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SOME PROPERTIES OF THE ^-HERMITE 
POLYNOMIALS 

WM. R. ALLA WAY 

1. In t roduc t ion . Heine [7, p. 93] gave the following representation 
for the Legendre Polynomial {Pn(x)}n=o 

Pn(cos 6) = - ~-——j^r~rT\ J2fk,n sin {n + 2k + 1)0, 

where fo,n — 1 and 

1.3 . . . (2k - 1) (n + 1) ... (n + k) 
h'n 2A...2k (n + £)(» + | ) . . . in + k + J) * 

Szego [7, p. 96] generalized this result to the Ultraspherical Polynomial 
set {Cn

x(x)}n=o and obtained 

oo 

(1.1) (sin ^ " ^ ( c o s 0) = *Zfk,n sin (n + 2k + 1)9, 
* - 0 

where 

, x _ 22-2Xr(w + 2 X ) ( l - X)>(» + 1)> 
•h'n r (X)r(n + X + l ) * ! ( n + X + l ) * ' 

X > 0, r(X) is the ordinary Gamma function and (a)n is defined by 

/ 1 9x / s _ ia(a+l)... (a + n - 1) i f n = l , 2 . . . 
(1.2) W , - | j if « = 0. 

Equation (1.1) is the Fourier sine series expansion of (sin 0)2X_1Cn
x 

(cos 6). Because for each non-negative integer n,fk,n
x is eventually mono-

tonic in k and \imjc^œfktn
K = 0, it follows from classical Fourier analysis 

that (1.1) converges pointwise in (0, w) and uniformly on [e, IT — e] for 
0 < e < TT/2. 

It is well known [5, p. 281] that {Cw
x(cos 0)}S=o ls orthogonal on 

[0, 7r] with weight function (sin 0)2X_1. In [1] we identified a large class 
of orthogonal polynomial sets that satisfy an equation of the form (1.1). 

One of these polynomial sets turned out to be {Rn(x; q)}n=o defined 
by the three term recursion relation 

(1.3) (Ro(x;q) = 1 Ri(x; q) = 2x 
{Rn+1(x; q) = 2xRn(x; q) - (1 - gn)^n_i(x; q) (n ^ 1), 
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g-HERMITE POLYNOMIALS 687 

where \q\ < 1. From this three term recursion formula it is easy to show 
that 

lim 
((1 

q)/2)1/2x;q) 
- q)/2)ny2 Hn(x), 

where {Hn(x)}n=o is the Hermite polynomial set [5, p. 188]. It is for this 
reason that {Rn(x; q)}n=o is called the g-Hermite polynomial set. This 
polynomial set was first introduced by Roger [6, p. 319] in 1894. 

In this paper we study some of the properties of {Rn(x\ q)}. We show 
that {Rn(x; g)}^Lo is characterized by a Fourier sine series similar to 
(1.1) in which the coefficients satisfy a very simple recursion formula. 
From this fact we are able to deduce that {Rn(cos 6; q)}%=o is orthogonal 
on [0, 7r] with respect to the weight function 6\(z\ q1/2), where 0i(z; q) is 
one of the Theta Functions [5, p. 314], defined by 

(1.4) 6x(z, q) = 2 £ ( - l ) y + 1 / 2 ) 2
 sin(2W + 1)*. 

n=0 

Finally it is interesting to note that 

(1.5) Rn(x; q) = vnHn(u/v; q) = unHn(v/u; g), 

where u = x — \/x2 — 1, v = x + V 2 — 1 and Hn(x, q) is the poly­
nomial set first introduced by Szegô [8]. Hn(x, q) is defined by 

(1.6) Hn(x;q) = Z 
k=0 

where 

(1.7) 

and 

d - ^ ) ( i - r 1 ) . . . ( i - r f l ) 
(l-q)(l-q)...(l-q«) 

1. 

Carlitz [3] has made a detailed study of [Hn(x; q)}%Lo. By using his 
results, similar results can be obtained for {Rn(x\ q)}n=o- Also, Al-Salam 
and Chihara [2] have studied generalizations of {Rn(x; q)}n=o> 

2. Orthogonal i ty of {Rn(x; q)}n=o- For q a real number such that 

k\ < i. 

Ekf (n+l)/2i2 < CO . 

Thus by the Riesz-Fischer Theorem there exists w(cosd;q) Ç L2[0, ic] 
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such that for all non-negative integers n 

w{cos 6; q) sin((» + l)6)dd = y } * 
/Cjfc(fc+D/2 ^ _ cyy 

n 
n = 2k + 1. 

From a well known Theorem (see [4], p. 196), it follows that w(cos 0; g) £ 
£*[(), 7r]. We will show that {i^(s; q)}n=o is orthogonal on [ — 1, 1] with 
respect to the weight function w(x;q). 

In (2.1) let us make the substitution x = cos 6 to obtain 

(2.2) J_i«,(x;g)^(x)(fo = | J « = 2* + 1, 

where { Un(x)}n^o is the Chebychev polynomial of the second kind (see 
[5], p. 301), defined by 

Un(cosd) = s'm(n + 1)6/sin 6 (n ^ 0). 

We will extend this definition of { Un(x)}n=o to all integers n by defining 

(2.3) U-x(x) = 0 

Un{x) = -U-n-2(x). 

It is easy to show that these extended Chebychev polynomials of the 
second kind satisfy a three term recursion relation of the form 

U0(x) = 1 Ui(x) = 2x 
(2*4) \Un(x) = 2xUn-1(x) - Un-2(x). 

Both \Rn(x)}™=o and { Un(x))n=-ÇD are examples of symmetric orthog­
onal polynomial sets and thus for all n ^ 0 and 0 ^ n + 2k we have 

n-\-k 

tU2i+l(x). 

By using this equation and Equation (2.2) we obtain for n ^ 0 and 
n + 2k ^ 0 

(2.5) J w(x) q)Rn(x\ q)Un+2k+i(x)dx = 0. 

Let us define for n ^ — 1 and all integers k 

( f1 

/ 0 as , } I w(x;q)Rn(x',q)Un+2jc(x)dx, if n + 2k è 0 and n ^ — 1 
U - O j Afc.n = W - 1 

10, if w + 2* < 0 or w = - 1 . 
It follows directly from this definition and the three term recursion 

formulas for {Rn(x; q)}n=o and { Un(x)}n=-œ that, for all integer values k 

(2.7) fk,n+l = fk+l,n + fk,n ~~ ( 1 ~~ Qjfk+l.n-li 

for w ^ 0. 
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We will now prove by mathematical induction on n that for all non-
negative integers k 

(2.8) / , , - - ^ j -

where 

/OQÏ t„ i _ hl-a)(l-aq)...(l-aqk-1) * = 1, 2, 3 . . . 
(2.9) [a\k - | l k = Q 

For n = 0 we obtain from Definition (2.6) and Equation (2.2) 

/*,„ = J\(x)Uu(x)dx = (_i)Ya+1,/2, 

and for n = 1 we obtain in the same manner 

h,i=] w(x;q)Ri(x;q)Ui+u(x)dx 

-f 1 

w(x)(U2+2k(x) + U2k(x))dx 
-1 

k+1 (k+l)(k+2)/2 , / i \£ A;U+l)/2x _ / / -I \AH-i U+iMAH-^/z I / _ -j y È(t+i)/Z\ 

Thus Equation (2.8) is true for all non-negative integers k, and n = 0 
or 1. Now let us make the induction hypothesis that Equation (2.8) is 
true for all non-negative integers k, and n = 0, 1, 2 . . . m. By Equation 
(2.7) and the induction hypothesis we obtain for all non-negative 
integers k 

f ( - i ) H i r ( H , ) / > b U i , (-DV ( H 1 ) / 2bU 

fe]*+i to]* 
Now we have developed everything that is required in order to show 

that {Rn(x; g)}n=o is orthogonal on [—1, 1] with respect to the weight 
function w(x, q) which is defined by Equation (2.1). We will show that 
for m and n non-negative integers 

(2.10) J Rn(x;q)Rm(x;q)w(x;q)dx = 8n,m[q]n, 

where ôn>m is the Kronecher delta. It is an easy exercise to show that 
Equation (2.8) is equivalent to 

(2.11) J Rn(x;q)Um(x)w(x;q)dx = | r , m " l ^ 

From Equation (2.5) we know that for n ^ 0 and n + 2k ^ 0, 

Rn(x; q)Un+2k+i(x)w(x; q)dx = 0, 
/_ ' 
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and from Equations (2.8) and (2.6) we have that for » H , 

J Rn(x; q)Un(x)w(x; q)dx = [q]n. 

Thus in order to show that (2.10) is true we need only show that for 
all non-negative integers n, fktn = 0, for —n^2k< 0. We use mathe­
matical induction on n to show that for all negative integers k 

fk,n = 0. 

By the definition oîfktn as given by Equation (2.6) 

(2.12) / M = 0, 

for k a negative integer. Also for the case n = 1 we have from the defini­
tion of fk,n that/_i , i = 0, and from Equations (2.7) and (2.12) that 

for k a negative integer. Now let us make the induction hypothesis that 
for all negative integers k 

fk,n ~ 0, 

for n = 0, 1, 2 . . . m. By Equation (2.7) we have 

(2.13) fk,m+l = fk+l,m + fk,m ~~ (1 ~" Ç.jfk+l.m-l-

Thus from the induction hypothesis fk,m+i = 0 for k = — 2, — 3 . . . . 
For k == —1 we obtain from Equations (2.13) and (2.8), and the induc­
tion hypothesis 

/-l.m+l = fo,m — (1 — qm)fo,m-l 

= [q\m - (1 - qm)[q]m-i 
= 0. 

Therefore for all negative integers k and non-negative integers n, 
n>fk,n ~ 0. Therefore {Rn(x) ç)}S=o is orthogonal on [—1, 1] with respect 
to the weight function 

(2.14) w(x;q) = - V T ^ Z (-l)Vtt+1)/*I/„(*). 
7T k=0 

3. A characterization of {Rn(x ; g)}n=o- In this section we wish to find 
a characterization of {Rn(x; q)}n=o. 

Let the polynomial set {£w
x(#)}S=o be defined by 

En(x) = {1 + x)nCn\x) (»|0), 

where {Cn
x(x)}£=o is the Ultraspherical Polynomial set and (1 + X)n is 
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defined by (1.2). It follows directly from Equation (1.1) that 

(3.1) (1 -xr^E^x) = r ( ^ r X ( + + X + ) l ) v / r ~ 7 S ë«.«Un+n(x), 

where 

(3.2) gk,n = 7 gk-i,n+i. 

Equations (3.1) and (3.2) suggest studying the polynomial sets 
{An(x)}n=o such that there exists a function w(x) and a sequence of real 
numbers {aA}S=Q having the property that the Fourier Chebychev 
expansion of w{x)An{x) is 

o °° 
(3.3) w{x)An{x) ~ - YJ hk,nUn+2k(x) 

K k=0 

where 

ho,n * 0 

and 

(3.4) hktH = 4 - i , + i (* è 1, » è 0). 

In [1] we find the three term recursion relation of all these polynomial 
sets and study some of their properties. 

It is easy to show (see [1]) that all polynomial sets {An(x)}n=o that 
satisfy Equation (3.3) are symmetric and orthogonal on [ — 1, 1] with 
respect to the weight function w(x). It is well known (see [1]) that such 
symmetric orthogonal polynomial sets satisfy a three term recursion 
formula of the form 

( . (A0(x) = 1 Ai(x) = 2bxx 
{6'b) \An(x) = 2bnxAn.1(x) - KAn-*(x) in ^ 2), 

where {&n}£Lo and {An}£Lo are real non-zero sequences. 
We note from Equation (1.3) that in order for Equation (3.5) to be 

the three term recursion relation for {Rn(x)}n=o we require bx = b2 and 
2&i&2 > X2. Now we wish to prove the following theorem. 

THEOREM 3.1. Let {An(x)}n=o be any polynomial set satisfying Equa­
tions (3.3), (3.4) and (3.5). Also let {Rn(x)\n=o be defined by Equation 
(1.3). 

Rn(x; q) = An(x)lb? 

if and only if bi = &2 and 2ô]&2 > X2 > 0. 
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Proof. Because {An(x)}Z=o satisfies (3.3) and (3.5) we have for n = 2 

0 = J w(x)An(x)Un-2(x)dx = J w(x)[bnAn-i(x) (Un-i(x) 

+ E/n_3(ff)) — \nAn-2(x)Un-2(x)]dx = bnh0,n-l — An/*o,n-2. 

Thus if we let yn = An/£w we obtain 

/ »+i \ 

(3.6) A0,n = 7n+l/o,n-l = I I I 7 «1*0,0. 

By combining this equation with Equation (3.4) we obtain 

k n+k+l 

(3.7) hk,n = I ] «i I I 7^0,0. 

By definition 

hk,n = J w(x)y4n(x)^+2fc(x)^x. 

Thus by using this fact and the three term recursion formula for 
{An(x)}n=o and { £/»+2*(*0}SLo we obtain 

(3.8) hjc>n = bn{hk,n-i + & fc+i in_i) — \nhk+itn-2. 

Now by combining Equation (3.7) and (3.8) we obtain 

(3.9) yn+Kibn-1 — ak) + o#yn — 1 = 0 

for n = 1, 2, 3 . . . and 1 rg & = w, where 71 = 0 and m is defined to be 
the smallest integer such that am = 0. If all the a / s are not equal to 
zero then m = 00. 

In Equation (3.9) let n = 2 and 1, to obtain 

(3.10) 7*+2(62-
1 ~ otk) +y2ak - 1 = 0 (1 = k g w) 

and 

(3.11) a* = &!-1 - 7 , + r 1 (1 = fc = m) 

respectively. By using Equation (3.11) to eliminate ak from (3.10) and 
by using the fact that b\ = b2 and 71 = 0 we obtain 

(3.12) 7*+2 +yk+i(i2b1-
1 - 1) = 72 (0 ̂  ft = m). 

This is a first order non-homogeneous finite difference equation with 
constant coefficients. By using standard methods it is easy to show that 
its solution is 

(3.13) 7* = 6i[l - (1 - 72&1-1)*-1] (1 S k S m). 
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By using Equation (3.13) to substitute for yk in Equation (3.11) we 
obtain 

(3.14) an = (1 - 72br1)n{b1[l = y,brlY ~ l ]}"1 . 

Thus we see that m = 0 or m = co. By letting ft = 1 in Equation (3.9) 
and then using Equation (3.11) and (3.13) we obtain 

(3.15) bn = h. 

Finally we note that if we let q = 1 — 72&1""1 and use the fact that 
2bib2 > X2 > 0 we obtain 

\q\ < 1. 

From Equations (1.3), (3.5), (3.13) and (3.15) we obtain 

Rn(x;q) = A^/bS 

and from Equation (3.14) 

n 

(3.16) an = "n~"^ • 

The converse follows directly from the three term recursion relation 
(1.3) and the fact that \q\ < 1. 

4. The weight function w(x\ q). We now wish to study the weight 
function w(x\q) of {Rn(x\ q)}n=o-

From Equation (2.13) we see that the Fourier sine series expansion 
of w(cos 6; q) is given by 

C\ CO 

Î£/(COS0;<Z) = - £ ( - l )V a + 1 ) / 2 s in(2f t + 1)0 

= -g"1'8 E ( - l )V*)* +S+1/4sin(2/fe + 1)6. 
T jfc=0 

By comparing this with the Theta Function ^(z, q) as denned in 
[5, p. 314] by 

(4.1) 6,{z, q) = 2 £ (_l)V r e + 1 / 2 ) 2 sin(2« + 1)*, 
ra=0 

we obtain 

- 1 / 8 

(4.2) w(coss;ç) = 2 0i(z; g1/2). 
7T 

#1(2, ç) has an infinite product representation (see [5], p. 334) ; 

CO 

0i(z, q) = 2qVi sin z JJ (1 - ç2n) (1 - 2q2n cos 2s + ç4"). 
n = l 
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Therefore, 

(4.3) w(cosz; q) = - sin s I I (1 - «") (l ~ V cos 2z + gin). 

Equation (4.3) agrees with results obtained by Al-Salam and Chihara 
[2, p. 28]. 
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