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SOME PROPERTIES OF THE ¢-HERMITE
POLYNOMIALS

WM. R. ALLAWAY

1. Introduction. Heine [7, p. 93] gave the following representation
for the Legendre Polynomial { P, (x)}so

24...2n @ i ‘
35...2n+ 1) k;f’“" sin (n + 2k + 1)8,

P,(cos 6) = 4
™
where fy, = 1 and

f =1.3...(2k——1) m+1)...n+k)

o 24...26 (m+Hn+3) ... (n+Ek+ 1)
Szegd [7, p. 96] generalized this result to the Ultraspherical Polynomial
set { C,* (%) }s=0 and obtained

(L1)  (sin ) CMcos 8) = 3 fu. sin (n + 2k + 1)6,
%=0

where

v 27 4 20) (1 = N + 1),
Jer = TOOTt + %+ DEn + A+ 1),

N > 0, T'(N) is the ordinary Gamma function and (a), is defined by

_Ja@4+1) ... la+n—-1) ifn=12...
(a)"_{1 ifn = 0.

Equation (1.1) is the Fourier sine series expansion of (sin 6)2*~!C>?
(cos ). Because for each non-negative integer #, f; ,* is eventually mono-
tonic in & and limy_, . fr.* = 0, it follows from classical Fourier analysis
that (1.1) converges pointwise in (0, ) and uniformly on [¢, 7 — €] for
0<e<m/2

It is well known [5, p. 281] that {C,*(cos )} is orthogonal on
[0, w] with weight function (sin 6)2*~!, In [1] we identified a large class
of orthogonal polynomial sets that satisfy an equation of the form (1.1).

One of these polynomial sets turned out to be {R,(x;¢)}no defined
by the three term recursion relation

(1.3) {Ro(x;g) =1 Ri(x;q) = 2«
Rop1(x;q) = 20R, (x5 9) — (1 — ¢")Rp—1(x; ) (nz1),

(1.2)
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where |g| < 1. From this three term recursion formula it is easy to show
that

o Bel(0 = /2" 51g) _
f N (VP K

where { H,(x)}s-0 is the Hermite polynomial set [5, p. 188]. It is for this
reason that {R,(x; ¢)}wo is called the ¢-Hermite polynomial set. This
polynomial set was first introduced by Roger [6, p. 319] in 1894.

In this paper we study some of the properties of {R, (x; ¢)}. We show
that {R,(x; ¢)}r0 is characterized by a Fourier sine series similar to
(1.1) in which the coefficients satisfy a very simple recursion formula.
From this fact we are able to deduce that {R,(cos 6; ¢)}i, is orthogonal
on [0, m] with respect to the weight function 6;(z; ¢*/2), where 6,(z; q) is
one of the Theta Functions [5, p. 314], defined by

14) 6z @) = 2 (=1 sin(2n + 1)z.
n=0
Finally it is interesting to note that
(L3)  Ru(x;9) = v"H,(u/v; q) = w"H,(v/u; q),

where u = x — v/x? — 1, v = x 4+ +/* — 1 and H,(x, ¢) is the poly-
nomial set first introduced by Szego [8]. H,(x, g) is defined by

a6 Heo =3[

where

n|  (1=-g)1-=—¢""H...01=g¢g™
.7 [JQ‘ A-U-9...0=¢
and

Carlitz [3] has made a detailed study of {H,(x;q)}s0. By using his
results, similar results can be obtained for {R,(x; ¢)}5,. Also, Al-Salam
and Chihara [2] have studied generalizations of {R, (x; ¢)}aeo.

2. Orthogonality of {R,(x; ¢)}mo. For g a real number such that
lol <1,

Z ]gn(n+l)/2|2 < 0.

n=1

Thus by the Riesz-Fischer Theorem there exists w(cos 8; ¢) € L2[0, ]
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such that for all non-negative integers #

(—l)qu(k+l)/2 n = 2k
0 n =2k 4+ 1.
From a well known Theorem (see [4], p. 196), it follows thatw(cos 8; q) €
L0, 7]. We will show that {R,(z; ¢)}m0 is orthogonal on [—1, 1] with
respect to the weight function w(x; ¢).
In (2.1) let us make the substitution x = cos 8 to obtain

1 k_k(k+1) /2
_ _J(=Dfq n =2k
(2.2) f 2@ QUn(v)dr = { 0 n=2k+1,

where { U, (x)}oo is the Chebychev polynomial of the second kind (see
(5], p. 301), defined by

U,(cos 0) = sin(n + 1)6/sin 6 (n = 0).

2.1) f: w(cos 8; q) sin((n + 1)0)do = {

We will extend this definition of { U, (x)}n0 to all integers # by defining
23) U_i(x) =0
Un(x) = —U—n—2(x)'

It is easy to show that these extended Chebychev polynomials of the
second kind satisfy a three term recursion relation of the form

Up(x) =1 Ui(x) = 2x
(2.4) {Un(x) = 2 Up_1(x) — U,_a(x).

Both {R,(x)}s—0 and { U, (x)}5—. are examples of symmetric orthog-
onal polynomial sets and thus for all # = 0 and 0 < n + 2k we have

n+k

R, (x; Q) Upyortr(x) = ; Antr, 102041 ().

By using this equation and Equation (2.2) we obtain for » = 0 and
n+2=0

1
(2.5) f_IW(x; QR (x; @) Ungara(x)dx = 0.

Let us define for n = —1 and all integers k

1
f W(x;q) R (x;¢) Upyor(x)dx, ifn+2k=0andn = —1
—1

0, fn+2t<0 or n=—1.

It follows directly from this definition and the three term recursion
formulas for {R,(x; ¢)}meoand { U,(x)}5-_ that, for all integer values %

(2~7) fk,n+1 = flc+1,n + fkn - (1 - Q")fk+1,n—1,

forn = 0.
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We will now prove by mathematical induction on # that for all non-
negative integers k

(=1)"¢" " [glusa

2.8) fin= i ,
where
_Ja-a)Q—ag)...1—ad") kE=1,23...

For n = 0 we obtain from Definition (2.6) and Equation (2.2)

1
fk,o =f w(x) Us (x)dx = (_l)qu(Hl)ﬂy
1

and for » = 1 we obtain in the same manner

1
fen =f w(x; Q)R1(x; ¢) Urgor (x)dx

1
=f lw(x)(U2+2k(x) + U (x))dx

- ((_1)k+lq(k+1)(k+2)/2 + (__l)kgk(k+1)/2)
— (—'l)qu<k+l)/2(1 _ qk+1).

Thus Equation (2.8) is true for all non-negative integers k, and n = 0
or 1. Now let us make the induction hypothesis that Equation (2.8) is
true for all non-negative integers k, and » = 0, 1, 2. . . m. By Equation
(2.7) and the induction hypothesis we obtain for all non-negative

integers k
fk . (_1)k+lq(k+1)<k+2)/2[q]m+k+1 + ( l)k k(k+1)/2[g]m+,C
mr [glk lg]x
A== ) (=D gl
[qli+1 [g]k )

Now we have developed everything that is required in order to show
that {R,(x; ¢)}so is orthogonal on [—1, 1] with respect to the weight
function w(x, ¢) which is defined by Equation (2.1). We will show that
for m and » non-negative integers

(2.10) f _ Ba@ R QJw(x; )dx = bu,lgl,

where 8, ., is the Kronecher delta. It is an easy exercise to show that
Equation (2.8) is equivalent to

(2.11) f_l Ru(x; ) Un(x)w (x; g)dxe = {?q]n Omin;.< "

From Equation (2.5) we know that for » = 0 and » + 2k = 0,

1
f . Ry (x; ) Upporra (0)w(x; ¢)dx = 0,
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and from Equations (2.8) and (2.6) we have that for » = 0,

f . Ry(x; Q) Un(x)w(x; )dx = (gl

Thus in order to show that (2.10) is true we need only show that for
all non-negative integers #, fy, = 0, for —n < 2k < 0. We use mathe-
matical induction on # to show that for all negative integers &

fk,n = O'
By the definition of f , as given by Equation (2.6)
(212) fro=0,

for k a negative integer. Also for the case # = 1 we have from the defini-
tion of fy, that f_;,; = 0, and from Equations (2.7) and (2.12) that

fk,l = Oy

for k£ a negative integer. Now let us make the induction hypothesis that
for all negative integers k

forn =0,1,2...m. By Equation (2.7) we have

(2.13)  femtr = frrrm + fom — (1 — @) frs1,m—1.

Thus from the induction hypothesis fyp+1 = 0for k= —2, =3 ... .
For £ = —1 we obtain from Equations (2.13) and (2.8), and the induc-
tion hypothesis

f—-l,m+l = fo,m - (1 - Qm)fo,m—l
= [gln — (1 = ¢™)[qlm—
= 0.

Therefore for all negative integers k and non-negative integers u,
n, frn = 0. Therefore {R,(x; g)}a-0 is orthogonal on [—1, 1] with respect
to the weight function

(2.14) w(x;q) = %\/ 11—« i (=1 VU (x).

3. A characterization of {R,(x; ¢)}5-o. In this section we wish to find
a characterization of {R,(x; q)}meo.
Let the polynomial set { E*(x)}5—o be defined by

n!
(L + Ma
where {C,}(x)}7=0 is the Ultraspherical Polynomial set and (1 + A), is

E.\(x) = Ghx)  (n20),
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defined by (1.2). It follows directly from Equation (1.1) that

INA=1/273 A/ 2" (n + 2)) I N

where

k=2
= k 8rk—1,n+1.

(32) @

Equations (3.1) and (3.2) suggest studying the polynomial sets
{A,(x)}no0 such that there exists a function w(x) and a sequence of real
numbers {ax}n—o having the property that the Fourier Chebychev
expansion of w(x)A4,(x) is

(33) W@ ~ 2 Sl @)

where

hon # 0

and
(3.4) hin = axhi—1n41 (k21,7 20).

In [1] we find the three term recursion relation of all these polynomial
sets and study some of their properties.

It is easy to show (see [1]) that all polynomial sets {A4,(x)}sq that
satisfy Equation (3.3) are symmetric and orthogonal on [—1, 1] with
respect to the weight function w(x). It is well known (see [1]) that such
symmetric orthogonal polynomial sets satisfy a three term recursion
formula of the form

35 Aolx) =1 Ai(x) = 2bx
(3.5) A, (x) = 2b,xA,_1(x) — NA,_2(x) (n = 2),

where {b,}m0 and {\,}s_o are real non-zero sequences.

We note from Equation (1.3) that in order for Equation (3.5) to be
the three term recursion relation for {R,(x)}s-0 we require b; = b, and
2b1bs > N\o. Now we wish to prove the following theorem.

THEOREM 3.1. Let {A,(x)}ne0 be any polynomial set satisfying Equa-
tions (3.3), (3.4) and (3.5). Also let {R,(x)}me0 be defined by Equation
(1.3).

Rn(x; 9) = An(x)/bln
if and only if by = by and 2b,05 > Ny > 0.
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Proof. Because {4, (x)}7o satisfies (3.3) and (3.5) we have for n = 2

0 =f_lw(x)An(x)Un_2(x)dx =f_1w(x)[bnAn—1(x)(U ()

+ U —S(x)) - )\nAn—2(x)U—2(x)]dx = bnho,n—l - )\nhO,n—-Z'
Thus if we lety, = \,/b, we obtain

n+1
(3-6) hon = ’Yn+1fo,n—1 = ( 11 ’Yt)ko,o.
=

By combining this equation with Equation (3.4) we obtain

k n+k+1
(37) hk,n = H [} I_L ’)’jho,o.
i= J=

By definition

hk,n = f_ll 'ZU(x)An(x) Un+2k(x)dx

Thus by using this fact and the three term recursion formula for
{A4,(x)} o0 and { Upsor(x)}5=0 we obtain

(3.8)  hiw = bu(hn—1 + Pry10—1) — Nlgg1no
Now by combining Equation (3.7) and (3.8) we obtain
(39) 'Yn+k(bn_1 - ak) + ApYn 1=0

forn =1,2,3...and 1 £ k£ < m, wherey; = 0 and m is defined to be
the smallest integer such that «, = 0. If all the a,'s are not equal to
zero then m = 0.

In Equation (3.9) let # = 2 and 1, to obtain

(3.10) yip2(bo™ —ax) +y26a — 1 =0 (1 =k =m)
and
(311) ay = b7t — Yep1 ! (1 <k = m)

respectively. By using Equation (3.11) to eliminate a; from (3.10) and
by using the fact that b; = b2 and y; = 0 we obtain

(3.12) yry2 Fvitrly2dit — 1) =, 0=k =m).

This is a first order non-homogeneous finite difference equation with
constant coefficients. By using standard methods it is easy to show that
its solution is

(3.13) vx = 0y[1 — (1 — y2by™1)*—1] 1=k =m).
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By using Equation (3.13) to substitute for v, in Equation (3.11) we
obtain
(3.14) an = (1 — v2bi™1)*{ba[1 = 20y ™1)" — 1]} L.

Thus we see that m = 0 or m = 0. By letting £ = 1 in Equation (3.9)
and then using Equation (3.11) and (3.13) we obtain

(3.15) b, = b1

Finally we note that if we let ¢ = 1 — y20;7! and use the fact that
2bby > Ny > 0 we obtain

lg| < 1.

From Equations (1.3), (3.5), (3.13) and (3.15) we obtain
Ry(x;9) = Au(x)/br"

and from Equation (3.14)

g
3.16) a, = .
(3.16) o =

The converse follows directly from the three term recursion relation
(1.3) and the fact that |g| < 1.

4. The weight function w(x; ¢). We now wish to study the weight
function w(x; q) of {R,(x; q)}meo.

From Equation (2.13) we see that the Fourier sine series expansion
of w(cos 6; g) is given by

w(cos 0; q) = —12;’; (—1)%"* P 2sin (2k + 1)

- _i_g—lfs 3 (= DHg") H  sin 2k + 1)6.
k=

By comparing this with the Theta Function 6;(z, ¢) as defined in
[5, p. 314] by

@1) 6z, q) = 22 (—1)¢" sin(2n + 1)z,
n=0

we obtain

—1/8

42)  w(cosz;q) = L—0:(z;¢"%).

m™

601(z, ¢) has an infinite product representation (see [5], p. 334);

61(2,q) = 2¢"*sinz [ (1 —¢™ (A — 2¢™ cos 2z + ¢™).
n=1
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Therefore,

4.3) w(cosz;q) = —f;sin 2 [] 1 —¢)A — 2¢" cos 2z + ¢™).
n=1

Equation (4.3) agrees with results obtained by Al-Salam and Chihara
(2, p. 28].
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