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Abstract

We adapt the Toeplitz operator proof of Bott periodicity to give a short direct proof of Bott pe-
riodicity for the representable AT-theory of a- C*-algebras. We further show how the use of this
proof and the right definitions simplifies the derivation of the basic properties of representable
X-theory.
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Introduction

In this paper, we give a short and direct proof of Bott periodicity for the repre-
sentable A-theory of a- C*-algebras [12], using the Toeplitz operator method
of [2]. We use definitions for representable A-theory which first appeared
in [13] and which are closely related to the usual definition of A-theory for
C*-algebras, and our proof is not much more complicated than it would be
for C*-algebras. Thus, this paper can also be regarded as an exposition of the
Toeplitz operator proof of Bott periodicity for the A-theory of C*-algebras.
We also include direct proofs that our definitions of representable A-theory
agree with the usual A-theory of C*-algebras, and show how the definitions
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230 N. Christopher Phillips [2]

we use simplify the proofs of the basic properties of representable A-theory.
The literature contains two elementary proofs of Bott periodicity for the

A-theory of compact spaces, one involving approximation arguments on
clutching functions [3] and one by Atiyah using Toeplitz operators [2]. The
first of these proofs generalizes nicely to the A-theory of Banach algebras:
see the exposition in [19, Section 9]. The resulting proof, however, seems
unnatural for C* -algebras, because it uses approximation arguments on in-
vertible elements that take one out of the group of unitary elements of a
C*-algebra. The Toeplitz operator proof, on the other hand, can be done for
C*-algebras using only unitaries and projections. This proof is well known,
but the C* -algebra case has apparently never been published. The closest
approximation we know in the literature is due to Cuntz [5]. That version is
short, slick, and applies to a more general situation, but obscures the essen-
tial simplicity of the ideas involved. Section 3 of this paper gives essentially
the noncommutative version of Atiyah's Toeplitz operator proof, including
a remark about the simplification possible when one considers C*-algebras
instead of a- C* -algebras.

We now turn to a a- C* -algebras. Two proofs of Bott periodicity for repre-
sentable A-theory have appeared: one in Weidner's thesis [20] (see also [21]),
which actually applies much more generally but uses much complicated ma-
chinery, and one in [12], which is somewhat indirect, using the Milnor lim '-
sequence to reduce to the case of C* -algebras. The approximation proof in
[19, Section 9] does not generalize to a- C* -algebras, because the group of
invertible elements in a unital a- C*-algebra is not open (see [11, Proposition
1.14]). However, as we show, the Toeplitz operator proof, which uses only
unitaries and projections, generalizes very nicely to the a- C* -algebra case,
provided that one uses the right definitions.

The definitions we use are taken from [13]. We believe that these defini-
tions are the right ones to use, and as evidence for that belief we offer their
obvious connection with the usual definitions of A-theory for C* -algebras,
the fact that they work well in the proof given here, the ease with which
the main properties of representable A-theory are derived from them, and
the fact that they generalize to Frechet algebras ([16]). We show in Section
4 of this paper how the development of [12] is simplified if one uses the
definitions of this paper.

The proof of Bott periodicity given here also serves two other purposes.
One is to provide a proof of Bott periodicity which generalizes to Frechet
algebras. As demonstrated in [16], the proof given here does so very nicely;
as far as we know, no other proof does. For the second purpose, recall that
the main theorem of [14] asserted the existence of homotopy equivalences
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^oo^nc — P an<* ^CXJ^ — ^nc involving the C°° loop algebras of the rep-
resenting algebras P and Unc for AT-theory. (The connection between this
result and Bott periodicity is explained in [15].) The proof given there was
very indirect, relying eventually on the Bott periodicity theorem in [12]. We
plan, in a future paper, to give direct proofs of these homotopy equivalences,
and our proposed direct proofs are closely modelled on the proofs in this
paper. Partly because of this application, we avoid Atiyah's trick ([1, Section
1]) in our proof, giving instead at the appropriate point a direct calculation.

For readers interested only in C* -algebras, the logical prerequisites of this
paper are only the standard definitions of K0(A) and K{(A) in terms of pro-
jections and unitaries. (See for example Blackadar's book [4].) For readers
interested in a-C* -algebras, some of their basic properties are needed; see
[11, Sections 1, 3, and 5]. We also need the a- C*-algebra versions of two
basic lemmas on unitaries and projections, which appear as isolated lemmas
in two of our earlier papers; these are stated at the end of Section 1.

This paper is organized as follows. In Section 1, we state the definitions
of A-theory that we use, prove from scratch that they agree with the usual
groups for a C*-algebra, and state several necessary lemmas. Sections 2 and
3 contain the proofs of the "easy" and "hard" halves of Bott periodicity,
including, in Section 3, an explanation of the simplifications that appear in
the C* -algebra case. Section 4 shows how to simplify the derivation of the
basic properties of representable A-theory, including the equivariant case,
by using the approach of the first three sections.

1. Preliminaries

In this section, we give our definitions of representable A-theory, and
prove from scratch that they give the usual groups for C* -algebras. We
also give the analogs for a- C*-algebras of several standard lemmas on C*-
algebras.

Throughout this paper, A is the algebra of compact operators on a fixed
separable infinite dimensional Hilbert space, and A+ is the unitization of a
a- C*-algebra A. If A is unital, then U(A) is the unitary group and U0(A)
is the path component of 1 in U(A).

1.1 DEFINITION. Let A be a a- C*-algebra. Then RKQ(A) is the set of
homotopy classes in the set of projections p e M2((K <g> A)+) such that

^ ~ ( o o ) e A ^ ( ^ ® ^ ) - Also> RK\ (A) *s t h e s e t °f homotopy classes in the
set of unitaries u e (A <g> A)+ such that u — 1 € A ® A.

In both sets, we define addition to be direct sum, followed for RK0 by
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conjugation by the unitary

C~
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0
0
0

0
0
1
0

0
1
0
0

0
0
0
1

followed in both cases by an identification of M2(K) with K.
If <p: A —> B is a homomorphism of a- C*-algebras, then we define

9m:RKt{A) - RK,(B) by 9(\p]) = IWM^K) ® V)+{P)] for i = 0 and
for / = 1.

The definition of RK0 is taken from [13, Definition 2.2]; note that c
is chosen so as to conjugate ( 1 ! ) ® ( I ! ) t 0 1 © 0. The definition of
RKX is suggested by [13, Definition 3.3], with modifications to make it more
closely resemble the definition of RK0. Note that we do not need separate
definitions for nonunital A. This simplifies the bookkeeping in some proofs.

1.2 REMARK. We will use K0(A) and K{(A) to refer to the AMheory of
a C*-algebra A, defined as in, for example, [4, Sections 5.5 and 8.1]. In the
definition of K0(A), we will use projections and either unitary equivalence
or homotopy as appropriate (see [4, Section 4.6]).

It follows from [13] and [12] that RKt as defined here is the same as in
our earlier papers. It therefore follows that RKj(A) = Kj(A) for C*-algebras
A. We will, however, give a selfcontained proof in this section. Note that
the definition of RK{ (A) is very close to the usual definition of Kx (A) for A
unital. The definition of RK0(A) is not quite so close to the usual definition
of K0(A), but the examples in [12, Section 4] show that one can't expect to
do better.

For completeness, we show here that RKQ(A) and RK{(A) really are
functorial abelian groups.

1.3 LEMMA. RKO{A) and RKX(A) are abelian semigroups with identities
[ ( ' " ) ] and [1]. The map <pt is a well defined semigroup homomorphism
which depends only on the homotopy class of <p .

PROOF. It is immediate that addition in both sets is well defined. (It does
not depend on the choice of the isomorphism M2(K) = K, because any
two are homotopic.) That the identities are as claimed is proved by using a
homotopy from an isomorphism K —• M2(K) to the inclusion a w a e O of
K in M2(K). Associativity is proved similarly. Commutativity is obtained
via the standard homotopy from a © b to b®a. The statements about <pt

are trivial.
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1.4 PROPOSITION. RKO(A) is a functorial homotopy invariant abelian
group.

PROOF. It only remains to prove that inverses exist. We claim that — [p] =
IV I o) ^ ~ ^ H ? o ) l ' Eliminating the conjugation by c in the definition
of addition, we see that it suffices to find a homotopy of projections from
/ ? e ( i o) ( 1 - ^ ) (? o) t 0 ( o o ) e ( o o ) . differing from the latter by elements
of M4(K <g> A). Equivalently, we produce a homotopy from p © (1 - p) to

( o o ) ® ( o i ) ' d i f f e rm& f r o m t h e l a t t e r by elements of M4{K ® A).
Let k = TT/2 and define

cos(fo) 0 | sin(A;0 0
0 cos(fcf) | 0 sin(kt)

-sm{kt)
0

0
-sm(ki)

cos(kt)
0

0
cos(fcr).

which is a unitary path in Af4(C) from w0 = 1 to

• 0 I 1
I 0

0 I
1 I

1

0

Then wt(0 © (1 - p))w* is orthogonal to p © 0 for all t, and similarly with

(Q n) in place of p . Choose a unitary path t ^ xt in M4(C) with x0 — 1

and

(See the C*-algebra version of Lemma 1.9 below.) Define

qt = xt\p®0 + wt(0®{l- p))w*]x*.

Then qo=p®(l-p), qx = ( J J ) © ( J J ) (using (*) at t= 1 ) , a n d it

foUows from (*) that «, ~ ( O o) e (o l ) G M^K® A) f o r a11 l" T h e r e f o r e

t »-> qt is the required homotopy.

1.5 PROPOSITION. RKX{A) is a functorial homotopy invariant abelian
group, in which [M] + [v] = [uv].

PROOF. We only have to show that [M]+[I>] = [uv] for u, v e U((K®A)+)
with u-l,v-leK®A.lt suffices to prove that [u © v] = [uv © 1], since
we already know that [1] is the identity. The standard construction yields a
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homotopy t*-*zt from u®v to uv © 1 which satisfies zt - 1 e M2(K®A)
for all t.

We now prove the isomorphisms RKt(A) = T̂,.(̂ 4) for C*-algebras.

1.6 PROPOSITION. For any C*-algebra A, there is a natural isomorphism
RK0(A)*K0(A).

PROOF. Let p0 denote the projection (' ° J , in the 2 x 2 matrices over

any unital C* -algebra. Stability and the split exact sequence

give an isomorphism K0(A) s Ker(nJ c K0((K ® ^ ) + ) . Define O: RK0(A)
-> Ker(?rJ by <J>([p]) = [p] — [p0]. Then <X> is well defined because homo-
topic projections are equivalent, and the image of <J> really is in Ker(7tJ
because M2{n)(p) — p0 e M2(C). We now show that O is a homomor-
phism. Let i: C —» M2(C) be the inclusion in the upper left corner. Note
that i determines a homomorphism (i <8>id )̂*: RKQ(A) —> HK0(A/2(.d))
and an isomorphism (/ ® idjcg,^)*: ^ 0 ( ^ ® -4) -* K0(M2(K ® 4̂)) such that
(i ® idjfg,^)* o <&A — OM ,̂ > o (/ ® id^)*. Therefore it suffices to show that

Let p : M2(K) —> T̂ be an isomorphism, and let c be as in Definition 1.1,
so that [/?,] + [p2] = [M2({g> <8> \6.A)+){c(pl ® p2)c*)]. Now (i ® id^) o q>
is homotopic to idM (JC). Therefore the left hand side of (*) is

[c{px ®p2)c*] - [c(p0 ©po)c*]. Working in M4((K ® A)+), we see that this is
equal to [px @p2] - [p0 ®p0], which in turn is equal to the left hand side of

(*)•
To check that O is surjective, represent an arbitrary class n € K0(A) as

\p] - \p0], where p = ( J j £ ) € M2(Mn(A
+)) and p - p0 G AT2(Mn(^)).

(See the remark following [4, Definition 5.5.1].) Then e = (Pn®1 Pn) is a
\ Pi\ Pn J

projection in M2((K ® A)+) with ^ - p0 e A/2(^ ® A), and O([e]) = r\.
Finally, we prove that <P is injective. Let <!>([/?]) = 0. Then in some

Mn(M2((K ® A)+)), there is a homotopy t >-* qt from q0 = p ©p0 © • • • ©
p0 to <?, = /?0 © ••• © p0 {n summands in both expressions). Let n:
M2n((K ® A)+) -* M2n(C) be the quotient map. Find a continuous uni-
tary path t i-> M, in AT2lf(C) with M0 = 1 and utn(gt)u* — n(q0). (Note

that n(q0) = n{qx) since p- ( J J ) e M2(/i:®^).) Replace ?, by «(^«*,

regarding «f as being in M2/1((A"<8)/1)+). This does not change either q0 or
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qx, but now qt - p0 © • • • ®/?0 e M2n(K ® A) for all t. This homotopy now
shows that [p] + (n - l)[p0] = 0 in RKQ(A). So [p] = 0 .

1.7 PROPOSITION. For any C*-algebra A, there is a natural isomorphism

PROOF. See the remarks following [4, Definition 8.1.1].

The following two lemmas are the analogs for a- C* -algebras of two lem-
mas which are important in the ^-theory of C* -algebras. We state them
here for ease of reference, but refer to our earlier papers for the proofs. It
should be noted that the proofs do not depend on the theory developed in
those papers.

1.8 LEMMA ([ 12, LEMMA 1.11]). Let A -* B be a surjective homomorphism
ofunital a- C*-algebras. Then U0(A) —• UQ(B) is surjective.

1.9 LEMMA ([13, LEMMA 2.4]). Let A be a unital a-C*-algebra, and let
t •-» pt be a continuous path of projections in A. Then there is a continuous
path < W H ( ofunitaries in A such that uQ — 1 and utpou* =pt- If Pt-Po

is in an ideal I for all t, then we can take ut - 1 e / .

Finally, we record here a fact which has been used implicitly elsewhere
and will be needed later in this paper. Call a a- C* -algebra nuclear if it is
the inverse limit of a system of nuclear C*-algebras with surjective maps, as
in the remarks following [11, Proposition 3.3].

1.10 LEMMA. Let 0 -• / -> A ->• B -> 0 be an exact sequence of a-
C*-algebras, and let D be a a- C*-algebra. If A or D is nuclear, then

>B®D-*0 is exact.

PROOF. Write the exact sequence 0->7—* A—•2?->0 as an inverse limit
of exact sequences 0 -> In -* An -+ Bn -* 0 of C* -algebras, with all maps
in the inverse systems being surjective ([11, Proposition 5.3(2)]). Also write
D = lim Dn with all maps surjective. Then each sequence 0 —• In <8> Dn —•
An ® Dn -» Bn <8> Dn -+ 0 is exact, since An or Dn is nuclear. Also the maps
In+l ®Dn+l -> In ®Dn , etc., are all surjective, so by [11, Proposition 5.3(2)],
the inverse limit 0 — > I ® D ^ > A ® D - * B ® D - * 0 of these sequences is
exact.
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2. The Isomorphism of KQ(SA) with KX(A)

In this section we prove the easy half of Bott periodicity. No Toeplitz
operators will appear here.

In the AMheory of C*-algebras, this part is usually obtained from the
exact sequence

(*) * , ( / ) - KX(B) - KX{B/I) 4 *"„(/) -> K0(B) - K0(B/I)

corresponding to an exact sequence 0 —> / —> B —> 5 / / -• 0. One sets
/ = SA = C0((0, 1 ) ) ® ^ , 5 - C^ = C0([0, 1)) ® ,4, and B/I = A,
and observes that K0(B) = K{ (B) = 0 because B is contractible. (See for
example [19, Section 8].) Here we will follow the approach used in the proof
of [4, Theorem 8.2.2], and give a direct proof that RKQ(SA) £ RK^A). An
examination of the connecting homomorphism in (*) shows, however, that
our proof is essentially the same as the one in [19].

2.1 DEFINITION. Let A be a a- C*-algebra. Define A: RKX{A) -> RK0(SA)
as follows. Given u € U((K<g>A)+) with u— 1 e AT®,4, choose some contin-
uous path t~v(t) in U(M2({K®^)+)) with « ( O ) = ( J J ) , « ( l ) = ( j " )

for some x , and u(f) - ( 1 ° ) e ^ ( A " <8> A) for all f. (For example, we
could take
(•)

it\~(u °\ f cos(kt) sin(kt)\fu* 0 W cos(kt) sin(kt) Y
V()~\0 l)\-sin(kt) cos(kt)J\0 1) \-sin(kt) cos(kt)J '

with k — n/2, giving x = u*.) Define p(t) = v(t) (iVj v(t)*. As we show
in Lemma 2.3 below, p defines a class in RK0(SA), and we take A([M]) to
be that class.

Define v: RK0(SA) -» RKX{A) as follows. Let p e M2((K®SA)+) be

a projection such that p — ( l j e M2(K ® SA). Regard p as a function

from [ 0 , 1 ] to M2((K®A)+), with p(0)=p(l)=(l
0°Q) and p ( 0 - ( J J ) e

M 2 ( A T < S i ^ ) . U s e L e m m a 1 . 9 t o f i n d a u n i t a r y p a t h t K + w ( f ) i n A / 2
+

such tha t t;(0) = ( J J ) , « ( 0 ( J J ) «( / )* = / » ( 0 , and « ( 0 - ( J ° ) €
yl). Then D(1) = (" ° ) for some unitaries u, x € (A(8)^)+ , and we define

) to be the class of u in RKX(A).

The following lemma is needed to prove that A is well defined.

2.2 LEMMA. Let A be a pro- C*-algebra, let u e U((K ® A)+) satisfy
u - 1 e K ® A, and let t <-> vo(t) and t i-> i>,(f) be two unitary paths
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in M2((K®A)+) with vt(0) = ( j ° ) , vt(l) = ( j ° ) , and « , . ( / ) - ( J ° ) e
A / ^ A " <8> ^4) . 77ien r / iere e x w t e a c o n t i n u o u s / u n c t i o n ( s , t ) i-> i^ ( f ) e
U(M2((K <g> / 1 ) + ) ) w M u s ( f ) as given for s = 0 a/w/ 5 = 1 , w/fA ^ ( 1 ) =

) ( / o r a / / j , * e [ 0 , I ] 2 .,(0 - (J J) e J

PROOF. Multiplying vs(t) by vo(t)* for 5 = 0, 1, we reduce to the case in
which M = 1 and vo(t) = 1 for all t. Now let <p\ M2(K®A)+ -• (AT®,4)+ be
an isomorphism determined by an isomorphism <p0: M2{K) —> K. Note that
id^ (Jf) is homotopic to k •-> 0 © 9>0(/c), and furthermore that the homotopy
can be chosen to send 0 © A" into 0 © AT (as subsets of M2(K)) at every
stage. This homotopy gives a homotopy (s, t) i-> v^f) from * i-> Vj(?) to
/ H » 1 ® ^ (V , ( / ) ) . The condition on 0 © A" ensures that vs(l) has the form
1 ®~xs for every s. (Thus, J H ^ is a homotopy from x{ to 1.) The other
conditions of the lemma are trivially satisfied for the homotopy s •-> vs, and
thus we may assume, in addition to the above, that vl (t) — l@w(t) for some
unitary function w with u;(0) = 1 and w{t) - \ & K ® A. Now we simply
set us{t) = 1 © w(st), a homotopy which obviously satisfies the condition
required and gives v0 = 1 as required.

2.3 LEMMA. The maps A and v of Definition 2.1 are well defined natural
group homomorphisms.

PROOF. The only issue is well definedness. In the definition of X, an easy
calculation proves that p(t) - (* ° J is in M2{K <8> A) for all t, and equal

to 0 for t = 0, 1. It follows that p e M2((K ® SA)+) and p - Q ° ) €
Af2(A"(8i5yl), so that /? defines a class in RK0(SA). Next, if vQ and v, are
two choices for v, let vs(t) be as in the previous lemma, and observe that

the homotopy s i-> ps = vs (l ° J v* shows that A([M]) does not depend on
the choice of v . Finally, if s i-> us is a homotopy, then we can regard it as
an element ue U([K®C([0, I])®v4]+) such that u-\ eK®C([0, 1])®A.
Choose v as in the definition, for this u; then the homotopy s >-* ps, with

ps(t) = vs{t) (J J ) vs(t)*, shows that X([uQ}) - A([M,]) . This completes the
proof that k is well defined.

Now we show that v is well defined. It is clear that u - 1 e K ® A in
the definition, so that u defines an element of RKl (A). Now let v0 and

u, be two different choices for v , with ^.(1) = ( o' ° ) • Clearly vQ(t)*vx(t)

commutes with ( ! ! ! ) , and so has the form t »-> y{t)®z(t). Then t »-> M0;y(£)
is a homotopy from M0 to « j ; thus, [M0] = [M^ , and v([/?]) does not depend
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on v . That v([p]) depends only on the homotopy class of p is now proved
just as for X.

2.4 THEOREM. There is a natural isomorphism RK0(SA) s RK{{A).

PROOF. We only have to prove that k°v and voX are the identity maps.
To do so, simply use the same v in both parts of Definition 2.1.

3. The Isomorphism of KX(SA) with K0(A)

Here we prove the more difficult half of Bott periodicity, using Toeplitz
operators. In this section we take the suspension SA to be C0(S

l - {1}) ®A,
regarded as a subalgebra of C(Sl) ® A in the obvious way, where Si is the
unit circle in C. Also, z will denote the function z(£) = C, regarded as an
element of C(Sl) or of L 2 (5 ' ) .

3.1 DEFINITION. Let A be a a- C*-algebra. Define fi: RK0(A) -*

RKt(SA) as follows. Set p0 = ( J J ) € M2((K ® A)+). For p e

M2((K®A)+) with p-p0 G M2(K®A), define « € U(M2(K ® SA)+)
by u(C) = (l-/> + fp)(l-/>„ + &>„)*. Identify M2(K®SA)+ with (*®Sv4)+

via some isomorphism M2(K) -> A ,̂ and define P(\p]) to be the class of u
in RK^SA).

Before defining the inverse map, we introduce some notation. Let /*„ be
the representation of C(Si) on L = L2(Sl) by multiplication operators,
and let n denote the obvious extension to a homomorphism from C(Si) ®
(K ® A)+ to the multiplier algebra M(K(L2) ® (K ® A)+). Let q0 be the
projection from L2 to the Hardy space H2 , which is the closed linear span
of the functions z" for n > 0. Also let q = g0 <s> 1 be the corresponding
projection in M(K(L ) <g> (K (Si A)+). Using some isomorphism of (H2)x

with H2 , we identify K{L2) ®{K® A)+ with M2(K(H2) ®(K® A)+), and
also make the corresponding identification of the multiplier algebras. Thus
q becomes Q ° ) • Let

£: COS1) ®(K® A)+ -» M2(M(K(H2) ®(K® A)

be the composition of // with the identification just made.
Now define y: RK{{SA) -» i?A:o(^) as follows. Let v G

with v - 1 G tf <g> 5 ^ . View (K ® SA)+ as a subalgebra of COS1) ® (A ®
A)+. Define p = 7i(v)* r j / i ( t ) ) . As we prove in Lemma 3.2 below,
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p G M2{[K{H2) ®K® A]+) and p - (J J ) G M2(K(H2) ®K®A). Identify

AX#2) ® # ® ^ with A: ® y4 via an isomorphism K(H2) ®K -^ K, and let

y([u]) be the resulting class of p in RK0(A).

3.2 LEMMA. The maps fi and y of Definition 3.1 are well defined natural
group homomorphisms.

PROOF. Again, the only issue is well definedness. We do /? first. Using the
notation of the definition, we first have to check that «(£) — 1 G M2(K ® A)
for C G 5 1 , and M(1) = 1. The last is clear; for the first, a calculation shows
that

which is in M2{K ® A) because p -p0 is. It is now clear that a homotopy
of projections yields a corresponding homotopy of unitaries, so that /? is in
fact well defined.

We now turn to y. We first have to check, in the notation of the definition,
that p G M2([K(H2) ®K® A]+) and that p - (J J ) G M2(K(H2) ®K®A).
The first relation will follow from the second, and the second is equivalent
to fi{v)*qfi{v)-q e K(L2) ® K ® A . Since n(l) = 1, we get

(*) fi(v)*qn(v) -q = fi(v)*[qn(v - 1) - p(v - \)q].

Now for / G C(Sl) it is a standard fact that qQ/i0(f) - fio(f)qo G K(L2).
(To prove this: a calculation shows that qono(z") - fio(z")qo is an operator
of rank |« | , so the general result follows by continuity.) It follows that
qn{a) - fi(a)q G K(L2) ® K ® A for a G C(5*) ® A: ® ^ . Taking a = v - 1,

2we see that the right-hand side of (*) is in K(L2) ®K®A,as desired.
Next, observe that \p] does not depend on the choices of the isomorphisms

(H2)± = H2 or K(H2) ®K = K, since in both cases, any two isomorphisms
are homotopic. Finally, the construction of p also converts a homotopy
of unitaries into a homotopy of projections, showing that y([v]) as defined
depends only on [v].

3.3 REMARK. We will show in the next two lemmas that y = f}~1. Since
some of the calculations necessary in the a- C*-algebra case slightly obscure
the essential simplicity of the proof, we describe the C*-algebra case here.

Let A be a unital C*-algebra, and let p G A be a projection. Then the
unitary in the definition of /? is the direct sum of a (large) identity and the
unitary u(Q = i-p + CP in (SA)+ . We have n(u) = 1®(1 -p) + no(z)®p,
where fio{z) e L(L2) is the bilateral shift (multiplication by z). Thus,
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fi(u)*q/i(u) = q + e ® p, where e e L(L2) is the rank one projection onto
the space C • z~l. Therefore y([u]) = [e ®p] = [p], that is, y o 0(\p]) = [p].
It is easy enough to replace A by Mn(A), and to extend to classes of the
form [p{] — [p2] (it is convenient to take pl _L p2), so as to conclude in the
C*-algebra case that y o y? is the identity. (One uses the usual unitization
method to deal with the nonunital case.)

To see the connection with Toeplitz operators, consider the Toeplitz opera-
tor t = q/i(u)q associated to u, for some unitary u e (SA)+ . It is Fredholm
in the appropriate sense because u is invertible. If u — 1 —p + zp as above,
then t = q0® (I - p) + s ®p, where s = qotiQ(z)qo is the unilateral shift.
Thus, t is a partial isometry with index [1 - t*t] - [1 - tt*] — -[p]. (See
[18] for the appropriate notion of index.) It is easily shown in general that
y([u]) = -index(0 e Ko(A).

In the C* -algebra case, the proof of Bott periodicity is now most easily
completed by adapting Atiyah's trick from [1, Section 1]. The first thing to
notice is that the internal products appearing in [1] are unnecessary, and that
the external product KQ(A) x K0(B) -+ KQ(A <g>min B) is easily denned by
{[p]»[i]) '-*• [P ® Q] for unital A, B, and extended to the nonunital case
in the usual way. It follows that any natural map respects external products.
One then proves that Ao/?: K0(A) -> KQ(S2A) is given by the external product
with the class (A o /?)([1]) € ^T0(<S'2C), which is quite easy in the context of
the usual definitions of jK-theory for C*-algebras. Atiyah's argument now
shows that the known relation (y o v) o (A o fj) = id for any A, combined
with the nautrality of A o ft and you, implies that (A o ft) o (y o u) is also
the identity.

In the a-C*-algebra case, the factor (l-po + {po) complicates the calcu-
lations, because we cannot require that p commute with p0. (The algebra
C{X) in [12, Example 4.9] is a counterexample.) The argument for yof} = id
is, however, essentially the same. In the argument for f}oy = id, the formulas
for external products are not so nice, and provide an additional complication.
We find it simpler to give a direct proof. This proof is also a more useful
model for a direct proof of the corresponding part of the main result of [14],
mentioned in the introduction.

3.4 REMARK. We should also say something about the connection between
our proof and that of Cuntz in [5, Section 4]. Take his E to be Ko, and
interpret E_x as Kx, defined in terms of unitaries. Take the connecting
homomorphism d in the exact sequence (*) of Section 2 to be as in [4, Def-
inition 8.3.1]. We will describe the resulting isomorphism d in [5, Theorem
4.4]. For simplicity, take A to be unital, and consider only the classes of
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unitaries u e (SA)+ . Then

•"]-[(i
where o e M 2 ( r ® ^ ) is a unitary whose image in (S/l)+ is M©w*,and T,
as in [5], is the Toeplitz algebra, that is, the C*-algebra of the unilateral shift.
With the identifications made in our definition of y, we can take v — Ji(u).
Thus d = -y.

Cuntz proves directly that Et(T0) = 0, where To is a certain codimension
one ideal in T. The proof is not as transparent as our approach, but it is
short and actually proves a good deal more. In fact, Cuntz's proof applies
essentially as it stands to functors on the category of a- C*-algebras satisfying
his axioms (El), (E2), (E3) ([5, Section 2]). (One needs Lemma 1.10 here.)
In particular, his proof gives Bott periodicity immediately for the theory RKt

as defined in [12]. But it is not clear how to generalize it to Frechet algebras,
while the proof given here does generalize ([16]).

3.5 LEMMA. The maps of Definition 3.1 satisfy yofi = id.

PROOF. Let p0 = (l ° J as usual, and let p e M2((K®A)+) be a projection

with p-p0 € M2{K ®A). Let u = (1 -p + zp)(l -po + zpQ)* be the unitary
representing fl([p]) as in Definition 3.1; we postpone the application of the
isomorphism M2(K) —• K used there until the end of the proof.

We now compute n{u)*qn(u). For this we need some notation. Let etj e

L(L2) be the rank one partial isometry sending zj to z' and vanishing on
(CzJ)± , and abbreviate eu to et. Then

H(u)*qn{u) =

[1 9 (1 -PO) + li(z){\ «/>„)] . [ l ® ( l - p ) + fi(z)*(l

• [1 ® (1 -p) + n{z){\ *

[Q + e_{ ®p] • [1 ® (1 -p0) + n{z)\

®(l -po)p(l -pQ) + e_U0®{l -po)ppo

The first step is the application of n to u, the second is obtained by multi-
plying together the middle three terms, and the third by multiplying out and
identifying fi(z) as the bilateral shift. Now choose an isomorphism of (H2)±

with H2; we take the one sending z~' to z'~l for i > 1. Thus, the isomor-
phism K(L2) - M2(K(H2)) sends e0 to ( j j ) , e_x to ( J ° ) , eo_{ to
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(°o
e°) , and e_x 0 to f ° ° ) . We further remember that p0 = (l

Q°"\, and we

write p = ( J j | J|j ) . Writing elements of M2{K{H2) ® Af2(A) ® ̂ ) as 4 x 4

matrices, with 2 x 2 blocks representing elements of K(H2) ® M2(K) ® ^ ,
we get

H(uf qp(u) -

(1 e0

0
0

eos

®p2l

0 |
1 1
0 1
0 |

This projection is homotopic within the appropriate

0
eo®p2l

0

(1 e0)®

1
1

0

®

0

o-

0

0 |
1 1

0 1

eo®pl2

0

0 Q 22

0 ®

'Pn
0

o1

0
0
0
0

eo®p
0
0

eo®P

class to
0"
0
0
0
0
1
0
0

\Pn
1 0

1*21
1 0

12

22

0
1
0
0

Let H be the space on which A acts, and set //, = eQH2 ® H and H2 =

[(1 - eo)H
2 ® H] © [//2 ® H]. Then / is recognizable as the direct sum of a

copy of p in M2((K(Hi)®A)+) and a copy of (!!!) in -M2((-^(^2)®/*)+) •

Since H{=H2^H and (* °) is the identity of RK0(A), we have proved

that [fi(u)*qfi(u)] = [p], that is, that y o /?([p]) = [/?].

3.6 LEMMA. The maps of Definition 3.1 satisfy /? o y = id.

PROOF. Let v e (A" ® SA)+ be a unitary with v - 1 G A: ® 5 ^ . Then
°y{[v]) is the class of the unitary

C •-» M ( C ) = [1 - * * *

We may disregard the identification K(L2) s M2(K(H2)) s AT, and we
therefore regard M as an element of B = C{SX) ® M(K(L2) ® (AT ® y4)+).
We rewrite it as

M = [1 ® JM(U)]* • [1 - 1 ® q + z ® ^] • [

where ^0, (p0: C(5J) ® (A ® ^ ) + -> 5 are given by

t]0(b) = l®n(b) and ^,(6) = [1 - 1 ®q + z ® q]t}Q{b)[\ - 1 ®q + z® q]*.
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We now want to construct certain homotopies of homomorphisms from
C(Sl) ®(K® A)+ to B. It follows from [11, Proposition 3.3] (which is
standard for C*-algebras) and the fact that C(Sl) is the univeral C*-algebra
generated by a unitary (namely z) that unital homomorphisms (p: C(Sl) ®
(K ® A)+ -> B are in one to one correspondence with pairs consisting of a
unitary w e B and a unital homomorphism ~<p: (K® A)+ —• B such that w
commutes with all ^ (a ) . (The tensor product in [10, Proposition 3.3] is the
maximal tensor product, but, since C{Sl) is nuclear, all tensor products are
the same.) The relation between tp, w , and ^ is of course w — cp{z ® 1)
and Jp(a) — <p{\ ®a).

We will write elements of B = C{SX) ® M(K(L2) ®{K® A)+) as infinite
matrices relative to the basis of L2 consisting of the power of z, with lines
between the - 1 and 0 columns and between the - 1 and 0 rows to indicate
the indexing. The entries are of course elements of C(Sl) ® (K ® A)+.
The homomorphism J}0 obtained from the previous paragraph is just a i->
»/0(l ® a), and the unitary is the bilateral shift

1 0 I
1 0 I

1 I 0
1 0

0 1 • • .

One checks readily that y/0 = ri0, and that the corresponding unitary is

0
1 0 I

« r\ i

y/0{z®l) =

Define a unitary ct for t e [0, 1] by1 I
cos(fcf) I sin(fo)

1

0

0
1 0

z 0
1 0

1 • • .

ct =
| cos(fo)
I 1
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with k — n/2. Clearly ct commutes with all fi(l ® a), so we can define
homomorphisms r\t and y/t by r\t(z ® 1) = rjo(z ® \)ct and ^(1 ® a) =
»/0(l®a), and by ^,(z® 1) = yo(z® l)c, and y/t{\ ®a) = ?/0(l ®a). These
agree with the earlier definitions of ^0 and y/0 because c0 = 1.

We now verify an important property, namely that

(*) rit{b)-y/t{b)eCQ{Sl-{\})®K{L2)®{K®A) for b &C{SX)®(K®A).

First observe that

tlt(z = [rio(z

The first factor is in the ideal / = CQ(Sl - {0» <8> K(L2) ® (AT ® y4)+, whence
so is the product. It follows that T/,(Z" ® 1) - ^ ( 2 " ® 1) e / for all n.
Furthermore, for a € K ®A we have

Therefore

r,t(z" ® a) - ^r(zn ® a) = [rjt(z
n ® 1) - ^ ( z "

€ Co(5* - {0})

as desired. As a consequence, we obtain

o(l ® a)

that is, ^ ( W J V ^ W ) € (A(L2) ® A ® 5^) + with t]t{v)*y/t{v) - 1 e
A ® 5^4. We have thus constructed a homotopy from %{v)* y/Q(v) = u to
j / , (v)V,(v) .

Now compute

1 0 I
1 0 I

0 I 1
- 1 1 0 0

I 1 0

1
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0

1 0
1 0

0
- 1

z
0 0

1 0

1 •• .

Let eQ be the projection on the constant functions in L2, and let e0 =
1 ® e0 <8> 1. Then eQ commutes with r\x{z ® 1) and y/x{z <g> 1), also with
all t]0(\ ® a) , and hence with all »/,(£) and ^(fc). Furthermore, (1 -

and e0y/l(/<8>a)e0 = f ® e0® a. (One checks these formulas on z ® l and
on 1 ® a.) Therefore

1 I
1 I

I V

I 1
I 1

Lo
which we can regard as v © 1. Thus,

7 ° &{["]) = [*lo{v)*VQ(v)] = lii(v)*yf^v)] = [v © 1] = [v],

as desired.

3.7 THEOREM. There is a natural isomorphism RKX(SA) = RK0(A).

PROOF. According to the previous two lemmas, we have y o /? = id and
fi o y = id.

4. A Simplified Construction of Representable A^-Theory

In [12], we defined RK0(A), for A unital, to be the set of homotopy classes
in the unitary group of the stable outer multiplier algebra M{K®A)/{K®A).
This definition was motivated by the definition of representable ^-theory of
a space as the set of homotopy classes of maps to the Fredholm operators
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(see for example [7]), and by Mingo's work [9], which shows that this defini-
tion gives the correct answer for C*-algebras. The definition was extended
to nonunital a- C* -algebras by considering the unitization, and to RKX by
suspending. The proofs of the basic properties of the theory required some
messy lemmas involving multiplier algebras. (See [12, Section 1]). The proof
of the Milnor lim -sequence was messy, and the proof of Bott periodic-
ity was obtained by reduction to the C*-algebra case. Furthermore, in the
construction of equivariant representable AT-theory, done in [12, Section 5],
additional messy lemmas were needed and the group was assumed to be sec-
ond countable.

In this section, we show how to develop the basic properties of repre-
sentable ^-theory from Definition 1.1. This development is much cleaner
and more straightforward, and much more closely parallels the usual pre-
sentation of A>theory for Banach algebras or C* -algebras in, for example,
[19] and [4, Sections 5, 8, and 9]. This method also generalizes cleanly to
the equivariant case, for an arbitrary compact group. Most of the work has
already been done, either here or elsewhere. All that remains is to prove
one lemma, slightly modify several proofs, and put the pieces together in the
proper order.

4.1 LEMMA. Let 0 - » / - ^ i ^ B - » 0 be an exact sequence of a-C-
algebras. Then there is a natural exact sequence

• • • - RK0(S
2A) ^ RK0(S

2B) - RKQ(SI) ± RKQ(SA) ^ RKQ(SB)

PROOF. We only have to prove exactness at RK0(A); the rest follows from
the homotopy invariance of RK0 by a standard argument, given, for example,
in [8, Lemma 5 of Section 7]. (Also see [12, Corollary 2.5].) It is also trivial
to check that nr o it = 0. So we prove Ker(7iJ c Im(jJ .

Let p € M2((K 0 A)+) be a projection satisfying p - (l
Q °) e M2(K 0 A)

and nt([p]) — 0 . Then there is a homotopy t *-> qt from q0 = n(p) to

ql = [l
0°Q) in M2((K®B)+) such that « , - ( J J ) eM2(K®B). By Lemma

1.9, there is a unitary path 11-> vt in M2({K 0 B)+) with w, = 1, vtqtv* =

(o o) ' anc* vt ~ * e M2{K 0 B). Now use Lemma 1.8 to lift v to a unitary

path t H-> ut in M2((K0A)+) with M, = 1 and « ( - l e M2(K0A). The

homotopy t *-* utpu* shows that [p] = [UQPUQ] . Furthermore, ^(M^MQ) =
vo«ouo = (iS) ' s o V w o - ( J 2 ) £M2{K®I). Thus, [M^M*] is an element
o f RK0(I) w i t h i . ( ;
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4.2 Outline ofthe development of representable ^-theory for a- C*-algebras.
Step 1. Prove the two basic lemmas on projections and unitaries stated here
as Lemmas 1.8 and 1.9. Note that the profs of these lemmas are reasonably
simple, and do not depend on other material in the papers from which they
are taken.

Step 2. Define RK0(A) and RKX(A) fora a- C*-algebra A, and prove
that they are homotopy invariant functorial abelian groups, and agree with
the usual X-groups on C*-algebras, as was done here in Section 1.

Step 3. Prove Lemma 4.1, the one-sided long exact sequence for RK0.
Step 4. Prove Bott periodicity, RK^SA) ^ RKx_t{A), as in Sections 2

and 3. The part of the exact sequence shown in (*) of Lemma 4.1 is then
just enough to give the usual six term exact sequence

RKQ(I) • RK0(A) • RK0(B)

RK{(B)

Step 5. Prove the Mayer-Vietoris sequence: if A is a a- C* -algebra, and
Jo and / , are closed ideals in A, then there is a natural six term exact
sequence

RKQ(A/(J0 n /,)) - RK0(A/J0) © RKO{A/JX) - RK0(A/(J0 + / ,))

n /,)),
with the usual formulas for the maps. (See [12, Proposition 2.8].) Since we
already have the six term exact sequence (**), the proof of [17, Theorem
4.1] is directly applicable. Alternatively, the proof used for [12, Proposition
2.8] now gives the entire sequence without truncation, and [12, Lemma 2.6]
becomes trivial.

Step 6. Prove countable additivity: RK^^A^ £ ^RK^AJ, for a-
C*-algebras An [12, Proposition 3.1]. The proof is even simpler than the
proof given there.

Step 7. Prove the Milnor lim '-sequence ([12, Theorem 3.2]). The proof
is simpler than there. With A = lim An , and other notation as in [12], the
first part of that proof gives the exact sequence

0 -» lim lRKl_,(AH) -» RK^T) - lim RKt{An) -> 0

for i = 0 and i = 1, and the next part gives RK^T) = RK((A), again for
both i = 0 and i = 1. The rest of the proof in [12], consisting of special
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arguments for the case / = 0, is now superfluous. In particular, nothing
resembling the proof of [12, Lemma 2.6] is ever needed.

Step 8. Prove stability: RK{{K(H) ®A)^ RKt(A) for any Hilbert space
H. This is essentially immediate from the definition if H is finite-dimen-
sional or separable infinite dimensional. For nonseparable H, an attempt
to use the usual sort of approximation argument seems to require methods
similar to those of [13]. The simplest thing to do is to choose a rank one
projection e e K(H), observe that a t-* e ® a defines an isomorphism on
the A>theory of C*-algebras, and use the Milnor lim '-sequence to conclude
that this is also true for a- C* -algebras.

We now consider equivariant A-theory. For the rest of this section, we
let G be an arbitrary, but fixed, compact group. We assume that G acts
continuously on all a- C*-algebras ([12, Definition 5.1]), and that all homo-
morphisms are equivariant. We use [12, Lemma 5.2] without comment. The
superscript G indicates the fixed point algebra. G always acts by conjuga-
tion by the regular representation on K(L2(G)), trivially on K, C(Sl), etc.,
and via the diagonal action on tensor products. For equivariant ^-theory of
C*-algebras, we refer to [10].

4.3 DEFINITION. Let A be a a- C* -algebra with a continuous action of
G. Then RKQ(A) is the set of homotopy classes of G-invariant projections

p 6 M2([K <g> K(L2(G)) ® A]+) such that p - (J °) e M2(K <8> K(L2(G)) ®

A). Also, RK{ (A) is the set of homotopy classes in the set of G-invariant
unitaries u € [K ® K{L2{G)) ® A]+ such that u - 1 e K <8> K(L2(G)) ® A.
Additoin and induced maps are defined as for RK0(A) and RK^A), using
the isomorphism M2(K) = K exactly as before. We further let R(G) be the
representation ring of G (see [18]), and define an R(G)-module structure
on RK( (A) as follows. If V is a finite dimensional unitary representation
space of G, then V <S> L2(G) is isomorphic to the direct sum of dim(F)
copies of L2(G), so that K <8» K{L2{G)) s K ® K{L2{G)) ® K{V). Define
[V][p] = [\v <8>/7], where \v is the identity operator on V, and 1K ® p
defines a class in RK0 (A) by the isomorphism just obtained. Similarly define
[V][u] = [lr®u] in RKf(A).

4.4 THEOREM. (Compare [12, Theorem 5.8].) RK^ is a functor from a-
C*-algebras to R{G)-module satisfying the following properties.

(1) Homotopy invariance: if (p and y/ are G-homotopic homomorphisms,
then <pt = y/t.

(2) Long exact sequence. i / 0 - t / - » ^ - » B - » 0 is an equivariant
short exact sequence of a- C* -algebras, then there is a natural six term exact
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sequence

RKG(I) • RKG(A) • RKG(B)

RKG{B) f f

(3) Bott periodicity: there are natural isomorphisms RKf(SA) = RKG_X{A)
for every A.

(4) More Bott periodicity: if V is a finite dimensional complex vector
space on which G acts via a unitary representation, then there is a natural
isomorphism RKG{C0(V) <g> A) * RKG{A) for every A.

(5) Stability: if V is any Hilbert space on which G acts via a unitary rep-
resentation, then there is a natural isomorphism RKG(K(V) <8>A) = RKG{A)
for every A.

(6) Milnor lim '-sequence, if A = lim An equivariantly, then there is a
natural short exact sequence

0 - lim 1RKf_i(An) -+ RKG(A) -» lim RKG(An) -+ 0.

(7) Green-Julg-Rosenberg Theorem: there are natural isomorphisms
RKG(A) * RKt(C*{G, A)) for every A.

(8) Agreement with K-theory: if A is a C*-algebra, then there are natural
isomorphisms RK?(A) s K°(A).

(9) Exterior invariance. if two actions of G on A are exterior equivalent
([10, Definition 2.7.1]), then RKf(A) is the same for both actions.

PROOF. We immediately see that, as a group, RKf(A) has been essentially
defined to be RK;([K(L2(G)) <8> A]G). Thus, what we already know about
RKt gives us the fact that each RKf(A) is a functorial abelian group and
parts (1), (2), (3), and (6). We also get (5) this way, because if V is any
Hilbert space on which G acts via a unitary representation, then V <8>L2(G)
is isomorphic to a Hilbert direct sum of dim(F) copies of L2(G). For
part (8), an examination of the definition of KQ{A) in terms of projections
for a unital C*-algebra A ([10, Section 2.4]) shows that is also has been
essentially defined to be KQ([K(L2(G)) <8> A]G). (Note that L2(G) contains
every irreducible representation of G.) This gives (8) for unital algebras and
/ = 0, and the rest follows by taking unitizations and suspensions.

Next observe that the multiplications by [V] e R(G) are just the induced
maps on representable A-theory coming from a i-» \Y ® a, regarded as a
homomorphism from [K(L2(G)) ® A]G to [K(V) ® K(L2(G)) ® A)G. We
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omit the routine verification that these do in fact define an /?(<7)-module
structure on RKG(A). Naturality in parts (1), (2), (3), (5), and (6) now
ensures that the maps there are also all it(G)-module homomorphisms, and
comparison with [10, Chapter 2] does the same for (8).

For (7), we observe that noncommutative duality theory, as summarized
in [6, Section 1], implies that [K(L2(G)) ® A]G is naturally isomorphic to
C*(G, A) if A is a C*-algebra, and therefore also (by taking inverse limits)
if A is a a- C*-algebra. With the i?(G)-module structure on RKt{C\G, A))
defined as in [10, Section 2.7], the resulting isomorphism RKf(A) =
RKt{C*{G, A)) is an /?((7)-module homomorphism for C*-algebras, and
hence also for a- C* -algebras.

We now get (9) by observing that crossed products by exterior equivalent
actions are naturally isomorphic when A is a C*-algebra, and thus when A is
a a- C*-algebra. Only (4) remains; to prove that, recall that the isomorphism
fi: KG(A) -> Kf (C0(V) ® A) is given by the external product with a class
r\ e KQ(C0(V)). Write r\ = [p] — [q] with p and q projections in some
K(W)®C0(V)+,andlet <p, if/: A -» K(W)®C0(V)+®A be <p{a) = p®a and
y/(a) = q®a. Note that the images of p and q in K{W) are equivalent and
hence G-homotopic. Therefore, if n: K{W)®CQ{V)+®A -> K{W)®A is the
quotient map associated with the unitization Co( V)+ , we have nt o <pt = nt o
y/t, so that <p.-y/. defines a map RK°(A) -» RK°(K(W)®C0(V)®A). This
map is natural, and (using stability) is the isomorphism /? when A is a C*-
algebra, and thus by the Milnor lim'-sequence, <pm-i//t is an isomorphism
for any a- C* -algebra A.

4.5 REMARK. We never used the original Julg's Theorem (see [10, Section
2.6]) in our proof of the corresponding part (7) of the previous theorem.
In fact, our methods give an immediate proof of Julg's theorem for C-
algebras. One notices, for unital A, that KQ(A) is essentially defined to be
K0([K(L2(G)) <8> A]G). (This is best seen in [10, Section 2.4].) Noncommu-
tative duality theory, as in [6, Section 1], gives C*(G, C*(G, A, a), S) ^
K(L2(G)) <8> A equivariantly, where a is the action of G on A and d
is the dual coaction. It is trivial to check that for any coaction d of a
compact group G on a C*-algebra B, one has C*(G, B, S)G s B. So
[K(L2(G)) ®A]G * C'(G, A), and KG(A) s KQ(C*(G, A)).
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