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1. Introduction

Let T denote one of the n"~? trees with n labelled nodes that is rooted at a
given node x (see [6] or [8] as a general reference on trees). If i and j are any
two nodes of T, we write i ~ j if they are joined by an edge in T. We want to
consider random walks on T'; we assume that when we are at a node i of degree
d the probability that we proceed to node j at the next step is d; ! if i ~j and
zero otherwise. Our object here is to determine the first two moments of the first
return and first passage times for random walks on T when T is a specific tree and
when T is chosen at random from the set of all labelled trees with certain properties.

2. Some lemmas

We shall need the following results due to Clarke [2], Cayley [1], and Meir
and Moon [4]; we adopt the convention that (x), =1 and (x),=x(x — 1)
-+ (x — s + 1) for positive integers s.

Lemma 2.1, If1 £k £n— 1 and C(n, k) denotes the number of trees with
n labelled nodes in which a given node has degree k, then

_{n- 2 n—k—1
Cin, k) = (k _ 1) (n-1 .
LemMa 2.2. If 0k < n—1 and T(n,k) denotes the number of trees with
n labelled nodes that contain a given path of length k, then
T(n, k) = (k+ )n"~*"2,

Lemma 2.3. If 1 <k <n—1 and P(n, k) denotes the probability that the
distance between two given nodes in a tree with n labelled nodes is k, then
P(n,k) = (k + Dn~*(n — 2),_,.

! On leave from the University of Alberta, Edmonton, Canada.
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2] Random walks on random trees 43

3. Some identities
Riordan [9; §1.5] has established a number of identities involving Abel sums
of the type

-~ (N -
Anrosip) = T (4 O 4 DN = M),
M=0

In what follows we shall use the identities

(3.1)  Ap(r,s;0,—1) = s7'(r+s+ N)¥,

(3.2) Ap(r,s;1,—-1) =571 % W+ rIN),(r+s+ NN,

I

v=0
N
(3.3) AN, 50,00 = X (N)(r+s+N"77,
v=0
and
. _ N v+r+1 ([ r Neo
(G4 Ay s; 1,0) “Eo{( ’ )—(\2)}(N)v(r+s+N) .

We shall also use the identities

’ N-K N-K
(3.5) T o N-K)N"*=(N-K)-K ¥ (N-K),N~°
v=1 v=1
and
N-~-K N-K
(3.6) (N-K),N° =(N+K?) X (N-K),N*—KNN-K),
v=1 v=1

where 0 < K < N. The first of these follows easily if we use the fact that
(N — K), = (N - K)(N - K), — (N — K),;,; the case K = 0 of the second was
proved in [7] and the general case can be proved by induction on K.

Many of out results will involve binomial sums that are not easy to evaluate,
Their asymptotic behavior, however, can be determined, subject to some restric-
tions, by approximating them by an integral of the type

© 2
I, = f xte™* 2 dx;
4]
in particular, we shall frequently use the fact that if k = o(n*), then
n—k
Y (n—k),n~" ~ (zn)* as n and k tend to infinity
v=1

(see [5]). We shall state these asymptotic results without proof; the details of the
missing arguments are quite similar to those given, for example, in [7] and [5].
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4. First return times: the first moment

If y is any node of T let T, denote the subtree determined by those nodes z
of T such that the unique path in T from the root x to z passes through y. Let
v, denote the degree of y in T, and let w, denote the number of nodes in T,;
notice that T, = T, w, = n, and v, = d, but that v, = d, — 1 if y # x. If one
begins a random walk on the tree T, at the node y, let 4, denote the number of
steps before one returns to y for the first time; and if one begins a random walk
on the tree T at the node y, where y # x, let y,, denote the number of steps before
one reaches node x for the first time. Finally, we let M (8) denote the i-th factorial
moment of the random variable 6, for i = 1,2; for convenience, we write M,(x)
and M(yx) instead of M (4,) and M(y,,).

LEMMA 4.1. If y ~ x, then

M (yx) =1 + v, M(y)
and

My(yx) = v,Ms(y) + 20,M (Y)M 1(yx).

Proor. If fy =Pr{A, =i} for i=0,1,... and g; = Pr{y, =i} for i =1,2,...
let P(s;y) = X, fis' and P(s; yx) = X, g;s'. (Notice that f; = 0 if i is odd; we,
let f, =1 if w,=1, otherwise f, = 0.) We remark that it is easy to see that
P(1;y) = P(1;yx) = L.

In any random walk from y to x on T, either we go directly from y to x on
the first step, with probability p = (v, + 1)7!, or we commence a random walk
on T,, with probability g =1 — p, and return to y before starting, in effect
another random walk on T that eventually proceeds to x. This observation
implies that

P(s; yx) = ps + qP(s; y) P(s; yx).

The required results now follow easily from this relation and the fact that the
first and second factorial moments of A, and y,, are given by the first and second
derivatives of P(s;y) and P(s; yx) evaluated at s = 1. (We remark that the above
equation and the relation between the probability and binomial moment gener-
ating functions of a variable can be used to derive a simple relation between the
binomial moments of 4, and y,,.)

THEOREM 4.1. v, M (x) = 2(w, — 1).
Proor. If we begin a random walk on T, at node x, then the first step must

be to one of the v, nodes y such that y ~ x; consequently,

L=t T (L.

y~x
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This implies, in view of the first part of Lemma 4.1, that

o Mi(x)= X Q+o,M(y) =20, + X v,M(y).

y~x y~x

If we iterate the last expression we eventually obtain a contribution of two for
every node of T, other than x, as required. (This theorem also follows easily
from a fundamental result on Markov chains; see for example ,[3; p. 79, 120].)

THEOREM 4.2. If n > 1 and E(x,n) denotes the expected value of A, over all
the n"~2 trees T, then E(x,n) = 2n(1 — (1 — n~ )" 1),

COROLLARY 4.2.1. E(x;n) ~ 2(1 — e YHn.

ProoF. It follows from Lemma 2.1 and Theorem 4.1 that
1 "d n-1 i—k— 1 _
E(x,n)--;F:—zkE:1 (k_l)(n-—l) {2(n — Dk},
If we apply the binomial theorem to this sum we obtain the stated result.

5. First return times: the second moment

We now derive a formula for My,(x) — M (x); the variance V(x) of 1,
can then be determined by using the formula

V(x) = My(x) + My(x) — Mi(x).
THEOREM 5.1. 0 (M,(x) — M (x)) =8 X wy(w,—1).

y¥EX
ProOF. We first observe that

)'x(lx - 2) = v;l 2 (vyx + l)(‘yyx - 1) N

y~x

this follows, as before, from the fact that a random walk from x must go to one
of the v, nodes y such that y ~ x. This implies, in view of the second part of
Lemma 4.1, that

0, (My(x) — My(x)) = ) (vyMz()’) + 2UyM1(}")M1(yx) + M,(yx) —1).

y~x

Now v,M,(y) = 2(w, — 1) and M(yx) = 2w, —1, by Theorem 4.1 and Lemma
4.1, so this can be rewritten as

0 (Mp(x) = My(x)) = X (0,(M(y) — M (1)) + 8w,(w, — 1)).

y~vx

If we iterate this last expression we eventually obtain the stated result.

THEOREM 5.2 If 1 Sk <n—1 and D(x;n,k) denotes the expected value
of 1,(A, — 2) over all the C(n,k) trees T in which v, = k, then
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46 J. W. Moon [5]

n—-k—1

kKD(x;n,k)=4n—-1) X ovw+Nn—k-—D,n-1""
v=1
Proor. It follows from Theorem 5.1 that
0 kD(x;n,k) = 8kMy(w,) + 8(n — k — 1)M,(w,)

where y and z denote nodes that are, and are not joined to x in a random tree T
in which v, = k. If 1 £w £ n — k, then there are

n—2 w—2
(w _ 1) Cln—w,k—1Dw

such trees for which w, = w. The nodes other than y in T, can be selected in
( :lv : 21) ways and there are w"~ 2 possibilities for the tree T,; there are C(n —w,
k — 1) ways to form a tree on the n — w nodes not in T, in which node x is joined
to k — 1 other nodes. If we now join x and y we obtain a tree of the required type.
A slight modification of this argument shows that if 1 <w=<n—k—1 then
there are
(" - 2) C(n — w,k)(n — w — w2
w—1 ’

trees of the required type for which w, = w; the factor (n — w — 1) arises from the
fact that z is joined to any one of the n — w — 1 nodes other than x that are not
inT,.

The probability that a given node y is joined to x in a random tree T in which
v, = k is k(n — 1)” ! and the probability that a given node z is not joined to x is
(n — k — 1)(n — 1)~ L. It follows, therefore, from these considerations and Lemma

2.1, that
— n—k -2
MZ(Wy) = knC_—(n ]i() ;1 ("L _ 1) C(n —wk— l)ww~1(w _ 1)
—1 n—k _ k -1
= _k(n—il—)”:t"— z (n w1 ) wY i (w—1)(n—w— 1)y kvt
and w=1 /
— n—k-—1 _
MZ(Wz) = (n — k(i 1)2(,, k) ?1 (: _ %) C(n—w’k)ww—l(w _ 1)(" —w— 1)
n—k—1 _ k _ 2
= ——(n _ ll)-n_———"k—z z_:l (" o ) Ww_l(W — 1)(n — W - 1)n—w—k—1 .

The expression for M,(w,) can be simplified by using identities (3.1) and
(3.2) with N=n—k—-1, M=w—1, r=1, and s=k—1; the expression for
M ,(w,) can be simplified by using identities (3.3) and (3.4) with N=n—k — 2,
M =w~—1,r=1, and s = k. If we substitute these expressions in the right hand
side of equation (1) and simplify we obtain the stated result.
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COROLLARY 5.2.1. If 1 £k <n—1, then
kD(x; n,k)

n—k—1

=4 —D{m—1+k(k=3) Z (n—k—1),n—1)""—(k—3)(n— k — 1)}.

v=1
ProoF. This follows from Theorem 5.2 and identities (3.5) and (3.6).
COROLLARY 5.2.2. If k=o0(n?*) then kD(x;n,k) ~ (87)'/2n5/2.
THEOREM 5.3 If n > 1 and D(x;n) denotes the expected value of (A, — 2)
over all the n"~? trees T, then
4 n—2
D(x;n) = mEF 2 oo+ 3Nn—-1),{n""17" — (n—1)"" 17},

v=1

ProoF. The definition of D(x; n) implies that
1 n—1
D(x;n)=;l—n_—2 X C(n,k)D(x; n, k).
k=1

If substitute the expressions for C(n, k) and D(x; n, k) given by Lemma 2.1 and
Theorem 5.2, interchange the order of summation, and use the binomial theorem
to evaluate the resulting inner sum, we obtain the required formula for D(x;n).

COROLLARY 5.3.1. If n>1 then

n—1
D(x;n) =4n2(1 = 2(1 —n~Y)" + nf'_z =D {m—-n" 17— (n— 1))
v=0

ProoF. This follows from Theorem 5.3 and identities (3.5) and (3.6);it can

also be deduced from Corollary 5.2.1 in the same way as Theorem 5.3 was deduced
from Theorem 5.2.

COROLLARY 5.3.2. D(x;n)~ (8n)"/2(1 — e~ H)n*2,
The formulas established in the last two sections may be checked when
n = 3 by considering examples in Figure 1.

tree frequency Pr{l, =i} M, (x) M,(x) — M,(x)
L
b 2/3 ot 4 16
l. x L 0,i=2j+1
[ ]
| (1, i=2
P 13 {L o122 2 0
L )
D(x;3,1) =16 D(x;3,2) =0 D(x;3) =103

Fig. 1. First Return Times When n = 3.
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6. First passage times: the first moment

Let d(x, y) denote the distance between x and some other node y in the tree T.
If d(x, y) = k, where 1 < k < n — 1, there will be no loss of generality if we assume
the nodes of T are labelled so that x = 0, y = k, and the interior nodes of the
path from x to y are 1,2,---,k — 1 when k = 2. Let R, denote the tree T, and if
1 £i £k —1let R, denote the subtree determined by the nodes of T, that do not
belong to T, ;; let n; denote the number of nodes in R,.

THEOREM 6.1, If d(x,y) =k, then M (yx) = 2(ny + 2n, + --- + kn,) — k.
ProoF. We first observe that y,, =17, ,-1 + - + Y21 + V0.

Lemma 4.1 and Theorem 4.1 imply that M (i,i~1)=2m; —1 for 1 <i<k.
Hence M, (yx)=2(m, + m, + --- + my) — k. The result follows from the fact
that mi=ni+ni+1+--'+nkf01'1§i§k.

THEOREM 6.2. If 1 £k <n— 1 and E(y,x; n,k) denotes the expected value
Yy over all the P(n,k)n"~? trees T in which d(x,y) =k, then E(y,x;n,k)
= k(n—1).

Proor. If d(x, y) =k, then it is easy to show either by a direct argument or
by appealing to symmetry that M,(n,) =n(k +1)"*! for 1 <i £ k. The result
now follows from Theorem 6.1.

THEOREM 6.3. If x # y and E(y,x; n) denotes the expected value of y,, over
all the n®~? trees T, then

E(y,x;n)=n :7.3 (m,n~"*

v=2

COROLLARY 6.3.1 E(y,x;n) ~ (3n)t? n32,

Proor. It follows from Lemma 2.3 and Theorem 6.2 that

n—1 n—-1

E(y,x;n) = E P(n,k)E(y,x; k,n) = E k(k 4+ 1)(n), ;. n %1
The result now follows from identities (3.5) and (3 6) if we first replace k + 1 by v.

7. First passage times: the variance
Let us suppose, as in the first part of §6, that d(x,y)=k. If 1 £ i <k, let
Wi = 2, Wz(wz - 1)

where the sum is over all nodes z of the subtree R; defined in § 6 other than the
node i. We now derive a formula for the variance V(yx) of y,,.

https://doi.org/10.1017/5144678870001274X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870001274X

{81 Random walks on random trees 49

THEOREM 7.1, If d(x,y) =k, then

k k
Viyx) =8 X iW,+4 X (2i — Dwyw,; - 1.
i=1

i=1
Proor. Lemma 4.1 and Theorem 4.1 imply that
V(i,i — 1) = v{M,(i) — M,(D)) + 4wiw; — 1)

for 1 £ i £ k; therefore,

V(yx) = =21 {U (M) — M, (D) + 4ww, — 1)}

since the variables y, .-, ",721, 710 are independent. It follows from Theorem
5.1 that

v(M(D) — M (D)) = 8(W + - + W) + 8w i(Wi 1 — D + -+ + wi(w, — 1))

for 1 £ i < k. If we subtitute this expression for v,(M,(i) — M ,(i)) in the formula
for ¥V (yx) and simplify we obtain the stated result. (The formula in Theorem 7.1
would look a bit tidier if we included the term wy(w;—1) in the definition of W,;
the form we have given, however, is somewhat more convenient to use in proving
the next result.)

THEOREM 7.2. If 1Sk <n—1 and C(y,x;n, k) denotes the variance of
7y over all the P(n, k)"~ trees in which d(x,y) =k, then

D(y,x; n, k)
2 n—-k—1

= §kn 2 Grvr+2tk+ Qv+ (k2+k—=5))n—-k-)n""+ %kz(k — Dn.
v=1

PrOOF. We first derive a formula for M,(w,) over all the T (n, k) trees T that
contain a given path of length k joining nodes x and y where z is any given node
not in this path.

If1<w=Zn—k-—1, then there are

(n—k—2

w1 ) w* " 2(n —w)T(n — w, k)

such trees for which w, = w. The nodes other than z in T, can be selected in

( n—k I 2) ways and there are w” ™2 possibilities for the tree T,; there are
w —_—

T(n — w, k) ways to form a tree on the n — w nodes in T, that contain the given

path of length k joining x and k; and if we now join z to any one of the n — w
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nodes in this tree we obtain a tree T of the required type. It follows, therefore,
from these considerations and Lemma 2.2, that

1 mkft (n—k—2

Myw2) = 10 fl w—1

) w0 = D =T =k

x

w=1

il

n—k—2

1"y (n—k—Z) w¥ i w ~ D(n — w)rwTETL

n w—1

If d(x, y) = k, then the expected number of nodes other than i in any given subtree
R; of T is (n — k — 1)(k + 1) *. Consequently,

M W) = (n—k—1D(k+ 17 My(w,)

and this implies that

k
2) M, ( > iW,-) = 1k(n — k — )M ,(w,).
i=1

If we use identities (3.3) and 34) with N=n—-k—-2, M=w—-1,r=1,
and s = k + 1 to simplify the expression for M,(w,), we find that

/ k

n—k—1
,W) —1kn ¥ (w—=D@+2)(n—k—1na".
i=1 v=1
We now derive a formula for M,(w,) over all the trees T that contain a given
path of length k joining nodes x and y where i is the i-th node after x in this
path, If k + 1 — i £ w £ n — i, then there are

n—k—-1
— DT —w,i—1).
(w k1 i)) Tw,k—DT(n —w,i—1)
such treees for which w;=w. The last k+1—i nodes of the path joining x and y
are certainly in T; and the remaining w — (k + 1 — i) nodes in T; can beé selected in
( W —n (; i;i i)) ways; there are T(w, k — i) ways to form a tree T; on w nodes
that contains the subpath from i to k of the path from x to y and there are
T(n — w,i — 1) ways to form a tree on the remaining n — w nodes that contains
the subpath from x to i — 1 of the path from x to y; if we now join nodes i and
i — 1 we obtain a tree T of the required type. It follows, therefore, from these
considerations and Lemma 2.2, that if 1 £ i <k, then

n—k—1

1 n—i
Mo = z (w—(k+1—i)

T(m,K) yeis1-i )T(W,k— DT(n —w,i— Lw(w — 1)
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ik +1—1) g N

T (k4 Dnmkm2 T \M
where N=n—k—1 and M=w-—(k+1—1i). If we use identities (3.1) and
(3.2) with r =k + 1 — i and s = i to simplify the sum, we find that

)(M+k+1—i)M(M+k—i)(N—M+i)N_M_l

n(k +1—i) "7kt . —
T 'Elo w+k+1-dDn—k—-1D,n

My(w) =
—nlk+1—-)k+1)"1.

It is easy to show by induction that

_ﬁ Qi—1Dk+1~i) =k(k+1DQk+1)/6

and

x .
Qi—Dk+1—-0)>=k(k+ D2 +k+1)/6.
=1

These identities and the formula for M ,(w;) imply that

k
- My | T @i wtn - 1)}

n—k—1

=2ikn X {@k+1lpw+Ek*+k+1D}(m—k—1),n""+ 3k?(k — Dn.
v=1
The stated formula for D(y, x; n, k) now follows from Theorem 7.1 and equations
(2) and (3).
CoOROLLARY 7.2.1. If1£k<n-1and

n—k—1
H(n’ k) = z (n - k- 1)')"—11
then vt

D(y,x; n,k) = $kn{[3n 4+ (2k — 3)(k + 2)]H(n, k) — (k — 1)(n — 2k — 1)}.
ProoF. This follows from Theorem 7.2 and identities (3.5) and (3.6).
CoRrOLLARY 7.2.2. If k = o(n'/®), then D(y,x; n,k) ~ 2m)'/? kn5/?,

Tueorem 7.3. If x # y and D(y,x;n) denotes the variance of y,, over all
the n"~? trees T, then '

n n

D(y,x;n) = —516 TTS) 'Es v(v — 1) (v — 2) (802 + 19v — 49) (n),n"".
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ProoF. The definition of D(y, x; n) implies that

n—1

D(y,x; n) = El P(n,k)D(y,x; n, k) .

If we subtitute the expressions for P(n, k) and D(y, x; n, k) given by Lemma
2.3 and Corollary 7.2.1, interchange the order of summation, and evaluate the
resulting inner sum, we obtain the stated formula for D(y, x; n).

2
COROLLARY 7.3.1. S(y,x;n) ~ 135_'13

The formulas established in the last two sections may be checked when
n = 3 by considering the trees in Figure 2.

tree frequency Priy,, = i} M, (yx) V(yx)
l. 1,i=1
s x 1/3 { 1 0
|oy 0,i#1
" @Y, i=2j+1
by 1/3 3 8
Lx 0,i=2j
*x 0,i=2j+1
} 1/3 4 8
Ly L@y, i=2j
E(y,x;3,1) =2 E(y,x;3,2) = 4 E(y,x;3) = 2%
D(y,x:3,1)=4 D(y,x:3,2) =8 D(y,x:3) =5%

Fig. 2. First Passage Times When n = 3.
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