiple zeta values is lacking, since
new phenomena could potentially occur in weights and depths beyond the range of current
experimentation. Any such phenomena would point to new and fascinating connections between
mixed Tate motives over Z with geometry and arithmetic. Indeed, the methods introduced in this
paper should enable one to test the validity of Conjecture 2 to far higher weights than presently
known.

The motivic Lie algebra gm together with its depth filtration D naturally gives rise to a
spectral sequence (§ 4.5), and the Broadhurst–Kreimer conjecture is equivalent to the statement
that this spectral sequence should behave as simply as possible (given the existence of the
quadratic relations between σ̄2n+1); there is only one non-trivial differential,

d : S2n −→ (dgm
4 )ab.

This is possibly also an argument in favour of Conjecture 1. In [Bro17a] we computed this
differential by finding canonical lifts of the zeta elements to depth 3. The relation with the map
e is mysterious, although Yasuda has subsequently found a conjectural relation between e and
the image of d in the abelianization of ls (private correspondence) involving critical values of
L-functions of cusp forms. See Example 8.5.

Finally, we investigate the Lie subalgebra of dgm which is generated only by the elements
σ̄2n+1 (without exceptional elements), and conjecture that it describes the structure of totally
odd depth-graded motivic multiple zeta values.

1.5 Contents of the paper
In §§ 2–4 we recall some background on the motivic fundamental group of P1\{0, 1,∞}, the Ihara
action and the depth filtration. In § 5 we discuss the linearized double shuffle relations from the
Hopf algebra point of view. In § 6, and throughout the rest of the paper, we use polynomial
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representations to replace words of fixed D-degree r in e0, e1 with polynomials in r variables:

ρ̄ : grD
r g −→ Q[x1, . . . , xr],

which sends words beginning in e0 to zero, and ρ̄(e1e
n1
0 . . . e1e

nr
0 ) = xn1

1 . . . xnr
r . This replaces

identities between non-commutative formal power series with functional equations in commuta-
tive polynomials, strongly reminiscent of those considered in [Eca03, IKZ06]. We show that in
the polynomial representation, the Ihara bracket has an extremely simple form (§ 6.5). A simple
way to view the duality between depth-graded motivic multiple zeta values and polynomials is
via the generating series ∑

n1,...,nr≥1

ζm
D(n1, . . . , nr)xn1−1

1 . . . xnr−1
r .

The generators (1.6) are simply the coefficients of ζm
D(2n + 1):

ρ̄(σ̄2n+1) = x2n
1 , for n ≥ 1.

In § 7 we review the relation between period polynomials and depth 2 multiple zeta values, and
in § 8 we define, for each period polynomial P , an element

ρ̄(eP ) ∈ Q[x1, x2, x3, x4],

which defines the exceptional elements in ls4. These elements satisfy some remarkable properties
(§ 9) which are stable under the Ihara bracket. In § 10 we discuss Conjecture 1 and its conse-
quences, and in § 11 we discuss some applications for the enumeration of the totally odd multiple
zeta values ζ(2n1 + 1, . . . , 2nr + 1) where ni ≥ 1.

1.5.1 Related work. Since the first draft of this paper appeared, there have been a number
of related developments, which cannot all be mentioned here for reasons of space. I apologize
to the many people who have subsequently extended some of the ideas in this paper in various
directions [Mat16, Tas16, Ma16, Li19], not only for the delay in publishing this work, but also
for being unable to give a complete survey of subsequent developments of the subject here.

First of all, an alternative description of depth 4 exceptional generators was given in [Bro17a],
by constructing canonical zeta elements in gm/D4gm and applying the differential in the depth
spectral sequence. These elements are motivic (i.e. lie in dgm

4 ), but their relationship to the excep-
tional elements e defined here is far from clear. The entire construction relies on the relationship
between P1\{0, 1,∞} (genus 0) and the unipotent completion of the fundamental group Tate
elliptic curve (genus 1), and the fact that the depth filtration is induced by natural filtrations in
the elliptic setting. Similarly, the precise relationship between the work of Pollack [Pol09] and
the present paper is now partially understood but warrants further investigation.

Subsequently, the work [Bro14b] explains the origin of the quadratic relations between
σ̄2n+1 by proving that they come from ‘modular elements’ corresponding to non-critical val-
ues of L-functions of cusp forms, which act on the relative completion of the fundamental group
on the moduli stack M1,1 of elliptic curves. From this perspective, the canonical generators
σ̄2n+1 can be understood as coming from Eisenstein series, which supports the philosophy that
Conjecture 2 relates entirely to modular forms. Nevertheless, the connection between modular
elements and the phenomena in depth 4 studied in the present paper remain unexplored.
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In a very different direction, Goncharov [Gon05] has studied the depth filtration from the
perspective of the homology of the general linear group GLd(Z), which he relates to the structure
of multiple zeta values in depth d. We have no understanding of the relationship between this
point of view and conjecture (1.11).

After the first draft of this paper appeared, Conjecture 4 was related to questions of Koszulity
in the paper [EL16].

Finally, the interested reader may wish to consult the notes5 where, in answer to a question
due to Zagier, we reformulated the Broadhurst–Kreimer conjecture as a short exact sequence,
which suggests another line of attack on Conjecture 2.

2. Reminders on πm
1 (P1\{0, 1, ∞})

2.1 The motivic π1 of P1\{0, 1, ∞}
Let X = P1\{0, 1,∞}, and let

→
10,−

→
11 denote the tangential base points on X given by the

tangent vector 1 at 0, and the tangent vector −1 at 1. Denote the de Rham realization of the
motivic fundamental torsor of paths on X with respect to these basepoints by

0Π1 = πdR
1 (X,

→
10,−

→
11).

It is the affine scheme over Q which to any commutative unitary Q-algebra R associates the set
of group-like formal power series in two non-commuting variables e0 and e1,

{S ∈ R〈〈e0, e1〉〉× : ΔS = S⊗̂S},

where Δ is the completed coproduct for which the elements e0 and e1 are primitive: Δei =
1 ⊗ ei + ei ⊗ 1 for i = 0, 1. The ring of regular functions on 0Π1 is the Q-algebra

O(0Π1) ∼= Q〈e0, e1〉

whose underlying vector space is spanned by the set of words w in the letters e0, e1, together
with the empty word, and whose multiplication is given by the shuffle product x : Q〈e0, e1〉 ⊗Q

Q〈e0, e1〉 → Q〈e0, e1〉. The deconcatenation of words defines a coproduct, making O(0Π1) into a
Hopf algebra. This gives rise to a group structure on 0Π1(Q) (corresponding to the fact that in
the de Rham realization there is a canonical path between any two points on X). Any word w

in e0, e1 defines a function

0Π1(R) −→ R

which extracts the coefficient Sw of the word w (viewed in e0, e1) in a group-like series S ∈
R〈〈e0, e1〉〉×. The Lie algebra of 0Π1(Q) is the completed Lie algebra L(e0, e1)∧ of the graded Lie
algebra L(e0, e1) which is freely generated by the two elements e0, e1 in degree −1. The universal
enveloping algebra U L(e0, e1) of L(e0, e1) is the tensor (co)algebra on e0, e1:

T (e0, e1) =
⊕
n≥0

(Q e0 ⊕ Q e1)⊗n. (2.1)

It is the graded cocommutative Hopf algebra which is the graded dual of O(0Π1). Its multiplica-
tion is given by the concatenation product, and its coproduct is the unique coproduct for which
e0 and e1 are primitive.

5 www.ihes.fr/brown/BKExactSeq1.pdf.
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2.2 Action of the motivic Galois group
Now let MT (Z) denote the Tannakian category of mixed Tate motives over Z, with canonical
fiber functor given by the de Rham realization. Let GMT (Z) denote the group of automorphisms
of this fiber functor. It is an affine group scheme over Q. It has a decomposition as a semi-direct
product

GMT (Z)
∼= UMT (Z) � Gm,

where UMT (Z) is pro-unipotent. Furthermore, one knows from the relationship between the Ext
groups in MT (Z) and Borel’s results on the rational algebraic K-theory of Q that the graded
Lie algebra of UMT (Z) is non-canonically isomorphic to the Lie algebra freely generated by one
generator σ2i+1 in degree −(2i + 1) for every i ≥ 1. It is important to note that only the classes
of the elements σ2i+1 in the abelianization Uab

MT (Z) are canonical, the elements σ2i+1 themselves
are not.

Since O(0Π1) is the de Rham realization of an Ind-object in the category MT (Z), there is
an action of the motivic Galois group GMT (Z) on 0Π1 and hence

UMT (Z) × 0Π1 −→ 0Π1. (2.2)

The action of UMT (Z) on the unit element 1 ∈ 0Π1 defines a map

g �→ g(1) : UMT (Z) −→ 0Π1, (2.3)

and the action (2.2) factors through a map

◦ : 0Π1 × 0Π1 −→ 0Π1 (2.4)

first computed by Ihara. It is obtained from [DG05, §§ 5.9, 5.13], by reversing all words in
order to be consistent with our convention for composition of paths. An element a ∈ 0Π1 defines
an action denoted by 〈a〉0 on 0Π0 which is compatible with (2.4) via the composition of paths
0Π0 × 0Π1 → 0Π1. Therefore, writing x00 (respectively, x01) for the element x in 0Π0 (respectively,
0Π1), one finds that for g ∈ 0Π1,

a ◦ g = a ◦ g01 = a ◦ (g00.101) = 〈a〉0(g).a(101) = (〈a〉0(g)).a, (2.5)

where 〈a〉0 acts on the generators exp(ei) in 0Π0, for i = 0, 1, by

〈a〉0(exp(e0)) = exp(e0),

〈a〉0(exp(e1)) = a exp(e1)a−1.
(2.6)

We now give a concrete way to compute ◦ by expressing it as the restriction of a
combinatorially defined map ◦ on a larger space.

Definition 2.1. Inductively define a Q-bilinear map

◦ : T (e0, e1) ⊗ T (e0, e1) −→ T (e0, e1)

as follows. For any two words a, w in e0, e1, and any integer n ≥ 0, let

a ◦ (en
0e1w) = en

0ae1w + en
0e1a

∗w + en
0e1(a ◦w), (2.7)

where a ◦ en
0 = en

0a, and for any ai ∈ {e0, e1}, (a1 . . . an)∗ = (−1)nan . . . a1.
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We now show that the map ◦ restricts to the full action

g ⊗Q U Lie 0Π1 → U Lie 0Π1 (2.8)

induced by (2.4). To see this, identify the universal enveloping of the graded Lie algebra
U Lie 0Π1 = UL(e0, e1) with T (e0, e1). Since g is isomorphic (as a vector space) to L(e0, e1),
there is also a natural embedding i : g → T (e0, e1).

Proposition 2.2. The action (2.8) is obtained by restriction of ◦ , that is,

a ◦ b = i(a) ◦ b.

Proof. For any S ∈ 0Π1, the coefficient of w in S−1 is equal to the coefficient of w∗ in S, since
the map ∗ is the antipode in O(0Π1). Identifying the (vector space) g ∼= L(e0, e1) with its image
in T (e0, e1), it follows that the infinitesimal, weight-graded, version of the map (2.6) is the
derivation 〈f〉0 : L(e0, e1) → L(e0, e1) which for any f ∈ L(e0, e1) is given by

e0 �→ 0, e1 �→ fe1 + e1f
∗.

Thus 〈f〉0 : T (e0, e1) → T (e0, e1) is the map

〈f〉0 (em0
0 e1 . . . e1e

mr
0 ) = em0

0 (fe1 + e1f
∗)em1

0 e1 · · · emr−1

0 e1e
mr
0

+ · · · + em0
0 e1e

m1
0 · · · emr−1

0 (fe1 + e1f
∗)emr

0 .

Adding the term em0
0 e1 . . . e1e

mr
0 f corresponding to concatenation on the right by f gives precisely

the map defined by (2.7). �

2.3 The motivic Lie algebra
By (2.3), we obtain a map of Lie algebras

Lie(UMT (Z)) −→ g =
(
L(e0, e1) , { , }

)
, (2.9)

where the Ihara bracket satisfies {f, g} = f ◦ g − g ◦ f . It follows from Theorem 1.1 that this map
is injective [Bro12]. In this paper, we shall identify Lie(UMT (Z)) with its image, and abusively
call it the motivic Lie algebra.

Definition 2.3. The motivic Lie algebra gm ⊆ g is the image of the map (2.9).

The Lie algebra gm is non-canonically isomorphic to the free Lie algebra with one generator
σ2i+1 in each degree −(2i + 1) for i ≥ 1.

3. Motivic multiple zeta values

Let AMT denote the graded Hopf algebra of functions on UMT (Z). Dualizing (2.2) gives the
motivic coaction (written in this paper as a left coaction)

ΔM : O(0Π1) −→ AMT ⊗Q O(0Π1).

Furthermore, the image in 0Π1(C) of the straight path dch from 0 to 1 in X under the comparison
isomorphism is the Drinfeld associator element Φ ∈ 0Π1(R) which begins

Φ = 1 + ζ(2)[e1, e0] + ζ(3)([e1, [e1, e0]] + [e0, [e0, e1]]) + · · · .
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The map which takes the coefficient of a word w in Φ defines the period homomorphism

per : O(0Π1) −→ R.

Here, we use the convention from [Bro12]: the coefficient of the word ea1 . . . ean in Φ, for ai ∈
{0, 1}, is the iterated integral ∫ 1

0
ωa1 . . . ωan

regularized with respect to the tangent vector 1 at 0, and −1 at 1, where the integration begins
on the left, and ω0 = dt/t and ω1 = dt/(1 − t).

Definition 3.1. The algebra of motivic multiple zeta values is defined as follows. The ideal
of motivic relations between multiple zeta values is defined to be JMT ≤ O(0Π1), the largest
graded ideal contained in the kernel of per which is stable under ΔM. We set

H = O(0Π1)/JMT ,

and let ζm(n1, . . . , nr) denote the image of the word e1(e0)n1−1 . . . e1(e0)nr−1 in H. Likewise, for
any a1, . . . , an ∈ {0, 1}, we let Im(0; a1, . . . , an; 1) denote the image of the word ea1 . . . ean in H.
Equivalently, one can define

Im(0; a1, . . . , an; 1) = [O(πmot
1 (X,

→
10,−

→
11), dch, ea1 . . . ean ]m,

where the right-hand side is a motivic period [Bro14a] of the category MT (Z), and define the
motivic multiple zeta values by specializing to the case when a1 = 1 and an = 0.

Remark 3.2. The algebra of motivic multiple zeta values has the following geometric interpreta-
tion: JMT is the ideal of functions which vanishes on the orbit of the de Rham image of dch in
0Π1(C). The latter is defined over Q because it is the image under the comparison isomorphism
of the orbit under the Betti Galois group Aut⊗MT (Z)(ωB) of the Betti image of the straight-line
path, which is rational.

The space H is naturally graded by the weight, and has a graded coaction

ΔM : H −→ AMT ⊗Q H (3.1)

and a period map per : H → R. The period of ζm(n1, . . . , nr) is ζ(n1, . . . , nr). One obtains partial
information about the motivic coaction (3.1) using the fact that it factors through the coaction
which is dual to the Ihara action (2.4).

3.1 The Ihara coaction
For any graded Hopf algebra H, let IH = H>0/H2

>0 denote the Lie coalgebra of indecomposable
elements of H, and let π : H>0 → IH denote the natural map. Dualizing (2.8) (and making it
into a left coaction) gives an infinitesimal coaction

O(0Π1) −→ IO(0Π1) ⊗Q O(0Π1). (3.2)

Let Dr : O(0Π1) → IO(0Π1)r ⊗Q O(0Π1) denote its component of degree (r, ·), and let us denote
the element ea1 . . . ean in O(0Π1) by I(0; a1, . . . , an; 1), where ai ∈ {0, 1}.
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Proposition 3.3. Set a0 = 0, an+1 = 1. For all r ≥ 1, and a1, . . . , an ∈ {0, 1},

Dr I(0; a1, . . . , an; 1) =
n−r∑
p=0

π(I(ap; ap+1, . . , ap+r; ap+r+1)) ⊗ I(0; a1, . . , ap, ap+r+1, . . , an; 1),

(3.3)

where I(ap; ap+1, . . , ap+r; ap+r+1) ∈ O(0Π1) is defined to be zero if ap = ap+r+1, and equal to

(−1)rI(ap+r+1; ap+r, . . , ap+1; ap) if ap = 1 and ap+r+1 = 0.

Proof. One checks that this formula is dual to ◦ (see also [Bro14a, § 2.5]). �

Since the motivic coaction on H factors through the Ihara coaction, it follows that the degree
(r, ·) component factors through operators

Dr : H −→ IA⊗Q H

given by the same formula as (3.3) in which each term I is replaced by its image Im in H
(respectively, A). Since AMT is cogenerated in odd degrees only, the motivic coaction on H is
completely determined by the set of operators D2r+1 for all r ≥ 1 (see [Bro12]).

4. The depth filtration

4.1 Definition
The depth filtration was defined in [DG05, § 6.1]. We recall the definition in a slightly different
language. The inclusion P1\{0, 1,∞} ↪→ P1\{0,∞} induces a map on the motivic fundamental
groupoids

πmot
1 (X,

→
10,−

→
11) → πmot

1 (Gm,
→
10, 1), (4.1)

and hence on the de Rham realizations

O(πdR
1 (Gm,

→
10, 1)) −→ O(0Π1),

and similarly for O(πdR
1 (Gm,

→
10)) → O(0Π0). They are given by the inclusion of Q〈e0〉 into

Q〈e0, e1〉. Define their images to be D0O(0Π1) and D0O(0Π0), respectively. Now define increas-
ing filtrations Dd on O(0Π0) and O(0Π1) by induction on d ≥ 0 as follows: Dd is the largest
subspace such that ΔDd ⊂

∑
i+j=d Di ⊗ Dj , where Δdec : O(0Πx) → O(0Πx) ⊗O(0Π0) is dual

to composition of paths, for x = 0, 1. Since Δdec, on identifying O(0Π0) ∼= O(0Π1) ∼= Q〈e0, e1〉,
is nothing other than the deconcatenation coproduct, the filtration DdO(0Π1) is given by

DdO(0Π1) = 〈words w such that dege1 w ≤ d〉Q, (4.2)

with respect to which O(0Π1) is a filtered comodule over the filtered Hopf algebra O(0Π0), with
respect to Δdec. Furthermore, since the map (4.1) is motivic, it follows that D0 is preserved by
the action of the motivic Galois group. The same is true for all d by induction: if g ∈ GdR

MT (Z)

and g Di ⊂ Di for all i < d, then we also have gDd ⊂ Dd by definition of Dd, since g commutes
with Δdec, which is motivic. Therefore the depth is also motivic and descends to the algebra H.
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By Definition 3.1 the depth filtration DdH is the increasing filtration defined by

DdH = 〈ζm(n1, . . . , ni) : i ≤ d〉Q.

Following [Del10], it is convenient to define the D-degree on O(0Π1) to be the degree in e1. It
defines a grading on 0Π1 which is not motivic. By (4.2), the depth filtration (which is motivic)
is simply the increasing filtration associated to the D-degree.

4.2 Depth-graded motivic multiple zeta values
Definition 4.1. Let DdA be the induced filtration on the quotient A = H/ζm(2)H. We define
the depth-graded motivic multiple zeta value

ζm
D(n1, . . . , nr)

to be the image of ζm(n1, . . . , nr) in grD
r H.

Proposition 4.2. There is a non-canonical isomorphism of bigraded vector spaces:

grDH ∼= grDA⊗Q Q[ζm
D(2)], (4.3)

where ζm
D(2)n are in depth 1 for all n ≥ 1.

Proof. Choose a homomorphism π2 : H → Q[ζm(2)] which respects the weight-grading and such
that π2(ζm(2)) = ζm(2). Such a homomorphism exists by [DG05, § 5.20] (see [Bro12, § 2.3]).
Composing with the coaction (3.1), we obtain a map

H ΔM
−→ A⊗Q H id⊗π2−→ A⊗Q Q[ζm(2)].

By a motivic version [Bro12] of Euler’s theorem, ζm(2)n is a rational multiple of ζm(2n), and so
all powers of ζm(2) have depth 1. The depth filtration thus satisfies

Q = D0Q[ζm(2)] ⊂ D1Q[ζm(2)] = Q[ζm(2)].

Since D0H = Q, it follows trivially that π2 respects the depth filtration because it is Q-linear.
Since the depth filtration is motivic, it is also respected by ΔM, and therefore the map (id ⊗
π2) ΔM : H → A⊗Q Q[ζm(2)] defined above also respects the depth filtration. The statement
(4.3) follows since we know that this map is an isomorphism (by [Bro12, (2.13)] or [Del10,
Proposition 5.8]). �

Since grDA is a commutative graded Hopf algebra (for the coproduct induced by ΔM), it
is a polynomial algebra. The same is then true for grDH, by (4.3). If I denotes indecomposable
elements, then it follows that I(grDA) ∼= grD IA.

4.3 Depth-graded motivic Lie algebra
The depth filtration defines a decreasing filtration Dr on gm where Dr consists of words with at
least r occurrences of e1:

Drgm = 〈w ∈ gm : dege1
w ≥ r〉.

We denote the associated graded Lie algebra by dgm. There is correspondingly a decreasing depth
filtration on Ugm, also denoted by D.
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It follows from the definitions above that dgm is the bigraded Lie algebra dual to the bigraded
coalgebra I(grDA) ∼= grD IA of depth-graded motivic multiple zeta values modulo products.
Thus the problem of studying relations between (motivic) multiple zeta values modulo lower
depth (and modulo ζm(2)) and the algebra dgm are equivalent.

4.4 Depth-parity
The following proposition is a consequence of Tsumura’s result on double shuffle equations
(Proposition 6.4).

Proposition 4.3. The depth-graded motivic Lie algebra dgm vanishes in bidegrees with

different parity. More precisely, it vanishes in weight N and depth r if N �≡ r (mod 2).

Equivalently, if n1 + · · · + nr �≡ r (mod 2), and n1 + · · · + nr > 2 then

ζm
D(n1, . . . , nr) ≡ 0 (mod products). (4.4)

We do not need to work modulo ζm
D(2) in the previous equation since the weight is larger than

2 by assumption and all other even zeta values ζm(2n), n ≥ 2, are products.

4.5 Depth spectral sequence
The depth filtration on the motivic Lie algebra gm induces a homology spectral sequence which
converges to the associated graded for the depth of the homology of gm. By Theorem 1.1, the
latter satisfies

Hi(gm) =

⎧⎪⎨
⎪⎩

⊕
n≥1

Q[σ2n+1] if i = 1

0 if i ≥ 1

and is entirely concentrated in depth 1.
The depth spectral sequence satisfies

E1
−p,q = grp

DHq−p(dgm),

where E1
−p,q vanishes unless p ≥ 1 and p < q ≤ 2p, as can easily be seen from the

Chevalley–Eilenberg chain complex which computes the homology of a Lie algebra (see § 10.2
and (10.3)). The differentials satisfy

dr
p,q : Er

p,q → Er
p−r,q+r−1.

Proposition 4.4. The differentials dr vanish if r is odd.

Proof. The weight grading on dgm induces a weight grading on the depth spectral sequence,
with respect to which the differentials are of degree 0. It follows from Proposition 4.3 and
E1

−p,q = grp
DHq−p(dgm) that E1

p,q, and hence all Er
p,q, vanish unless the depth and weight have

the same parity. The result follows since dr has (weight, depth)-bidegree (0, r). �
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Here is a picture of the potentially non-vanishing E1 = E2 terms:

. . . gr4DH4 8

gr4DH3 7

gr4DH2 gr3DH3 6

gr4DH1 gr3DH2 5

gr3DH1 gr2DH2 4

gr2DH1 3

gr1DH1 2

1
. . . −4 −3 −2 −1

In fact, we know by Theorem 1.1 that

gr1DH1(dgm) ∼= H1(gm) ∼=
⊕
n≥1

Q[σ2n+1],

and therefore everything to the left of the column indexed −1 converges to zero. Furthermore,
one knows that gr2DH1(dgm) = 0, and gr3DHi(dgm) vanish for all i. One also has a complete
description of gr2DH2(dgm) in terms of period polynomials of cusp forms, as discussed below.
Therefore, the first interesting part of the differential is

d2 : gr2DH2(dgm) −→ gr4DH1(dgm),

and the main Conjecture 1 can be reformulated as saying that the components of all other
differentials in the depth spectral sequence vanish.

5. Linearized double shuffle relations

5.1 Reminders on the standard relations
We briefly review the double shuffle relations and their depth-linearized versions. See [Car02,
Rac02, Bro17b] for further background.

5.1.1 Shuffle product. Consider the algebra Q〈e0, e1〉 of words in the two letters e0, e1,
equipped with the shuffle product x (§ 2.1). It is defined recursively by

eiw x ejw
′ = ei(w x ejw

′) + ej(eiw xw′) (5.1)

for all w, w′ ∈ {e0, e1}× and i, j ∈ {0, 1}, and the property that the empty word 1 satisfies 1xw =
w x 1 = w. It is a Hopf algebra for the deconcatenation coproduct. A linear map Φ : Q〈e0, e1〉 →
Q is a homomorphism for the shuffle multiplication, or ΦwΦw′ = Φw xw′ for all w, w′ ∈ {e0, e1}×
and Φ1 = 1, if and only if the series

Φ =
∑
w

Φww ∈ Q〈〈e0, e1〉〉

is invertible and group-like for the (completed) coproduct Δx with respect to which e0 and e1

are primitive (compare § 2.1). In other words, there is an equivalence:

Φ homomorphism for x ⇐⇒ Φ ∈ Q〈〈e0, e1〉〉× and Δx Φ = Φ⊗̂Φ. (5.2)
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One says that Φ satisfies the shuffle relations if either of the equivalent conditions (5.2) holds.
Passing to the corresponding Lie algebra, we have an equivalence

Φw xw′ = 0 for all w, w′ ⇐⇒ Φ ∈ Q〈〈e0, e1〉〉 and Δx Φ = 1⊗̂Φ + Φ⊗̂1. (5.3)

One says that Φ satisfies the shuffle relations modulo products if either of the equivalent conditions
(5.3) holds.

The algebra Q〈e0, e1〉 is bigraded for the degree, or weight (for which e0, e1 both have degree
−1), and the D-degree for which e1 has degree 1, and e0 degree 0. The relations (5.1)–(5.3)
evidently respect both gradings. In this case, then, passing to the depth grading does not change
the relations in any way, and the linearized shuffle relations are identical to the shuffle relations
modulo products.

Definition 5.1. Let Φ ∈ grr
DT (e0, e1) be of weight N . It defines a linear form w �→ Φw on words

of weight N ≥ 2 and D-degree r. It satisfies the linearized shuffle relations if

Δ′
x Φ = 0,

where Δ′
x is the reduced coproduct Δ′

x (Φ) = Δx (Φ) − 1 ⊗ Φ − Φ ⊗ 1. Equivalently,
Φw xw′ = 0 for all words w, w′ ∈ {e0, e1}× of total weight N and total D-degree r.

5.1.2 Stuffle product. Let Y = {yn, n ≥ 1} denote an alphabet with one letter yi in every
degree ≥ 1, and consider the graded algebra Q〈Y 〉 equipped with the stuffle product [Rac02]. It
is defined recursively by

yiw ∗ yjw
′ = yi(w ∗ yjw

′) + yj(yiw ∗ w′) + yi+j(w ∗ w′) (5.4)

for all w, w′ ∈ Y × and i, j ≥ 1, and the property that the empty word 1 satisfies 1 ∗ w =
w ∗ 1 = w. A linear map Φ : Q〈Y 〉 → Q is a homomorphism for the stuffle multiplication, or
ΦwΦw′ = Φw∗w′ for all w, w′ ∈ Y × and Φ1 = 1, if and only if

Φ =
∑
w

Φww ∈ Q〈〈Y 〉〉×

is group-like for the (completed) coproduct Δ∗ : Q〈〈Y 〉〉 → Q〈〈Y 〉〉⊗̂QQ〈〈Y 〉〉 which is a homo-
morphism for the concatenation product and defined on generators by

Δ∗yn =
n∑

i=0

yi ⊗ yn−i. (5.5)

Thus the stuffle relations are equivalent to being group-like for Δ∗:

Φ homomorphism for ∗ ⇐⇒ Φ ∈ Q〈〈Y 〉〉× and Δ∗Φ = Φ⊗̂Φ. (5.6)

One says that Φ satisfies the stuffle relations if either of the equivalent conditions (5.6) holds.
Passing to the corresponding Lie algebra, we have an equivalence

Φw∗w′ = 0 for all w, w′ ⇐⇒ Φ ∈ Q〈〈Y 〉〉 and Δ∗Φ = 1⊗̂Φ + Φ⊗̂1. (5.7)

One says that Φ satisfies the stuffle relations modulo products if either of the equivalent conditions
(5.7) holds.
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The algebra Q〈Y 〉 is graded for the degree (where yn has degree n), and filtered for the depth
(where yn has depth 1). By inspection of (5.4), we notice that the rightmost term is of lower
depth than the other terms and therefore drops out in the associated graded. The associated
graded of ∗ therefore satisfies the same recursive definition as for x and it follows that the
associated depth-graded

grD(Q〈Y 〉, ∗) ∼= (Q〈Y 〉, x ) (5.8)

is simply the shuffle algebra on Y . The depth induces a decreasing filtration on the (dual)
completed Hopf algebra Q〈〈Y 〉〉, and it follows from (5.5) that the images of the elements yn are
primitive in the associated graded. Thus

grDΔ∗ = Δx ,Y , (5.9)

where Δx ,Y : Q〈〈Y 〉〉 → Q〈〈Y 〉〉⊗̂QQ〈〈Y 〉〉 is the (completed) coproduct for which the elements
yn are primitive, and which is a homomorphism for concatenation.

Definition 5.2. Let Φ ∈ T (Y ), the tensor (co)algebra on Y , of degree N ≥ 2 and D-degree r.
It defines a linear map w �→ Φw on words in Y of weight N and D-degree r. We say that it
satisfies the linearized stuffle relations if

Δ′
x ,Y Φ = 0,

where Δ′
x ,Y = Δx ,Y − 1 ⊗ id − id ⊗ 1 is the reduced coproduct of Δx ,Y for which the

yn are primitive. Equivalently, Φw xw′ = 0 for all words w, w′ ∈ Y of total weight N and
total D-degree r.

5.1.3 Linearized double shuffle relations. In order to consider both relations simultaneously,
define a linear map

α : Q〈e0, e1〉 → Q〈Y 〉

which maps every word beginning in e0 to 0, and such that

α(e1e
a1
0 . . . e1e

ar
0 ) = ya1+1 . . . yar+1.

In [Rac02], Racinet considered a certain graded vector space, denoted dm0(Q) [Rac02, Définition
2.4], of series satisfying the shuffle and stuffle relations and a regularization condition, and showed
that it is a Lie algebra for the Ihara bracket. Since we consider the depth-graded version of this
algebra, the regularization plays no role here.

Definition 5.3. Let Φ ∈ grD
r T (e0, e1) of weight N . The linear form w �→ Φw on words of weight

N and D-degree r satisfies the linearized double shuffle relations if

Δ′
x Φ = 0 and Δ′

x ,Y α(Φ) = 0.

When r = 1, we add the extra condition that Φ = 0 when N is even, and Φ(e0) = Φ(e1) = 0. Let
ls ⊂ Ug denote the vector space of elements satisfying the linearized double shuffle relations. It
is bigraded by weight and depth.
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Remark 5.4. There is a natural inclusion

grDdm0(Q) −→ ls. (5.10)

The graded subspace of ls of weight N and depth d is isomorphic to the vector space denoted
DN+d,d in [IKZ06]. In [IKZ06] it is conjectured that (5.10) is an isomorphism.

Racinet proved that dm0(Q) is preserved by the Ihara bracket. Since the latter is homogeneous
for the D-degree, it follows that grDdm0(Q) is also preserved by the bracket, but this is not quite
enough to prove that ls is too.

Theorem 5.5. The bigraded vector space ls is preserved by the Ihara bracket.

Proof. The compatibility of the shuffle product with the Ihara bracket follows by definition. It
therefore suffices to check that the linearized stuffle relation is preserved by the bracket. The
proof of [Rac02] goes through identically, and uses in an essential way the fact that the images
of the elements y2n in gr1Ddm0(Q) are zero (which in dm0(Q) follows from [Rac02, Proposition
2.2], but holds in ls by Definition 5.3). �

Many thanks to a referee for pointing out at least two places in the literature which have
subsequently provided a more detailed proof of this statement: [Maa19] and also [Sch15, Theorem
3.4.3]. It would be interesting to know if a suitable linearized version of the associator relations
is equivalent to the linearized double shuffle relations.

5.2 Summary of definitions
We have the following Lie subalgebras of the Lie algebra g ∼= (L(e0, e1), { , }), equipped with the
Ihara bracket:

gm ⊆ dm0(Q),

where gm is the image of the (weight-graded) Lie algebra of UMT (Z) and is isomorphic to the
free graded Lie algebra on (non-canonical) generators σ2i+1 for i ≥ 1. A standard conjecture
states that gm ⊆ dm0(Q) is an isomorphism. Passing to the depth-graded versions, and writing
dgm = grDgm, we have inclusions of bigraded Lie algebras

dgm ⊆ grDdm0(Q) ⊆ ls, (5.11)

where ls stands for the linearized double shuffle algebra. Once again, all Lie algebras in (5.11) are
conjectured to be equal. The bigraded dual space (dgm)∨ is isomorphic to the Lie coalgebra of
depth-graded motivic multiple zeta values, modulo ζm(2) and modulo products. The Lie algebras
(5.11) are Lie subalgebras of grDg ∼= g, since the Ihara bracket is homogeneous with respect to
D-degree.

All the above Lie algebras can, in particular, be viewed inside the vector space UL(e0, e1) =
T (Qe0 ⊕ Qe1), which is graded for the D-degree. Next, we show that complicated expressions in
the non-commutative algebra T (Qe0 ⊕ Qe1) can be greatly simplified by encoding words of fixed
D-degree in terms of polynomials.
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6. Polynomial representations

6.1 Composition of polynomials
Recall from (2.1) that U L(e0, e1) is isomorphic to the bigraded tensor algebra T (e0, e1), and the
space grr

DU L(e0, e1) = grr
DT (e0, e1) of D-degree r is the spanned by words in e0, e1 with exactly

r occurrences of e1.

Definition 6.1. Consider the isomorphism of vector spaces

ρ : grr
DT (e0, e1) −→ Q[y0, . . . , yr]

ea0
0 e1e

a1
0 e1 . . . e1e

ar
0 �→ ya0

0 ya1
1 . . . yar

r .
(6.1)

It maps elements of degree n to elements of degree n − r.

The operator ◦ : T (e0, e1) ⊗Q T (e0, e1) → T (e0, e1) respects the D-grading, so defines a map

◦ : Q[y0, . . . , yr] ⊗Q Q[y0, . . . , ys] −→ Q[y0, . . . , yr+s]

f(y0, . . . , yr) ⊗ g(y0, . . . , ys) �→ f ◦ g (y0, . . . , yr+s)
(6.2)

which can be read off from (2.7). Explicitly, it is

f ◦ g(y0, . . . , yr+s) =
s∑

i=0

f(yi, yi+1, . . . , yi+r)g(y0, . . . , yi, yi+r+1, . . . , yr+s)

+ (−1)deg f+r
s∑

i=1

f(yi+r, . . . , yi+1, yi)g(y0, . . . , yi−1, yi+r, . . . , yr+s). (6.3)

Antisymmetrizing, and using Proposition 2.2, we obtain a formula for the Ihara bracket

g ∧ g −→ g

{f, g} = f ◦ g − g ◦ f.
(6.4)

The linearized double shuffle relations on words translate into functional equations for polyno-
mials after applying the map ρ. We describe some of these below.

6.2 Translation invariance
The additive group Ga acts on Ar+1 by translation, and hence Ga(Q) acts on its ring of functions
via λ : (y0, . . . , yr) �→ (y0 + λ, . . . , yr + λ).

Lemma 6.2. The image of gm under ρ is contained in the subspace of polynomials in Q[y0, . . . , yr]
which are invariant under translation.

Proof. The subspace gm ⊂ g ∼= L(e0, e1) ⊂ T (e0, e1) is contained in the subspace of elements
which are primitive with respect to the shuffle coproduct Δx . Let π0 : T (e0, e1) → Q denote
the linear map which sends the word e0 to 1 and all other words to 0, and consider the map
∂0 = (π0 ⊗ id) ◦ Δx . It defines a derivation ∂0 : T (e0, e1) −→ T (e0, e1) which satisfies

∂0(ea0
0 e1 . . . e1e

ar
0 ) =

r∑
i=0

ai e
a0
0 e1 . . . e1e

ai−1
0 e1 . . . e1e

ar
0
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for all non-negative integers a0, . . . , ar. Let r ≥ 1, ξ ∈ grr
DT (e0, e1), and f = ρ(ξ). If ξ is primitive

for Δx , it satisfies ∂0ξ = 0 and the previous equation is

r∑
i=0

∂f

∂yi
= 0. (6.5)

This is equivalent to (∂/∂λ)g = 0, where g = f(y0, . . . , yr) − f(y0 + λ, . . . , yr + λ). Therefore g

is constant in λ. It vanishes at λ = 0, so g ≡ 0 and f is translation invariant. �

Let us denote the map which sends y0 to zero and yi to xi for i = 1, . . . , r by

Q[y0, . . . , yr] −→ Q[x1, . . . , xr]

f �→ f̄ ,
(6.6)

where f̄ is the ‘reduced’ polynomial f̄(x1, . . . , xr) = f(0, x1, . . . , xr). In the case when f is
translation invariant, we can retrieve f from f̄ via

f(y0, . . . , yr) = f̄(y1 − y0, . . . , yr − y0). (6.7)

Taking the coefficients of (6.7) gives equation I2 of [Bro12], which gives a formula for the shuffle-
regularization of iterated integrals which begin with any sequence of 0’s.

Definition 6.3. For any element ξ ∈ dgm of depth r we denote its reduced polynomial
representation by ρ̄(ξ) ∈ Q[x1, . . . , xr].

To avoid confusion, we reserve the variables x1, . . . , xr for the reduced polynomial ρ̄(ξ) and
use the variables y0, . . . , yr as above to denote the full polynomial ρ(ξ).

6.3 Antipodal symmetries
The set of primitive elements in a Hopf algebra is stable under the antipode. For the shuffle
Hopf algebra this is the map ∗ : T (e0, e1) → T (e0, e1) which sends w �→ (−1)|w|w̃, where w̃ is the
reversed word and |w| the length of w. Restricting to D-degree r and transporting via ρ, we
obtain a map

σ : Q[y0, . . . , yr] −→ Q[y0, . . . , yr]

σ(f)(y0, . . . , yr) = (−1)deg(f)+rf(yr, . . . , y0).
(6.8)

Therefore, if f ∈ Q[y0, . . . , yr] satisfies the shuffle relations (5.3), then

f + σ(f) = 0. (6.9)

Since the stuffle algebra, graded for the depth filtration, is isomorphic to the shuffle algebra
on Y (5.9), it follows that its antipode is the map yi1 . . . yir �→ (−1)ryir . . . yi1 . This defines an
involution

τ̄ : Q[x1, . . . , xr] −→ Q[x1, . . . , xr]

τ̄(f̄)(x1, . . . , xr) = (−1)rf̄(xr, . . . , x1).
(6.10)
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Therefore if f̄ ∈ Q[x1, . . . , xr] satisfies the linearized stuffle relations, then f̄ + τ̄(f̄) = 0. Note
that the involution τ̄ lifts to an involution

τ : Q[y0, y1, . . . , yr] −→ Q[y0, y1, . . . , yr]

τ(f)(y0, y1, . . . , yr) = (−1)rf(y0, yr, . . . , y1),
(6.11)

and therefore if f ∈ Q[y0, . . . , yr] satisfies both translational invariance and the linearized stuffle
relations, we have

f + τ(f) = 0. (6.12)

The composition τσ is the signed cyclic rotation of order r + 1,

τσ(f)(y0, . . . , yr) = (−1)deg ff(yr, y0, . . . , yr−1),

and plays an important role in the rest of this paper.

6.4 Parity relations
The following result is well known, and was first proved by Tsumura [Tsu04], and subsequently
in ([IKZ06, Theorem 7]). We repeat the proof for convenience.

Proposition 6.4. The components of ls in weight N and depth r vanish unless N ≡ r mod2.

Equivalently, ρ(ls) consists of polynomials of even degree only.

Proof. Let f ∈ Q[y0, . . . , yr] be in the image of ρ(dgm
r ). In particular, it satisfies the linearized

stuffle relations (6.9) and (6.12). Following [IKZ06], consider the relation

y1 x y2 . . . yr = y1 . . . yr +
r∑

i=2

y2 . . . yiy1yi+1 . . . yr,

where r ≥ 2 (the case r = 1 follows from Definition 5.3). Then we have

f(y0, y1, . . . , yr) +
r∑

i=2

f(y0, y2, . . . , yi, y1, yi+1, . . . , yr) = 0.

Now apply the automorphism of Q[y0, . . . , yr] defined on generators by yi �→ yi+1, where i is
taken modulo r + 1. This leads to the equation

f(y1, y2, . . . , yr, y0) +
r+1∑
i=3

f(y1, y3, . . . , yi, y2, yi+1, . . . , yr, y0) = 0.

By applying a cyclic rotation τσ to each term, we get

f(y0, y1, y2, . . . , yr) +
r∑

i=3

f(y0, y1, y3, . . . , yi, y2, yi+1, . . . , yr) + f(y2, y1, y3, . . . , yr, y0) = 0.

The first two terms can be interpreted as the terms occurring in the linearized stuffle product
(y2 x y1y3 . . . yr) minus the first term. As a result, one obtains the equation

−f(y0, y2, y1, y3, . . . , yr) + f(y2, y1, y3, . . . , yr, y0) = 0,
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which, by a final application of τσ to the right-hand term, yields

((−1)deg f − 1)f(y0, y2, y1, y3, . . . , yr) = 0.

Therefore, in the case when deg f is odd, the polynomial f must vanish. �

6.5 Dihedral symmetry and the Ihara bracket
For all r ≥ 1, consider the graded vector space pr of polynomials f ∈ Q[y0, . . . , yr] which satisfy

f(y0, . . . , yr) = f(−y0, . . . ,−yr),

f + σ(f) = f + τ(f) = 0.
(6.13)

The maps σ, τ generate a dihedral group Dr+1 = 〈σ, τ〉 of symmetries acting on pr of order
2r + 2, and any element f satisfying (6.13) is invariant under cyclic rotation:

f = στ(f), where (στ)r+1 = id,

and anti-invariant under the reflections σ and τ . Thus Qf ⊂ pr is isomorphic to the one-
dimensional sign (orientation) representation ε of the dihedral group Dr+1.

Proposition 6.5. Suppose that f ∈ pr and g ∈ ps are polynomials satisfying (6.13). Then the

Ihara bracket is the signed average over the dihedral symmetry group:

{f, g} =
∑

μ∈Dr+s+1

ε(μ)μ
(
f(y0, y1, . . . , yr)g(yr, yr+1 . . . , yr+s)

)
. (6.14)

In particular, {. , .} : pr × ps → pr+s, and p =
⊕

r≥1 pr is a bigraded Lie algebra.

Proof. A straightforward calculation from (6.3) and definition (6.4) gives

{f, g} =
∑

i

f(yi, yi+1, . . . , yi+r)
(
g(yi+r, yi+r+1, . . . , yi−1) − g(yi+r+1, yi+r+2, . . . , yi)

)
,

where the summation indices are taken modulo r + s + 1. Invoking dihedral symmetry of f, g

leads to formula (6.14). The Jacobi identity for {. , .} is automatic since the Ihara action is an
action, but can also be proved very easily by identifying its terms with the set of double cuts in
a polygon (see [Bro17b]). The fact that parity (first equation of (6.13)) is preserved by { , } is
clear. The anti-invariance under σ, τ is also clear from the dihedral symmetry of (6.14). �

A similar dihedral symmetry was also found by Goncharov [Gon01b]; the interpretation of the
dihedral reflections as antipodes may or may not be new. Since the Ihara action is, by definition,
compatible with the shuffle product, it follows from Lemma 6.2 that translation invariance is
preserved by the Ihara bracket. One can also easily verify this by direct computation:

r∑
i=0

∂f

∂yi
=

s∑
i=0

∂g

∂yi
= 0 =⇒

r+s∑
i=0

∂{f, g}
∂yi

= 0.

Definition 6.6. Let p̄r ⊂ pr denote the subspace of polynomials which satisfy (6.13) and are
invariant under translation, and write p̄ =

⊕
r≥1 p̄r.
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By abuse of notation, we can equivalently view p̄r as the subspace of polynomials f̄ ∈
Q[x1, . . . , xr] whose lift f̄(y1 − y0, . . . , yr − y0) lies in pr. Explicitly, p̄r is the vector space of
polynomials satisfying

(1) f̄(x1, . . . , xr) = f̄(−x1, . . . ,−xr),
(2) f̄(x1, . . . , xr) + (−1)rf̄(xr, . . . , x1) = 0,
(3) f̄(x1, . . . , xr) + (−1)rf̄(xr−1 − xr, . . . , x1 − xr,−xr) = 0,

with Lie bracket induced by (6.14). To conclude the previous discussion, the map

ρ̄ : dgm −→ p̄

is an injective map of bigraded Lie algebras.

Definition 6.7. We use the notation Dr ⊂ Q[x1, . . . , xr] to denote the space ρ̄(lsr) in depth r.
It is the space of polynomial solutions to the linearized double shuffle equations in depth r and
is the direct sum for all n, of spaces denoted Dn,r in [IKZ06].

6.6 Generators in depth 1 and examples
It follows from Theorem 1.1 that in depth 1, the Lie algebra dgm has exactly one generator in
every odd weight ≥ 3:

ρ̄(dgm
1 ) =

⊕
n≥1

Q x2n
1 .

In particular, the algebras dgm ⊂ grDdm0(Q) ⊂ ls are all isomorphic in depth 1.

Definition 6.8. Denote the Lie subalgebra generated by x2n
1 , for n ≥ 1, by

dgodd ⊂ dgm. (6.15)

Example 6.9. The formula for the Ihara bracket in depth 2 can be written

{x2m
1 , x2n

1 } = x2m
1

(
x2n

2 − (x2 − x1)2n
)

+ (x2 − x1)2m
(
x2n

1 − x2n
2

)
+ x2m

2

(
(x2 − x1)2n − x2n

1

)
.

6.7 Relations between depth-graded motivic multiple zeta values
We briefly explain how we may describe all relations between ζm

D using this formalism.
Proposition 4.2 states that grDH is the free bigraded right Udgm-module generated by the

ζm
D(2n), and can be represented by polynomials as follows. The role of the even zeta value ζm(2n),

for n ≥ 1, is played by the depth-graded associator element τ (1) in weight 2n constructed in
[Bro17a, §§ 7.3 and 7.4], and is encoded by the monomial in one variable:

τ̄2n = x2n−1
1 .

Therefore, a relation ∑
n1+···+nd=N

λn1,...,nd
ζm
D(n1, . . . , nd) = 0

holds between (shuffle-regularized) depth-graded motivic multiple zeta values in depth d and
weight N if and only if

∑
n=(n1,...,nd) λncn = 0 for all

ξ =
∑

n1+···+nd=N

cn1,...,nd
xn1−1

1 . . . xnd−1
d ,
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where ξ is of depth d and weight N of the form

x = g1 ◦
(
g2 ◦

(
. . . . . .

(
gd−1 ◦ gd

)
· · ·

))
if N ≡ d (mod 2),

x = g1 ◦
(
g2 ◦

(
. . . . . .

(
gd−1 ◦ τ̄2k

)
· · ·

))
if N �≡ d (mod 2),

in which the gi are the polynomial representatives of generators of dgm and k ≥ 1.

Example 6.10. We give some simple examples in depth 2. For this, our formula for ◦ gives, for
any m, n ≥ 1,

x2m
1 ◦xn

1 = x2m
1 xn

2 + (x2 − x1)2m
(
xn

1 − xn
2

)
. (6.16)

(1) In weight 5, depth 2, grD
2 H5 is one-dimensional generated by the element σ̄3 ◦ τ̄2, which

we can compute using (6.16) to be

x2
1 ◦x1 = x3

1 − 2x2
1x2 + 3x1x

2
2 − x3

2.

It encodes the coefficients of ζm(3)ζm(2) in the following (shuffle-regularized) depth-graded
multiple zeta values in depth 2 and weight 4, as one can see from the relations

ζm(3, 2) = 9
2 ζm(5) − 2 ζm(3)ζm(2),

ζm(2, 3) = −11
2 ζm(5) + 3 ζm(3)ζm(2),

ζm(1, 4) = 2 ζ(5) − ζm(3)ζm2).

For instance, we may read off the relation 3 ζm
D(3, 2) + 2 ζm

D(2, 3) = 0 from x2
1 ◦x1.

(2) In weight 7, depth 2, grD
2 H7 is two-dimensional generated by the two elements σ̄5 ◦ τ̄2

and σ̄3 ◦ τ̄4, which we compute via

x4
1 ◦x1 = x5

1 − 4 x4
1x2 + 10 x3

1x
2
2 − 10 x2

1x
3
2 + 5 x1x

4
2 − x5

2

x2
1 ◦x3

1 = x5
1 − 2 x4

1x2 + x3
1x

2
2 + 2 x1x

4
2 − x5

2.

The coefficients in these expressions encode the coefficients of ζm(5)ζm(2) and ζm(3)ζm(4) in
depth 2 multiple zeta values of weight 7. For example,

ζm(5, 2) = 10 ζm(7) − 4 ζm(5)ζm(2) − 2 ζm(3)ζm(4),

ζm(4, 3) = −18 ζm(7) + 10 ζm(5)ζm(2) + ζm(3)ζm(4),

ζm(3, 4) = 17 ζm(7) − 10 ζm(5)ζm(2),

ζm(2, 5) = −11 ζm(7) + 5 ζm(5)ζm(2) + 2 ζm(3)ζm(4).

Choosing any linear functional on the coefficients of x4
1x2, x3

1x
2
2 and x2

1x
3
2 which vanishes on

x4
1 ◦x1 and x2

1 ◦x3
1 leads to a relation between depth-graded motivic multiple zeta values, for

instance:
ζm
D(5, 2) + 2 ζm

D(4, 3) + 8
5 ζm

D(3, 4) = 0.

(3) In weight 8, depth 2, grD
2 H8 is two-dimensional generated by the pair of elements σ̄3 ◦ σ̄5

and σ̄5 ◦ σ̄3, which we compute using (6.16) by

x4
1 ◦x2

1 = x6
1 − 2 x5

1x2 + x4
1x

2
2 + 2 x1x

5
2 − x6

2

x2
1 ◦x4

1 = x6
1 − 4 x5

1x2 + 6 x4
1x

2
2 − 5 x2

1x
4
2 + 4 x1x

5
2 − x6

2.

554

https://doi.org/10.1112/S0010437X20007654 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007654


Depth-graded motivic multiple zeta values

From these, we deduce all relations between depth-graded motivic multiple zeta values of weight
8 and depth 2, such as

2 ζm
D(3, 5) + 5 ζm

D(2, 6) + 10 ζm
D(1, 7) = 0

since 2.(0) + 5.(2) + 10.(−1) = 0 and 2.(−5) + 5.(4) + 10.(−1) = 0 where the numbers in brack-
ets are the coefficients of x2

1x
4
2, x1x

5
2, x6

2 in x4
1 ◦x2

1 and x2
1 ◦x2

3. Indeed, one may check that
5 ζm(2, 6) + 2 ζm(3, 5) + 10 ζm(1, 7) = 6

175ζm(2)4.

7. Modular relations in depth 2

7.1 Reminders on period polynomials
We recall some definitions from [KZ84, § 1.1]. Let S2k(SL2(Z)) denote the space of cusp forms of
weight 2k for the full modular group SL2(Z).

Definition 7.1. Let n ≥ 1 and let W e
2n ⊂ Q[X, Y ] denote the vector space of homogeneous

polynomials P (X, Y ) of degree 2n − 2 satisfying

P (X, Y ) + P (Y, X) = 0, P (±X,±Y ) = P (X, Y ), (7.1)

P (X, Y ) + P (X − Y, X) + P (−Y, X − Y ) = 0. (7.2)

The space W e
2n contains the polynomial p2n = X2n−2 − Y 2n−2, and is a direct sum

W e
2n

∼= S2n ⊕ Q p2n,

where S2n is the subspace of polynomials which vanish at (X, Y ) = (1, 0). We write S =
⊕

n S2n.
The Eichler–Shimura–Manin theorem gives a map which associates, in particular, an even-period
polynomial to every cusp form:

S2k(SL2(Z)) −→ W e
2k ⊗Q C.

Explicitly, if f is a cusp form of weight 2k, the map is given by

f �→
(∫ i∞

0
f(z)(X − zY )2k−2 dz

)+

, (7.3)

where + denotes the projection onto invariants under the involution (X, Y ) �→ (X,−Y ), that
is, a+(X, Y ) = 1

2(a(X, Y ) + a(X,−Y )). The three-term equation (7.2) follows from integrating
around the geodesic triangle with vertices 0, 1, i∞ and is reminiscent of the hexagon equation
for associators. The map (7.3) is an isomorphism onto a subspace of W e

2k ⊗ C of codimension
1. Thus dim S2k(SL2(Z)) = dimS2k and it follows from classical results on the space of modular
forms of level 1 that ∑

n≥0

dim S2ns2n =
s12

(1 − s4)(1 − s6)
= S(s). (7.4)

7.2 Linearized double shuffle in depths 2 and 3
We first recall from [IKZ06] that D2 is the graded space of homogeneous polynomials f ∈ Q[x1, x2]
in two variables satisfying the linearized double shuffle equations in depth 2:

f(x1, x2) + f(x2, x1) = 0 and f(x1, x1 + x2) + f(x2, x1 + x2) = 0.
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The space D3 consists of homogeneous polynomials f ∈ Q[x1, x2, x3] such that

f(x1, x2, x3) + f(x2, x1, x3) + f(x2, x3, x1) = 0,

f �(x1, x2, x3) + f �(x2, x1, x3) + f �(x2, x3, x1) = 0,

where f �(x, y, z) = f(x, x + y, x + y + z). The general double shuffle equations and their lin-
earized versions are derived in [Bro17b, §§ 4–7] using Hopf-algebra-theoretic techniques.

7.3 A short exact sequence in depth 2
The Ihara bracket gives a map

{ , } : ls1 ∧ ls1 −→ ls2. (7.5)

Applying the isomorphism ρ̄ leads to a map

D1 ∧ D1 −→ D2, (7.6)

given by the formula in Example 6.9. Since D1 is isomorphic to the graded vector space
Q[x2n

1 , n ≥ 1], it follows that D1 ∧ D1 is isomorphic to the space of antisymmetric even poly-
nomials p(x1, x2) with positive bidegrees, with basis x2m

1 x2n
2 − x2n

1 x2m
2 for m > n > 0. It follows

from Example 6.9 that the image of p(x1, x2) under (7.6) is

p(x1, x2) + p(x2 − x1, x1) + p(−x2, x1 − x2).

Comparing with (7.2) and (7.1), we immediately deduce (cf. [IT93, Gon05, GKZ06, Sch06]) that

ker({ , } : D1 ∧ D1 −→ D2)
∼−→ S. (7.7)

In fact, the dimensions of the space D2 have been computed several times in the literature (e.g.
by some simple representation-theoretic arguments), and it is relatively easy to show [GKZ06]
that the following sequence is exact:

0 −→ S −→ D1 ∧ D1 −→ D2 −→ 0. (7.8)

Example 7.2. The smallest non-trivial period polynomial occurs in degree 10 and is given
by s12 = X2Y 2(X − Y )3(X + Y )3 = X8Y 2 − 3X6Y 4 + 3X4Y 6 − X2Y 8. By the exact sequence
(7.8) it immediately gives rise to the equation

3{x4
1, x

6
1} = {x2

1, x
8
1}, (7.9)

which, by the faithfulness of the map ρ̄, is equivalent to Ihara’s formula (1.7).

7.4 A short exact sequence in depth 3
If V is a vector space let Lien(V ) ⊂ V ⊗n denote the component of degree n in the free graded
Lie algebra Lie(V ) generated by V , viewed inside the tensor algebra T (V ) =

⊕
n≥0 V ⊗n. It is the

subspace spanned by Lie brackets of the form [v1, [v2, . . . , [vn−1, vn] . . .] where the Lie bracket on
T (V ) is the antisymmetrization of the tensor multiplication (i.e.[v1, v2] = v1v2 − v2v1). Thus, as
a graded vector space, Lie(V ) ∼=

⊕
n≥1 Lien(V ), and each Lien is a direct sum of Schur functors

(e.g. Lie1(V ) = V and Lie2(V ) =
∧2V ).
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The triple Ihara bracket gives a trilinear map

Lie3(ls1) −→ ls3,

and hence a map Lie3(D1) → D3 whose image is spanned by {x2a
1 , {x2b

1 , x2c
1 }}, for a, b, c ≥ 1.

Goncharov has studied the space D3, and computed its dimensions in each weight [Gon05]. It
follows from his work that the sequence

0 −→ S ⊗Q D1 −→ Lie3(D1) −→ D3 −→ 0 (7.10)

is exact, where the first map (identifying S with ker(Λ2D1 → D2)) is given by

S ⊗Q D1 ↪→ Λ2D1 ⊗Q D1 → Lie3(D1),

and the second map in the sequence immediately above is [a, b] ⊗ c �→ [c, [a, b]]. Starting from
depth 4, the structure of lsd

∼= Dd is not known.6 In particular, it is easy to show that the map
given by the quadruple Ihara bracket

Lie4(D1) −→ D4

is not surjective, since in weight 12, dim D4 = 1, but Lie4(D1) = 0. Our next purpose is to
construct the missing elements in depth 4.

Remark 7.3. A different way to think about the sequence (7.10) is via the curious equality
dim S ⊗Q D1 = dim Λ3(D1) which follows from (7.4). I do not know if there is an appropriate
combinatorial or modular interpretation of this identity which could be relevant to the previous
exact sequence.

8. Exceptional modular elements in depth 4

8.1 Linearized equations in depth 4
For the convenience of the reader, we write out the linearized double shuffle relations in full
in depth 4. There are four equations. In order to write them down we shall use the following
notation, where f ∈ Q[x1, . . . , x4], and we are given any set of indices {i, j, k, l} = {1, 2, 3, 4}:

f(ijkl) = f(xi, xj , xk, xl),

f �(ijkl) = f(xi, xi + xj , xi + xj + xk, xi + xj + xk + xl).
(8.1)

Then D4 (see [IKZ06, § 8]) is the subspace of polynomials f ∈ Q[x1, . . . , x4] satisfying

f(1x 234) = 0, f(12x 34) = 0, (8.2)

f �(1x 234) = 0, f �(12x 34) = 0, (8.3)

where f and f � are extended by linearity in the obvious way, and

1x 234 = 1234 + 2134 + 2314 + 2341,

12x 34 = 1234 + 1324 + 1342 + 3124 + 3142 + 3412.

6 After I wrote the first version of this paper, S. Yasuda kindly sent me his private notes [Yas06] in which he gives
a conjectural group-theoretic interpretation for the dimensions of D4, in accordance with the Broadhurst–Kreimer
conjecture.
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For example, the first equation of (8.2) is simply

f(x1, x2, x3, x4) + f(x2, x1, x3, x4) + f(x2, x3, x1, x4) + f(x2, x3, x4, x1) = 0.

We construct some exceptional solutions to these equations from period polynomials.

8.2 Definition of the exceptional elements
Let f(x, y) ∈ S2n+2 be an even-period polynomial of degree 2n which vanishes at y = 0. It follows
from (7.1) and (7.2) that it vanishes along x = 0 and x − y = 0. Therefore we can write

f(x, y) = xy(x − y)f0(x, y),

where f0(x, y) ∈ Q[x, y] is symmetric and homogeneous of degree 2n − 3, and satisfies

f0(x, y) + f0(y − x,−x) + f0(−y, x − y) = 0. (8.4)

Let us also write f1(x, y) = (x − y)f0(x, y). We have f1(−x, y) = f1(x,−y) = −f1(x, y).

Definition 8.1. Let f ∈ Q[x, y] be an even-period polynomial as above. Define

ef ∈ Q[y0, y1, y2, y3, y4],

ef =
∑
Z/5Z

(
f1(y4 − y3, y2 − y1) + (y0 − y1)f0(y2 − y3, y4 − y3)

)
, (8.5)

where the sum is over cyclic permutations (y0, y1, y2, y3, y4) �→ (y1, y2, y3, y4, y0). Its reduction
ēf ∈ Q[x1, . . . , x4] is obtained by setting y0 = 0, yi = xi, for i = 1, . . . , 4.

Remark 8.2. The full expression for ēf is explicitly

ēf (x1, x2, x3, x4) = f1(x4 − x3, x2 − x1) + f1(−x4, x3 − x2) + f1(x1, x4 − x3)

+ f1(x2 − x1,−x4) + f1(x3 − x2, x1) − x1f0(x2 − x3, x4 − x3)

+ (x1 − x2)f0(x3 − x4,−x4) + (x2 − x3)f0(x4, x1)

+ (x3 − x4)f0(−x1, x2 − x1) + x4f0(x1 − x2, x3 − x2). (8.6)

Since f is even it vanishes to order 2 along x = 0, y = 0, x = y. Therefore

f0(0, y) = f0(x, 0) = f0(x, x) = 0,

and the same holds a fortiori for f1. If we set x3 = x4 = 0 in equation (8.6) then all terms except
for the fifth vanish and we are left with

ēf (x, y, 0, 0) = f1(−y, x) = f1(x, y). (8.7)

In this way, the period polynomial f can be retrieved from ēf : it is xyēf (x, y, 0, 0). This compu-
tation is related to the discussion in [BBV10, § 9.2], regarding multiple zeta values of depth 4 of
the form ζ(1, 1, m, n).
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8.3 Exceptional elements and linearized double shuffle equations
Theorem 8.3. The reduced polynomial ēf obtained from (8.5) satisfies the linearized double

shuffle relations. In particular, we have an injective linear map

ē : S −→ D4.

Proof. The injectivity follows immediately from (8.7). The proof that the linearized double shuffle
relations hold is a finite computation. In the absence of a purely conceptual proof, we shall break
the calculation into more easily verifiable pieces.

We first consider the stuffle equations. It follows from general properties of the Dynkin
operator on shuffle algebras that a homogeneous polynomial in four variables satisfies the two
linearized stuffle equations (8.2) if and only if it is in the image of the map λ : Q[x1, . . . , x4] →
Q[x1, . . . , x4], with eight terms defined by

λ(f)(x1, . . . , x4) = α(f)(x1, x2, x3, x4) − α(f)(x4, x3, x2, x1),

where α(f)(x1, . . . , x4) is the linear combination

f(x1, x2, x3, x4) − f(x1, x2, x4, x3) − f(x1, x4, x2, x3) + f(x1, x4, x3, x2).

For a detailed discussion and proofs, we refer to [Bro17b, § 16.4 and Corollary 16.6]. The linearized
stuffle relations (8.2) hold for the sum of the first five terms in f1, and for the sum of the second
five terms in f0 in (8.6) separately. Consider first the terms in f1. They consist of two parts:

T1 = f1(x4 − x3, x2 − x1)

and

T2 = f1(−x4, x3 − x2) + f1(x1, x4 − x3) + f1(x2 − x1,−x4) + f1(x3 − x2, x1).

One easily checks that λ(T1) = 4 T1, and that λ(f1(x1, x2 − x3)) equals

f1(x1, x2 − x3) − f1(x1, x2 − x4) − f1(x1, x4 − x2) + f1(x1, x4 − x3)

− f1(x4, x3 − x2) + f1(x4, x3 − x1) + f1(x4, x1 − x3) − f1(x4, x1 − x2) = 4T2,

using only the fact that f1 is antisymmetric and odd in x and y. Thus T1, T2 lie in the image of
λ and are solutions to the linearized stuffle equations.

Now consider the terms in f0 in (8.6). Once again, they break into two parts:

T3 = x4f0(x1 − x2, x3 − x2) − x1f0(x2 − x3, x4 − x3)

and

T4 = (x1 − x2)f0(x3 − x4,−x4) + (x2 − x3)f0(x4, x1) + (x3 − x4)f0(−x1, x2 − x1).

One checks that λ(Tk) = 4Tk for k = 3, 4 using the three-term relation (8.4), and hence T3, T4

are solutions to the linearized stuffle equations. This is the only point in the proof where the
three-term relation is needed.

For the linearized shuffle relations, note that there exists g ∈ Q[x, y] such that f0(x, y) =
(x + y)g(x, y) and f1 = (x2 − y2)g(x, y) since an even-period polynomial f(x, y) vanishes along
x = y and is even in both x and y. The polynomial g(x, y) is symmetric and odd in x and in y

(i.e. g(x, y) = g(y, x) and g(−x, y) = g(x,−y) = −g(x, y)). These properties suffice to prove that
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(8.6) satisfies the shuffle equations. The full expression again splits into two pieces with four and
six terms, respectively:

T5 = (x2
4 − x2

23)g(x4, x23) + x23(x1 + x4)g(x1, x4) + x12(x34 − x4)g(x34,−x4)

+ (x2
12 − x2

4)g(x12, x4),

where we use the notation xij = xi − xj , and

T6 = x34(x21 − x1)g(x1, x12) + x4(x32 + x12)g(x12, x32) + (x2
32 − x2

1)g(x32, x1)

+ (x2
1 − x2

43)g(x1, x43) + x1(x34 + x32)g(x32, x34) + (x2
43 − x2

21)g(x43, x21).

Both T5 and T6 can laboriously be verified to satisfy the two shuffle equations in depth 4. The
statement follows since ef equals T1 + T2 + T3 + T4 = T5 + T6. �

Identifying ls4 with D4 via the map ρ̄, we can view e as a map from S to ls4. Note that
relation (7.2) is proved for the periods of modular forms by integrating round contours very
similar to those which prove the symmetry and hexagonal relations for associators. It would be
very interesting to see if there is any connection between the five-fold symmetry of the element
ef and the pentagon equation.

Example 8.4. It follows from (7.4) that the space of period polynomials in degrees 12, 16, 18 and
20 is of dimension 1. Choose integral generators:

f12 = [x8
1, x

2
2] − 3 [x6

1, x
4
2],

f16 = 2 [x12
1 , x2

2] − 7 [x10
1 , x4

2] + 11 [x8
1, x

6
2],

f18 = 8 [x14
1 , x2

2] − 25 [x12
1 , x4

2] + 26 [x10
1 , x6

2],

f20 = 3 [x16
1 , x2

2] − 10 [x14
1 , x4

2] + 14 [x12
1 , x6

2] − 13 [x10
1 , x8

2],

where [xa
1, x

b
2] denotes xa

1x
b
2 − xb

1x
a
2. Let e12, . . . , e20 denote the corresponding exceptional ele-

ments. We know by Theorem 1.1 that gm is of dimension 2 in weight 12, spanned by {σ3, σ9}
and {σ5, σ7}. We know by (7.9) that in weight 12, dgm

2 is of dimension 1, dgm
3 vanishes by parity,

so it follows that dgm
4 is of dimension 1 and hence spanned by ē12 (since we know that ls4 in

weight 12 is one-dimensional). Writing out just a few of its coefficients as an example, we have:

ē12 = x7
3x4 − 116 x3

1x
2
2x

2
3x4 − 57 x2

1x
5
2x4 + · · · (118 terms in total).

Using ē12, one can write all depth-graded motivic multiple zeta values of depth 4 and weight 12
as multiples of ζD(1, 1, 8, 2). For example, one has

ζD(4, 3, 3, 2) ≡ −116 ζD(1, 1, 8, 2), ζD(3, 6, 1, 2) ≡ −57 ζD(1, 1, 8, 2)

modulo products and modulo multiple zeta values of depth ≤ 2.

8.4 Are the exceptional elements motivic?
We say that an exceptional element ef is motivic if it lies in the depth-graded motivic Lie algebra:

ef ∈ dgm
4 ⊆ ls4.

Conjecture 3. The exceptional elements ef are all motivic.
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Since dgm
k = lsk for k = 1, 2, 3, to prove that an exceptional element ef is motivic it is enough

to show that, modulo commutators, it lies in the image of the map

d : S −→ (dgm
4 )ab,

where S ⊂ Λ2dgm
1 is the space of relations in depth 2, and d is the first non-trivial differential in

the spectral sequence on gm associated to the depth filtration (§ 4.5).
The map d can be computed explicitly as follows. Choose a lift σ2n+1 ∈ gm of every generator

σ̄2n+1 ∈ dgm
1 , and decompose it according to the D-degree:

σ2n+1 = σ
(1)
2n+1 + σ

(2)
2n+1 + σ

(3)
2n+1 + · · · ,

where σ
(i)
2n+1 is of D-degree i, and σ

(1)
2n+1 = σ̄2n+1. Then, for any element

ξ =
∑
i<j

λi,j σi ∧ σj ∈ S = ker({. , .} : Λ2dgm
1 → dgm

2 )

with λi,j ∈ Q, we have

dξ =
∑
i<j

λi,j({σ(1)
i , σ

(3)
j } + {σ(2)

i , σ
(2)
j } + {σ(3)

i , σ
(1)
j }),

where {. , .} :
∧2gm → gm can be computed on the level of polynomial representations by exactly

the same formula as the one given in § 6.

Example 8.5. The elements σ3, σ5, σ7, σ9 defined by the coefficients of ζ(3), ζ(5), ζ(7), and ζ(9)
in weights 3, 5, 7, 9 in Drinfeld’s associator are canonical, and we have

{σ3, σ9} − 3{σ5, σ7} ≡ 691
144 e12 mod depth ≥ 5, (8.8)

which proves that the element e12 is motivic. Using the depth-parity proposition (Proposition
6.4), one can show that the corresponding congruence

{σ3, σ9} − 3{σ5, σ7} ≡ 0 mod 691,

propagates to depth 5 also. Compare with the ‘key example’ of [Iha02, p. 258] and the ensuing
discussion. Thereafter, one checks that

d
(
2 σ3 ∧ σ13 − 7 σ5 ∧ σ11 + 11 σ7 ∧ σ9

)
≡ 3617

720 e16 (mod a),

d
(
8 σ3 ∧ σ15 − 25 σ5 ∧ σ13 + 26 σ7 ∧ σ11

)
≡ 43867

9000 e18 (mod a),

d
(
3 σ3 ∧ σ17 − 10 σ5 ∧ σ13 + 14 σ7 ∧ σ13 − 13 f9 ∧ f11

)
≡ 174611

35280 e20 (mod a),

where a = {gm, gm} + D5gm, that is, the previous identities hold modulo commutators and mod-
ulo terms of depth 5 or more. In this manner, I have checked that the elements ef are motivic
for all f up to weight 30. In particular, it seems that the differential d is related to our map e

(which is defined over Z) up to a non-trivial isomorphism of the space of period polynomials. The
numerators on the right-hand side are the numerators of ζ(16)π−16, ζ(18)π−18, and ζ(20)π−20.
Unfortunately, it does not seem possible to construct canonical zeta elements σ2n+1 for n ≥ 5 in
a consistent way such that the above relations hold exactly in gm

4 (and not modulo a).
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Using the theory of the unipotent fundamental group of the Tate elliptic curve, we showed
in [Bro17a] how to construct canonical elements σ

(3)
2i+1 modulo depths ≥ 5, which enables one to

write down the differential d explicitly. The only remaining difficulty in proving that the elements
ef are motivic is therefore to understand better the quotient ls/{ls, ls} in depth 4. Yasuda has
since shown, assuming that the ef are motivic, how to relate the exceptional elements to the
differential d using the action of Hecke operators on the space of period polynomials.

If the elements ef can be shown to be motivic, then they provide in particular an answer
to the question raised by Ihara [Iha02, end of § 4, p. 259]. The appearance of the numerators of
Bernoulli numbers is related to [Iha02, Conjecture 2], and the Ihara–Takao relations [IT93], and
has been studied from the Galois-theoretic perspective by Sharifi [Sha02] and McCallum and
Sharifi [MS03].

9. Some properties of the elements ef

The exceptional elements ef satisfy many remarkable properties, only some of which will be
outlined here. Of particular relevance are those properties which are motivic, that is, stable
under the Ihara bracket.

9.1 Unevenness
For any polynomial f ∈ Q[x1, . . . , xr], let

πk
xi

f = coefficient of xk
i in f

and denote the projection onto the even part in xi by

πev
xi

f =
∑
k≥0

(π2k
i f)x2k

i .

We can also write πev
xi

f = 1
2

(
f(x1, . . . , xi, . . . , xr) + f(x1, . . . ,−xi, . . . , xr)

)
.

Lemma 9.1. The elements ef (y0, y1, y2, y3, y4) are uneven:

πev
y0

πev
y1

πev
y2

πev
y3

πev
y4

(ef ) = 0. (9.1)

Proof. The term of the form (y0 − y1)f0(y2 − y3, y4 − y3) in definition (8.1) is obviously uneven
since it is linear in y0, y1. The term f1(y4 − y3, y2 − y1) is likewise uneven because f1(x, y) is odd
in x and y. The fact that ef is uneven follows by cyclic symmetry. �

We shall see later in § 11.1 that the property of being uneven is motivic, that is, stable under
the Ihara bracket, and is related to the totally odd zeta values. We conjecture that a solution to
the linearized double shuffle equations is uneven if and only if it is in the Lie ideal of ls generated
by exceptional elements.

9.2 Sparsity
Lemma 9.2. The elements ef (y0, y1, y2, y3, y4) are sparse:

∂5

∂y0∂y1∂y2∂y3∂y4
(ef ) = 0. (9.2)
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In other words, ef is a linear combination of monomials which only depend on four out of five

of the variables y0, . . . , y4.

Proof. Immediate from the definition. �

One can show that this property is also motivic, that is, forms an ideal under the Ihara
bracket. Call an element f ∈ pr sparse if it is annihilated by

∂r+1

∂y0 . . . ∂yr
.

Proposition 9.3. The sparse elements in
⊕

r pr form a Lie ideal.

Proof. Let f ∈ pr and g ∈ ps where f is sparse. The Ihara bracket {f, g} is given by (6.14) and
consists of a cyclic sum over terms of the form(

f(y0, . . . , yr) − f(yr+s, y0, . . . , yr−1)
)
g(yr, . . . , yr+s),

to which we apply the product of ∂/∂yi for 0 ≤ i ≤ r + s. Using the chain rule with respect to
∂/∂yr and ∂/∂yr+s and invoking the sparsity of f , we obtain

( r−1∏
i=0

∂

∂yi

)(
f(y0, . . . , yr) − f(yr+s, y0, . . . , yr−1)

)
×

( r+s∏
i=r

∂

∂yi

)
g(yr, . . . , yr+s). (9.3)

By cyclic symmetry of f , we have

f(yr+s, y0, . . . , yr−1) = f(y0, . . . , yr−1, yr+s).

Using the sparsity of f once more, we find that

( r−1∏
i=0

∂

∂yi

)
f(y0, . . . , yr) =

( r−1∏
i=0

∂

∂yi

)
f(y0, . . . , yr−1, yr+s)

since the left-hand side is a polynomial which is annihilated by ∂/∂yr, and hence does not depend
on yr. In particular, it equals the right-hand side. It follows that the left-hand factor of (9.3)
vanishes, which completes the proof. �

In fact, there are other differential equations satisfied by the ef and one can use these
equations to define various filtrations on the Lie algebras p and ls. It would be interesting to try
to prove that the degree in the exceptional elements defines a grading on the Lie subalgebra of
p̄ spanned by the x2n

1 and the ēf , as predicted by the conjectures below.

Remark 9.4. The properties of unevenness and sparsity imply that almost all the coefficients of
ef are zero. This implies that the freeness of the motivic Lie algebra (Theorem 1.1) hangs by a
thread (see, for example, (8.8)).

If we define the interior of a polynomial p ∈ Q[x1, . . . , xr] to be po = π≥2
1 . . . π≥2

r p, where
π≥2

i (f) =
∑

k≥2 πk
xi

(f)xk
i , then in fact the majority of the non-trivial monomials in ēf are
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determined by a single term,

(ēf )o = f1(x4 − x3, x2 − x1)o, (9.4)

which follows easily from the definition (8.6).

9.3 Other properties
We mention briefly some directions for further investigation. The proofs of the following facts
are trivial yet sometimes lengthy applications of the definitions, basic properties of period
polynomials, and the definition of {. , .}.

Suppose that f (1), . . . , f (n) are period polynomials, and let f
(i)
1 be as defined in § 8.2. Then,

generalizing (8.7), we have

π0
n+2π

0
n+3 . . . π0

4n−1π
0
4n

(
ēf (1) ◦ (ēf (2) ◦ · · · (ēf (n−1) ◦ ēf (n)) · · · )

)
=

n∏
i=1

f
(i)
1 (xi, xi+1). (9.5)

Unfortunately, some information about the polynomials fi is lost in this equation, but one
can do better by using the operators πev

i = πev
xi

. For example, one checks that

πev
1 πev

5 π0
6π

0
7π

0
8 (ēf ◦ ēg) =

(
πev

1 π0
4 ēf (x1, x2, x3, x4)

)
×

(
πev

5 π0
6 ēg(x3, x4, x5, x6)

)
(9.6)

factorizes. Applying the operator π2
3 to this equation gives(

π1
3π

ev
1 π0

4 ēf (x1, x2, x3, x4)
)
×

(
π1

3π
ev
5 π0

6 ēg(x3, x4, x5, x6)
)
∈ Q[x1, x2] ⊗Q Q[x4, x5]

and causes the variables to separate. Next, one checks that

π1
3π

ev
1 π0

4 ēf (x1, x2, x3, x4) = πev
1 (α(x2 − x1)deg f + f0(x1, x1 + x2))

for some α ∈ Q, and it is easy to show that the right-hand side of the previous equation is
non-zero and uniquely determines the period polynomial f (using the fact that the involutions
(x1, x2) �→ (x1, x2 − 2x1) and (x1, x2) �→ (−x1, x2) generate an infinite group). Putting these facts
together shows the following result.

Corollary 9.5. There are no non-trivial relations between commutators {ēf , ēg}.

Since similar factorization properties to (9.6) hold in higher depths, one might hope to prove,
in a similar manner, the conjecture that the Lie subalgebra of ls generated by the exceptional
elements ef is free.

10. Lie algebra structure and Broadhurst–Kreimer conjecture

10.1 Interpretation of the Broadhurst–Kreimer conjecture
In the light of the Broadhurst–Kreimer conjecture on the dimensions of the space of multiple zeta
values graded by depth (1.2), and Zagier’s conjecture which states that the regularized double
shuffle relations generate all relations between multiple zeta values, it is natural to rephrase their
conjectures, tentatively, in the Lie algebra setting as follows.
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Conjecture 4 (Strong Broadhurst–Kreimer and Zagier conjecture).

H1(ls, Q) ∼= ls1 ⊕ e(S),

H2(ls, Q) ∼= S,

Hi(ls, Q) = 0, for all i ≥ 3.

(10.1)

This conjecture is the strongest possible conjecture that one could make: as we shall see
below, it implies nearly all the remaining open problems concerning relations between (motivic)
multiple zeta values. The numerical evidence for this conjecture is substantial [BBV10], but
not sufficient to remove all reasonable doubt. More conservatively, and without reference to
the double shuffle relations, one could make a weaker reformulation of the Broadhurst–Kreimer
conjecture.

Conjecture 5 (Motivic version of the Broadhurst–Kreimer conjecture). The exceptional ele-
ments ef are motivic (i.e. e(S) ⊂ dgm), and

H1(dgm, Q) ∼= dgm
1 ⊕ e(S),

H2(dgm, Q) ∼= S,

Hi(dgm, Q) = 0, for all i ≥ 3.

(10.2)

Since the conjectural generators are totally explicit, it is possible to verify the independence of
Lie brackets in the reduced polynomial representation ρ̄(gm) simply by computing the coefficients
of a small number of monomials. In this way, it should be possible to verify (10.2) to much
higher weights and depths than is presently known. Note that the Broadhurst–Kreimer conjecture
could fail if there existed non-trivial relations between commutators involving several exceptional
elements ef . These would necessarily have weight and depth far beyond the range of present
computations.

10.2 Enumeration of dimensions
Let h be a Lie algebra over a field k, and let Uh be its universal enveloping algebra. The homology
groups Hi(h; k) of h are defined to be the homology of the following complex:

· · · −→ Λ3h −→ Λ2h −→ h −→ 0. (10.3)

Suppose that h is bigraded, and finite-dimensional in each bigraded piece. Then Λih,Uh, Hi(h)
inherit a bigrading. For any bigraded k-module M•,•, which is finite-dimensional in every
bidegree, define its Poincaré–Hilbert series by

XM (s, t) =
∑

m,n≥0

dimk(Mm,n)smtn.

Similarly, for a family of such bigraded k-modules M l, with l ≥ 0, let us write

XM•(r, s, t) =
∑

l,m,n≥0

dimk(M l
m,n)rlsmtn.

The following proposition follows from standard homological algebra.
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Proposition 10.1. With the above assumptions, the Poincaré series of Uh and the homology

of h are related by the equation

XUh(s, t) =
1

XH•(h)(−1, s, t)
. (10.4)

Proof. Let ε : Uh → k be the augmentation map. Recall that the Chevalley–Eilenberg complex
[Wei94, § 7.7] is exact in all degrees:

· · · −→ Uh ⊗k Λ2h −→ Uh ⊗k h −→ Uh
ε−→ k −→ 0. (10.5)

It therefore defines a resolution of k. Viewing k as a Uh-module via ε and applying the functor
M �→ k ⊗Uh M to (10.5) gives a complex whose truncation is exactly (10.3).

Writing Λ1h = h, and Λ0h = k, the exactness of (10.5) yields

1 =
∑
l≥0

(−1)lXUh(s, t)XΛlh(s, t) = XUh(s, t)XΛ•h(−1, s, t),

since this is nothing other than the bigraded Euler characteristic. Since (10.3) computes the
homology of h, we deduce similarly that

XΛ•h(−1, s, t) = XH•(h)(−1, s, t)

which implies formula (10.4). �

10.3 Corollaries of Conjectures 4 and 5
Let us first apply Proposition 10.1 to the algebra ls, bigraded by weight and depth.

Lemma 10.2. Conjecture 4 implies that

XUls(s, t) =
1

1 − O(s) t + S(s) t2 − S(s) t4
. (10.6)

If we identify lsd via the isomorphism ρ̄ with the space of polynomials Dd satisfying the linearized

double shuffle relations, we obtain the conjecture stated in [IKZ06, Appendix].

Proof. Assuming Conjecture 4, we have

XH1(ls)(s, t) = O(s) t + S(s) t4,

XH2(ls)(s, t) = S(s) t2,

where O and S were defined in (1.3). Apply (10.4) to conclude. �

Proposition 10.3. Conjecture 4 is equivalent to Conjecture 5, together with dgm = ls.

Proof. The inclusion dgm ⊂ ls implies that, for all weights N and depths d,

dimQ(Ugm)N,d ≤ dimQ(U ls)N,d. (10.7)
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This uses the fact that grDUgm ∼= Udgm, which follows from the Poincaré–Birkoff–Witt theorem.
Now we know from Theorem 1.1 that

1
1 − O(s)

=
∑
N≥0

( ∑
d≥0

dimQ(Ugm)N,d

)
sN .

If conjecture 4 holds then, specializing (10.6) to t = 1, we obtain

1
1 − O(s)

=
∑
N≥0

(∑
d≥0

dimQ(U ls)N,d

)
sN ,

and therefore, for all N , ∑
d≥0

dimQ(Ugm)N,d =
∑
d≥0

dimQ(U ls)N,d.

Since the dimensions in (10.7) are non-negative, this implies equality in (10.7), and so grDUgm ∼=
Udgm = U ls and hence dgm = ls. Replacing dgm with ls in Conjecture 4 gives the statement of
Conjecture 5, and proves the first direction of the implication. The converse is obvious. �

The conjecture dgm = ls implies that gm = dm0(Q), which is the statement that all relations
between motivic multiple zeta values are generated by the regularized double shuffle relations
(which is equivalent to a conjecture of Zagier’s). By Furusho’s theorem [Fur11], it would in turn
imply Drinfeld’s conjecture that grt is free with one generator in every odd degree ≤ −3 (which
is in turn equivalent, in the light of Theorem 1.1, to the statement that all relations between
(motivic) multiple zeta values are generated by the associator relations.)

Corollary 10.4. Conjecture 5 implies a Broadhurst–Kreimer conjecture for motivic multiple

zeta values. More precisely, Conjecture 5 implies that

∑
N,d≥0

(dimQ grD
d HN ) sN td =

1 + E(s)t
1 − O(s)t + S(s)t2 − S(s)t4

, (10.8)

where HN is the Q-vector space generated by motivic multiple zeta values of weight N .

Proof. Apply Proposition 10.1 to dgm. Then Conjecture 5 implies via (10.4) that

∑
N,d≥0

(dimQ grd
DUgm

N )sN td =
1

1 − O(s) t + S(s) t2 − S(s) t4
. (10.9)

Equation (10.8) follows from (4.3), which states that

grDH ∼=
(
grDA

)
⊗Q

(
grDQ[ζm(2)]

)
.

The statement follows from grDA ∼= (grDUgm)∨ (see § 4.2) and the fact that 1 + E(s)t is the
Poincaré series for the bigraded algebra

grDQ[ζm(2)] = Q ⊕
⊕
n≥1

ζm
D(2n)Q

using a corollary [Bro12] of the motivic version of Euler’s theorem: Qζm(2n) = Qζm(2)n. �
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11. Totally odd multiple zeta values

Let Hodd ⊂ H denote the vector subspace generated by the elements

ζm(2n1 + 1, . . . , 2nr + 1), (11.1)

where n1, . . . , nr are integers ≥ 1. Then grDHodd ⊂ grDH is the vector subspace spanned by the
depth-graded versions ζm

D(2n1 + 1, . . . , 2nr + 1) of (11.1). It is clear from the linearized stuffle
product formula that grDHodd is an algebra, indeed, it is a quotient of the shuffle algebra(

Q〈3, 5, 7, . . . , 〉, x
)

with exactly one generator 2n + 1 in each degree 2n + 1, for n ≥ 1. Let Aodd denote Hodd modulo
the ideal generated by ζm(2), and let grDAodd denote grDHodd modulo the ideal generated by
ζm
D(2).

Proposition 11.1. The space Hodd is almost stable under the motivic coaction:

ΔM(DrHodd) ⊆ A⊗ DrHodd + A⊗ Dr−2H.

Furthermore, the group UMT (Z) acts trivially on the associated graded grDHodd.

Proof. By the remarks at the end of § 3.1, it suffices to compute the infinitesimal coaction (3.3)
in odd degrees only. Therefore apply the operator D2s+1 to the element

Im(0; 1, 0, . . . , 0︸ ︷︷ ︸
2n1

, 1, 0, . . . , 0︸ ︷︷ ︸
2n2

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
2nr

; 1).

We use the terminology ‘subsequence’ to denote a term which occurs on the left-hand side of
(3.3), and ‘quotient sequence’ to denote a term which occurs on the right. Every subsequence
with two or more 1’s gives rise to a quotient sequence of depth ≤ r − 2. Every subsequence of
depth exactly 1 and of odd length is either of the form

Im(0; 0, . . . , 0︸ ︷︷ ︸
odd

, 1, 0, . . . , 0︸ ︷︷ ︸
odd

; 1) or Im(1; 0, . . . , 0︸ ︷︷ ︸
odd

, 1, 0, . . . , 0︸ ︷︷ ︸
odd

; 0)

(which cannot occur since every pair of successive 1’s in the original sequence are separated by
an even number of 0’s), or of the form

Im(0; 0, . . . , 0︸ ︷︷ ︸
even

, 1, 0, . . . , 0︸ ︷︷ ︸
even

; 1) or Im(1; 0, . . . , 0︸ ︷︷ ︸
even

, 1, 0, . . . , 0︸ ︷︷ ︸
even

; 0).

In this case, the quotient sequence has the property that every pair of successive 1’s are separated
by an even number of 0’s, which defines an element of Hodd. In the case when the subsequence
has no 1’s, the left-hand side of (3.3) is zero and the action is trivial, which proves the last
statement. �

It follows immediately from the proposition that the action of the graded Lie algebra
LieUMT (Z) on the two-step quotients DrHodd/Dr−2Hodd factors through its abelianiza-
tion (LieUMT (Z))ab, which has canonical generators in every odd degree 2r + 1, for r ≥ 1.
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Thus for every integer n ≥ 1, there is a well-defined derivation

∂2n+1 : grD
r Hodd −→ grD

r−1Hodd,

which corresponds to the action of the canonical generator σ2n+1 ∈ (LieUMT (Z))ab. If m1 + · · · +
mr = n1 + · · · + nr are integers ≥ 1, then we obtain numbers

c(m1...mr
n1...nr

) = ∂2m1+1 . . . ∂2mr−1+1∂2mr+1 ζm
D(2n1 + 1, . . . , 2nr + 1) ∈ Z

where, by duality,

c(m1...mr
n1...nr

) = coefficient of x2n1
1 . . . x2nr

r in x2mr
1 ◦ (x2mr−1

2 ◦ (· · · (x2m2
r−1 ◦x2m1

r )· · ·).

Recall that the action ◦ is given by the formula

Q[x2
1] ⊗Q Q[x1, . . . , xr−1] −→ Q[x1, . . . , xr]

x2n
1 ◦ g(x1, . . . , xr−1) =

r∑
i=1

(
(xi − xi−1)2n − (xi − xi+1)2n

)
g(x1, . . . , x̂i, . . . , xr),

where x0 = 0 and xr+1 = xr (i.e. the term (xr − xr+1)2n is discarded). Note that ◦ coincides
with ◦ here by Proposition 2.2 since x2n

1 lies in the image of gm.
If SN,r denotes the set of compositions of an integer N as a sum of r positive integers, let

CN,r denote the |SN,r| × |SN,r| square matrix whose entries are the integers

(CN,r)i,j = c(si
sj

), si, sj ∈ SN,r. (11.2)

11.1 Enumeration of totally odd depth-graded multiple zeta values
Definition 11.2. We say that a polynomial f ∈ Q[y0, y1, . . . , yr] is uneven if the coefficient of
y2n0
0 . . . y2nr

r in f vanishes for all n0, . . . , nr ≥ 0.

Recall from (9.1) that the exceptional elements ef ∈ ls are uneven. The following proposition
is a kind of dual to the previous one.

Proposition 11.3. The set of uneven elements in ls is an ideal for the Ihara bracket.

Proof. Let f, g ∈ ρ(ls) such that f is uneven. It suffices to show that {f, g} is uneven. By the
parity result (Proposition 6.4), we know that f and g are of even degree. It follows from (6.3)
that {f, g} is a linear combination of terms of the form

f(yα)g(yβ),

where α, β are sets of indices with |α ∩ β| = 1. Since the polynomial f is homogeneous of even
degree, it follows that the coefficient of y2n0

0 . . . y2nN
N in {f, g} is a linear combination of the

coefficients of totally even monomials in f , which all vanish. In more detail, let us consider
two sets of indices with α ∩ β = {γ}, and the corresponding monomials which occur in f, g

respectively:

cf
α

∏
a∈α

yma
a and cg

β

∏
b∈β

yna
b ,
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where cf
α, cg

β ∈ Q. A monomial in {f, g} is of the form

cf
αcg

β y
mγ+nγ
γ

∏
a∈α\{γ}

yma
a

∏
b∈β\{γ}

ynb
b .

Suppose that mγ + nγ and all ma, nb are even for a ∈ α\{γ} and b ∈ β\{γ}. If mγ is odd, then
cf
α = 0 since f is of even degree by Proposition 6.4. In the case when mγ is even, cf

α = 0 since f

is uneven. Therefore {f, g} is uneven. �

Corollary 11.4. The Lie ideal in ls generated by the exceptional elements is orthogonal to

(i.e. annihilated by) grDAodd.

Proof. The elements ef are uneven. �

In the light of Conjecture 5 it is therefore natural to expect that grDAodd is dual to godd,
which suggests the following conjecture.

Conjecture 6 (‘Uneven’ part of motivic Broadhurst–Kreimer conjecture).∑
N≥0,d≥0

(dimQ grD
d Aodd

N )sN td =
1

1 − O(s)t + S(s)t2
. (11.3)

Since the action of the operators ∂2n+1 on the totally odd depth-graded motivic multiple
zeta values can be computed explicitly in terms of binomial coefficients, one can hope to prove a
version of this conjecture by elementary methods. Indeed, assuming Conjecture 5, the left-hand
side of (11.3) is the generating series ∑

N≥0,d≥0

rank(CN,d) sN td,

where CN,r are the matrices of binomial coefficients defined in (11.2). Therefore, one is led to
conjecture that this generating series also coincides with the right-hand side of (11.3). I have
verified this up to weight 30.

Standard transcendence conjectures for multiple zeta values would then have it that if Zodd
N,d

denotes the space of totally odd depth-graded multiple zeta values modulo ζ(2), of weight N

and depth d, then we obtain the new conjecture∑
N≥0,d≥0

(
dimQ Zodd

N,d

)
sN td =

1
1 − O(s)t + S(s)t2

. (11.4)

Remark 11.5. These conjectures measure the relations between totally odd (motivic) multiple
zeta values modulo all (motivic) multiple zeta values of lower depth, not just modulo totally
odd (motivic) multiple zeta values of lower depth (in other words, Zodd

N,d denotes the span of the
totally odd zetas in the space of depth- graded multiple zeta values, and not the depth-graded
of the space of totally odd multiple zeta values).
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DG05 P. Deligne and A. B. Goncharov, Groupes fondamentaux motiviques de Tate mixte, Ann. Sci.
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