THE FOURIER COEFFICIENTS OF THE MODULAR FUNCTION $\lambda(\tau)$

WILLIAM H. SIMONS

1. Introduction. In [3], H. Rademacher obtained a convergent series for the Fourier coefficients of the modular invariant $J(\tau)$. He found that in the expansion

$$
12^{3} J(\tau)=e^{-2 \pi i \tau}+\sum_{m=0}^{\infty} C_{m} e^{2 \pi i m \tau}
$$

the coefficients C_{m}, for $m \geqslant 1$, are given by

$$
\begin{equation*}
C_{m}=\frac{2 \pi}{\sqrt{ } m} \sum_{k=1}^{\infty} \frac{A_{k}(m)}{k} I_{1}\left(\frac{4 \pi \sqrt{ } m}{k}\right) \tag{1}
\end{equation*}
$$

where

$$
A_{k}(m)=\sum_{h \bmod k}^{\prime} e^{-\frac{2 \pi i}{k}\left(m h+h^{\prime}\right)}, \quad h h^{\prime} \equiv-1(\bmod k)
$$

and $I_{1}(z)$ is the Bessel function of the first order with purely imaginary argument. The Σ^{\prime} above indicates the sum with respect to h from 0 to $k-1$ with $(h, k)=1$. The purpose of this paper is to discuss the Fourier coefficients of $\lambda(\tau)$, the fundamental modular function of level (Stufe) 2. It may be defined either in terms of theta-functions by

$$
\begin{align*}
\lambda(\tau) & =\left[\frac{\theta_{2}(0 \mid \tau)}{\theta_{3}(0 \mid \tau)}\right]^{4}=\left[\frac{\sum_{n=-\infty}^{\infty} q^{\left(n+\frac{1}{2}\right){ }^{2}}}{\sum_{n=-\infty}^{\infty} q^{n^{2}}}\right]^{4} \tag{2}\\
& =16 q \prod_{n=1}^{\infty}\left(\frac{1+q^{2 n}}{1+q^{2 n-1}}\right)^{8}=16 q\left[1-8 q+44 q^{2} \ldots\right], q=e^{\pi i \tau},
\end{align*}
$$

or by the equivalent definition

$$
\begin{equation*}
\lambda(\tau)=\kappa^{2}(\tau)=\frac{e_{2}-e_{3}}{e_{1}-e_{3}} \tag{3}
\end{equation*}
$$

where e_{1}, e_{2}, e_{3} are given in terms of the Weierstrass elliptic function $p(z)$ and its periods $2 \omega_{1}, 2 \omega_{2}$ by

$$
e_{1}=\wp\left(\omega_{1}\right), \quad e_{2}=\wp\left(\omega_{1}+\omega_{2}\right), \quad e_{3}=\wp\left(\omega_{2}\right)
$$

The function $\lambda(\tau)$ is invariant under the substitutions of the congruence subgroup $\Gamma(2)$ of the full modular group defined by all substitutions

Received August 25, 1950. This paper was prepared for publication while the author was a member of the Summer Research Institute of the Canadian Mathematical Congress.

$$
\tau^{\prime}=\frac{a \tau+b}{c \tau+d}
$$

where a, b, c, d are integers with

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\bmod 2) \text { and }\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=1
$$

For the expansion

$$
\lambda(\tau)=\sum_{m=0}^{\infty} a_{m} q^{m}, \quad q=e^{\pi i \tau}
$$

it is found that

$$
\begin{equation*}
a_{m}=\frac{\pi}{8 \sqrt{ } m} \sum_{\substack{k=1 \\ k=2(\bmod 4)}}^{\infty} \frac{A_{k}(m)}{k} I_{1}\left(\frac{4 \pi \sqrt{ } m}{k}\right) . \tag{4}
\end{equation*}
$$

Moreover, it is found that the coefficients in the expansion of the reciprocal function

$$
\mu(\tau)=\frac{1}{\lambda(\tau)}=\frac{1}{16 q}+b_{0}+\sum_{m=1}^{\infty} b_{m} e^{\pi i \tau m}
$$

are given by the series

$$
\begin{equation*}
b_{m}=\frac{\pi}{8 m^{\frac{1}{2}}} \sum_{\substack{k=1 \\ k=0(\bmod 4)}}^{\infty} \frac{A_{k}(m)}{k} I_{1}\left(\frac{4 \pi \sqrt{ } m}{k}\right) \quad(m \geqslant 1) . \tag{5}
\end{equation*}
$$

The method is essentially the same as that used by Rademacher. In §2 the transformation equations for $\lambda(\tau)$ are derived. The main result (4) is obtained in $\S \S 3$ to 7 , and equation (5) is derived in $\S 8$.

The following interesting comment was made by the referee of this paper. "The function $j(\tau)$ is determined essentially by its pole at $\tau=\infty$; it is regular everywhere else. But $1 / j(\tau)$ has a pole at an interior point of the upper halfplane, and so $i t s$ Fourier coefficients cannot be determined in as simple a manner. This situation is unavoidable with functions of the full modular group, which has but one parabolic cusp. On the other hand, the subgroup which Dr. Simons treats has 3 parabolic cusps, so it is possible to define functions which together with their reciprocals are regular in the upper half-plane by merely placing the zero and the pole at the cusps of the fundamental region. $\lambda(\tau)$ is such a function. It is of interest to note that both for $\lambda(\tau)$ and $1 / \lambda(\tau)$, the Fourier coefficients are given by series which, apart from a trivial numerical factor, are composed of terms taken from the series for $j(\tau)$."

2. The transformation equations.

Lemma 1. Let a, b, c, d be integers with $a d-b c=1$, and let

$$
\mathrm{T}=\frac{a \tau+b}{c \tau+d}
$$

Then $\lambda(\mathrm{T})$ and $\lambda(\tau)$ are related as follows:
$\left.\begin{array}{c|c|c|c|c|c|c}\hline & 1^{\circ} & 2^{\circ} & 3^{\circ} & 4^{\circ} & 5^{\circ} & 6^{\circ} \\ \hline \begin{array}{cc}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)(\bmod 2) & \left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)\end{array} & \begin{array}{c}1 \\ 1 \\ 0\end{array} & 1\end{array}\right)$

The lemma is an immediate consequence of the transformation equations for the theta-functions and definition (2), or of the transformation equations for e_{1}, e_{2}, e_{3} and definition (3) [cf. 5].

Lemma 2.

$$
\lambda(2 \tau)=\left[\frac{\{1-\lambda(\tau)\}^{\frac{1}{2}}-1}{\{1-\lambda(\tau)\}^{\frac{1}{2}}+1}\right]^{2} .
$$

By definition,

$$
\lambda(2 \tau)=\frac{\theta_{2}^{4}(0 \mid 2 \tau)}{\theta_{3}^{4}(0 \mid 2 \tau)} .
$$

But [5, p. 268],
and

$$
2 \theta_{2}^{2}(0 \mid 2 \tau)=\theta_{3}^{2}(0 \mid \tau)-\theta_{4}^{2}(0 \mid \tau),
$$

and

$$
2 \theta_{3}^{2}(0 \mid 2 \tau)=\theta_{3}^{2}(0 \mid \tau)+\theta_{4}^{2}(0 \mid \tau)
$$

where

$$
\theta_{4}(0 \mid \tau)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}}=1-2 q+2 q^{4}-\ldots
$$

Therefore

$$
\begin{aligned}
\lambda(2 \tau) & =\frac{\theta_{3}^{4}-2 \theta_{3}^{2} \theta_{4}^{2}+\theta_{4}^{4}}{\theta_{3}^{4}+2 \theta_{3}^{2} \theta_{4}^{2}+\theta_{4}^{4}}, \\
\frac{\lambda(2 \tau)+1}{1-\lambda(2 \tau)} & =\frac{\theta_{3}^{4}+\theta_{4}^{4}}{2 \theta_{3}^{2} \theta_{4}^{2}}, \\
4\left[\frac{\lambda(2 \tau)+1}{1-\lambda(2 \tau)}\right]^{2} & =\frac{\theta_{3}^{4}}{\theta_{4}^{4}}+\frac{\theta_{4}^{4}}{\theta_{3}^{4}}+2 .
\end{aligned}
$$

Now

$$
\frac{\theta_{4}^{4}}{\theta_{3}^{4}}=\frac{\theta_{3}^{4}-\theta_{2}^{4}}{\theta_{3}^{4}}=1-\frac{\theta_{2}^{4}}{\theta_{3}^{4}}=1-\lambda(\tau),
$$

and therefore

$$
4\left[\frac{\lambda(2 \tau)+1}{1-\lambda(2 \tau)}\right]^{2}=1-\lambda(\tau)+\frac{1}{1-\lambda(\tau)}+2=\frac{[2-\lambda(\tau)]^{2}}{1-\lambda(\tau)},
$$

so that

$$
\frac{\lambda(2 \tau)+1}{1-\lambda(2 \tau)}=\frac{2-\lambda(\tau)}{2\{1-\lambda(\tau)\}^{\frac{3^{2}}{2}}} .
$$

Solving for $\lambda(2 \tau)$ gives

$$
\begin{aligned}
\lambda(2 \tau) & =\frac{\frac{2-\lambda(\tau)}{2\{1-\lambda(\tau)\}^{\frac{1}{2}}}-1}{\frac{2-\lambda(\tau)}{2\{1-\lambda(\tau)\}^{\frac{1}{2}}}+1} \\
& =\frac{2-\lambda(\tau)-2\{1-\lambda(\tau)\}^{\frac{1}{2}}}{2-\lambda(\tau)+2\{1-\lambda(\tau)\}^{\frac{1}{2}}} \\
& =\left[\frac{\{1-\lambda(\tau)\}^{\frac{1}{2}}-1}{\{1-\lambda(\tau)\}^{\frac{1}{2}}+1}\right]^{2} .
\end{aligned}
$$

Theorem 2. Let k be an even integer and h and h^{\prime} be integers such that $(h, k)=1$, and $h h^{\prime} \equiv-1(\bmod k)$. Further, let

$$
\tau=2\left(\frac{h}{k}+\frac{i z}{k}\right) \text { and } \mathrm{T}=2\left(\frac{h^{\prime}}{k}+\frac{i}{k z}\right) .
$$

Then

$$
\lambda(\mathrm{T})=\left\{\begin{array}{cl}
\lambda(\tau) & \text { if } k \equiv 0(\bmod 4) \\
1 / \lambda(\tau) & \text { if } k \equiv 2(\bmod 4)
\end{array}\right.
$$

Proof. Define

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
h^{\prime} & 2\left(-1-h h^{\prime}\right) / k \\
k / 2 & -h
\end{array}\right)
$$

Then a, b, c, d are integers with $a d-b c=1$, and

$$
\mathrm{T}=\frac{a \tau+b}{c \tau+d}
$$

If $k \equiv 0(\bmod 4)$, then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\bmod 2)
$$

and so by Lemma 1 , case $1^{\circ}, \lambda(\mathrm{T})=\lambda(\tau)$. If $k \equiv 2(\bmod 4)$, then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)(\bmod 2)
$$

and so by Lemma 1 , case $3^{\circ}, \lambda(T)=1 / \lambda(\tau)$.
Theorem 2. Let k be an odd integer and let h and h^{\prime} be integers such that $(h, k)=1$ and $h h \equiv-1(\bmod k)$.
Further, let

$$
\tau=\left(\frac{h}{k}+\frac{i z}{k}\right), \quad \mathrm{T}=\left(\frac{h^{\prime}}{k}+\frac{i}{k z}\right) .
$$

Then

$$
\lambda(2 \tau)= \begin{cases}{\left[\{\lambda(\mathrm{T})-1\}^{\frac{1}{2}}-\lambda(\mathrm{T})\right]^{4},} & \text { if } h \equiv 1(\bmod 2) \\ {\left[\frac{\{\lambda(\mathrm{T})\}^{\frac{1}{2}}-1}{\{\lambda(\mathrm{~T})\}^{\frac{2}{2}}+1}\right]^{2},} & \text { if } h \equiv 0(\bmod 2)\end{cases}
$$

Proof. Define

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
h^{\prime} & \left(-1-h h^{\prime}\right) / k \\
k & -h
\end{array}\right)
$$

Then a, b, c, d are integers with $a d-b c=1$ and

$$
\mathrm{T}=\frac{a \tau+b}{c \tau+d}
$$

(a). Let $h^{\prime} \equiv 1(\bmod 2)$ and $h \equiv 1(\bmod 2)$. Then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)(\bmod 2)
$$

and so by Lemma 1 , case $3^{\circ}, \lambda(\mathrm{T})=1 / \lambda(\tau)$. Substituting for $\lambda(\tau)$ in Lemma 2 gives

$$
\lambda(2 \tau)=\left[\frac{\{1-1 / \lambda(\mathrm{T})\}^{\frac{1}{2}}-1}{\{1-1 / \lambda(\mathrm{T})\}^{\frac{1}{2}}+1}\right]^{2}=\left[\frac{\{\lambda(\mathrm{T})-1\}^{\frac{1}{2}}-\{\lambda(\mathrm{T})\}^{\frac{1}{2}}}{\{\lambda(\mathrm{~T})-1\}^{\frac{1}{2}}+\{\lambda(\mathrm{T})\}^{\frac{1}{2}}}\right]^{2} .
$$

(b). Let $h^{\prime} \equiv 1(\bmod 2)$ and $h \equiv 0(\bmod 2)$. Then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)(\bmod 2)
$$

and so by Lemma 1 , case $6^{\circ}, \lambda(\tau)=1 /(1-\lambda(T))$. Substituting for $\lambda(\tau)$ in Lemma 2 gives

$$
\lambda(2 \tau)=\left[\frac{\left\{\frac{\lambda(\mathrm{T})}{\lambda(\mathrm{T})-1}\right\}^{\frac{1}{2}}-1}{\left\{\frac{\lambda(\mathrm{~T})}{\lambda(\mathrm{T})-1}\right\}^{\frac{1}{2}}+1}\right]^{2}=\left[\frac{\{\lambda(\mathrm{T})\}^{\frac{1}{2}}-\{\lambda(\mathrm{T})-1\}^{\frac{1}{2}}}{\{\lambda(\mathrm{~T})\}^{\frac{1}{2}}+\{\lambda(\mathrm{T})-1\}^{\frac{1}{2}}}\right]^{2} .
$$

(c). Let $h^{\prime} \equiv 0(\bmod 2)$ and $h \equiv 1(\bmod 2)$. Then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)(\bmod 2)
$$

and so by Lemma 1, case $4^{\circ}, \lambda(\tau)=1-1 / \lambda(T)$. Substituting in Lemma 2 gives

$$
\lambda(2 \tau)=\left[\frac{\{\lambda(\mathrm{T})\}^{-\frac{1}{2}}-1}{\{\lambda(\mathrm{~T})\}^{-\frac{1}{2}}+1}\right]^{2}=\left[\frac{\{\lambda(\mathrm{T})\}^{\frac{1}{2}}-1}{\{\lambda(\mathrm{~T})\}^{\frac{1}{2}}+1}\right]^{2} .
$$

(d). Let $h^{\prime} \equiv 0(\bmod 2)$ and $h \equiv 0(\bmod 2)$. Then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)(\bmod 2)
$$

and so by Lemma 1 , case $5^{\circ}, \lambda(\tau)=1-\lambda(T)$. Substituting in Lemma 2 then gives

$$
\lambda(2 \tau)=\left[\frac{\{\lambda(\mathrm{T})\}^{\frac{1}{2}}-1}{\{\lambda(\mathrm{~T})\}^{\frac{1}{2}}+1}\right]^{2} .
$$

By combining the results of (a) with (b) and those of (c) with (d) the result of the theorem is obtained.
3. The Farey dissection. Let

$$
\lambda(\tau)=f(q)=\sum_{m=1}^{\infty} a_{m} q^{m}, \quad q=e^{\pi i \tau}
$$

Then by Cauchy's theorem,

$$
a_{m}=\frac{1}{2 \pi i} \int_{C} \frac{f(q)}{q^{m+1}} d q,
$$

where the integration is in the positive sense around the circle C defined by

$$
|q|=e^{-2 \pi N^{-2}},
$$

N being a positive integer. Using the Farey dissection of order N of the circle C, the integral may be expressed by the sum

$$
a_{m}=\frac{1}{2 \pi i} \sum_{\substack{0 \leqslant n<k \leqslant N \\(h, k)=1}} \int_{\xi_{h, k}} \frac{f(q)}{q^{m+1}} d q,
$$

where $\xi_{h, k}$ is the Farey arc corresponding to the fraction h / k in the Farey series of order N, and

$$
q=\exp \left(-2 \pi N^{-2}+2 \pi i \frac{h}{k}+2 \pi i \phi\right)
$$

Then

$$
a_{m}=\sum_{\substack{0 \leqslant n<k \leqslant N \\(h, k)=1}} \int_{-\phi^{\prime}}^{\phi^{\prime \prime}} \frac{f\left(\exp \left\{-2 \pi N^{-2}+2 \pi i \frac{h}{k}+2 \pi i \phi\right\}\right)}{\exp \left(-2 \pi m N^{-2}+2 \pi i m \frac{h}{k}+2 \pi i m \phi\right)} d \phi
$$

where

$$
\begin{align*}
& \phi^{\prime}=\frac{h}{k}-\frac{h+h_{1}}{k+k_{1}}=\frac{1}{k\left(k+k_{1}\right)}, \tag{6}\\
& \phi^{\prime \prime}=\frac{h+h_{2}}{k+k_{2}}-\frac{h}{k}=\frac{1}{k\left(k+k_{2}\right)},
\end{align*}
$$

$h_{1} / k_{1}, h / k, h_{2} / k_{2}$ being three consecutive terms of the Farey series of order N. For convenience the double sum over $0 \leqslant h<k \leqslant N$ with (h, k) $=1$ will be denoted by

$$
\sum_{h, k}^{N}
$$

Then

$$
\begin{aligned}
a_{m}= & \exp \left(2 \pi m N^{-2}\right) \sum_{h, k}^{N} \exp \left(-2 \pi i m \frac{h}{k}\right) \\
& \cdot \int_{-\phi^{\prime}}^{\phi^{\prime \prime}} f\left(\exp \left\{-2 \pi N^{-2}+2 \pi i \frac{h}{k}+2 \pi i \phi\right\}\right) \exp (-2 \pi i m \phi) d \phi
\end{aligned}
$$

$$
\begin{aligned}
= & \exp \left(2 \pi m N^{-2}\right) \sum_{h, k}^{N} \exp \left(-2 \pi i m \frac{h}{k}\right) \\
& \cdot \int_{-\phi^{\prime}}^{\phi^{\prime \prime}} f\left(\exp \left\{2 \pi i\left(\frac{h}{k}+\frac{i z}{k}\right)\right\}\right) \exp (-2 \pi i m \phi) d \phi
\end{aligned}
$$

where $z=k\left(N^{-2}-i \phi\right)$.
Now let the above summation be broken up into three sums $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$, the first consisting of those terms for which $k \equiv 1(\bmod 2)$, the second those for which $k \equiv 2(\bmod 4)$, and the third those for which $k \equiv 0(\bmod 4)$, and let I_{1}, I_{2}, and I_{3}, be the parts of a_{m} corresponding to $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$ respectively. Thus

$$
a_{m}=I_{1}+I_{2}+I_{3}
$$

4. Evaluation of the integral I_{3}.

$$
\begin{aligned}
I_{3}= & \exp \left(2 \pi m N^{-2}\right) \sum_{\substack{k=1 \\
k=\theta(\bmod 4)}}^{N} \sum_{\substack{h=0 \\
h, k)=1}}^{k-1} \exp \left(-2 \pi i m \frac{h}{k}\right) \\
& \cdot \int_{--\phi^{\prime}}^{\phi^{\prime \prime}} f\left(\exp \left\{2 \pi i\left(\frac{h}{k}+\frac{i z}{k}\right)\right\}\right) \exp (-2 \pi i m \phi) d \phi .
\end{aligned}
$$

Applying the transformation equation of Theorem 1 , for $k \equiv 0(\bmod 4)$ gives

$$
\begin{aligned}
I_{3}= & \exp \left(-2 \pi m N^{-2}\right) \sum_{\substack{k=1 \\
k=0(\bmod 4)}}^{N} \sum_{\substack{h=0 \\
(h, k)=1}}^{k-1} \exp \left(-2 \pi i m \frac{h}{k}\right) \\
& \cdot \int_{-\phi^{\prime}}^{\phi^{\prime \prime}} f\left(\exp \left\{2 \pi i\left(\frac{h^{\prime}}{k}+\frac{i}{k z}\right)\right\}\right) \exp (-2 \pi i m \phi) d \phi
\end{aligned}
$$

But

$$
f(q)=\lambda(\tau)=\sum_{n=1}^{\infty} a_{n} q^{n}, \quad q=\exp \pi i \tau
$$

and so, substituting for $f(q)$, rearranging terms, and putting $\omega=N^{-2}-i \phi$, $z=k \omega$, gives

$$
I_{3}=\sum_{\substack{k=1 \\ k \equiv 0(\bmod 4)}}^{N} \sum_{\substack{h=0 \\(h, k)=1}}^{k-1} \int_{-\phi^{\prime}}^{\phi^{\prime \prime}} \sum_{n=1}^{\infty} a_{n} \exp \left\{\frac{2 \pi i}{k}\left(n h^{\prime}-m h\right)\right\} \exp \left(2 \pi m \omega-\frac{2 \pi n}{k^{2} \omega}\right) d \phi
$$

Use is now made of a result due to Estermann [2]. Let ϕ^{\prime} and $\phi^{\prime \prime}$ be defined by (6), and let

$$
g(N, \phi, h, k)= \begin{cases}1, & \text { for }-\phi^{\prime} \leqslant \phi \leqslant \phi^{\prime \prime} \\ 0, & \text { otherwise }\end{cases}
$$

Then

$$
g=\sum_{r=1}^{k} b_{r} \exp \left\{2 \pi i r h^{\prime} / k\right\}
$$

where h^{\prime} is an integer satisfying $h h^{\prime} \equiv-1(\bmod k)$, and b_{r} is independent of h and

$$
\sum_{r=1}^{k}\left|b_{r}\right|<\log 4 k
$$

Introducing the function $g(N, \phi, h, k)$ into the integral I_{3} gives

$$
\begin{aligned}
I_{3}= & \sum_{\substack{k=1 \\
k=0(\bmod 4)}}^{N} \sum_{n=1}^{\infty} a_{n} \int_{-1 / k(N+1)}^{1 / k(N+1)} \sum_{r=1}^{k} b_{r} \exp \left(2 \pi i r \frac{h^{\prime}}{k}\right) \\
& \cdot \exp \left(2 \pi m \omega-\frac{2 \pi n}{k^{2} \omega}\right)_{h \bmod k} \sum^{\prime} \exp \left\{\frac{2 \pi i}{k}\left(n h^{\prime}-m h\right)\right\} d \phi
\end{aligned}
$$

The latter sum is a Kloosterman sum $[4 ; 1]$ and has the estimate $O\left(k^{2 / 3+\epsilon} m^{1 / 3}\right)$. Also, the real part of $2 \pi n / k^{2} \omega$ is

$$
\begin{aligned}
\Re\left(\frac{2 \pi n}{k^{2}\left(N^{-2}-i \phi\right)}\right) & =\frac{2 \pi n N^{-2}}{k^{2}\left(N^{-4}+\phi^{2}\right)} \geqslant \frac{2 \pi n}{k^{2} N^{-2}+k^{2} N^{2} \phi^{\prime \prime 2}} \\
& \geqslant \frac{2 \pi n}{1+1}=\pi n
\end{aligned}
$$

and

$$
\Re(2 \pi m \omega)=2 \pi m N^{-2}
$$

Therefore

$$
\begin{aligned}
\left|I_{3}\right| & =O\left(\sum_{\substack{k=1 \\
k \equiv 0(\bmod 4)}}^{N} \sum_{n=1}^{\infty} a_{n} e^{-\pi n} \int_{-1 / k(N+1)}^{1 / k(N+1)} \sum_{r=1}^{k}\left|b_{r}\right| \exp \left(2 \pi m N^{-2}\right) k^{2 / 3+\epsilon} m^{1 / 3} d \phi\right) \\
& =O\left(\sum_{\substack{k=1 \\
k \equiv 0(\bmod 4)}}^{N} m^{1 / 3} k^{2 / 3+\epsilon} \log 4 k \int_{-1 / k(N+1)}^{1 / k(N+1)} d \phi\right) \\
& =O\left(\sum_{\substack{k=1 \\
k \equiv 0(\bmod 4)}}^{N} m^{1 / 3} k^{2 / 3+\epsilon} \frac{1}{k N}\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
\left|I_{3}\right| & =O\left(N^{-1} \sum_{k=1}^{N} k^{-1 / 3+\epsilon} m^{1 / 3}\right) \\
& =O\left(N^{-1 / 3+\epsilon} m^{1 / 3}\right)
\end{aligned}
$$

5. Evaluation of the integral I_{2}.

$$
\begin{aligned}
I_{2}= & \exp \left(2 \pi m N^{-2}\right) \sum_{\substack{k=1}}^{N} \sum_{\substack{h=0 \\
k \equiv 2(\bmod 4)=1}}^{k-1} \exp \left(-2 \pi i m \frac{h}{k}\right) \\
& \cdot \int_{-\phi^{\prime}}^{\phi^{\prime \prime}} f\left(\exp \left\{2 \pi i\left(\frac{h}{k}+\frac{i z}{k}\right)\right\}\right) \exp (-2 \pi i m \phi) d \phi
\end{aligned}
$$

Now, by Theorem 1 , with $k \equiv 2(\bmod 4)$, and putting $q=e^{\pi i \tau}$ and $q^{\prime}=e^{\pi i \mathrm{~T}}$,

$$
\begin{aligned}
f(q) & =\lambda(\tau)=\frac{1}{\lambda(\mathrm{~T})}=f_{1}\left(q^{\prime}\right)=\left[\frac{\theta_{3}(0 \mid \mathrm{T})}{\theta_{2}(0 \mid \mathrm{T})}\right]^{4} \\
& =\frac{1}{16 q^{\prime}}+\sum_{n=0}^{\infty} b_{n} q^{\prime n} \\
& =\frac{1}{16 q^{\prime}}+f_{2}\left(q^{\prime}\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
I_{2} & =\exp \left(2 \pi m N^{-2}\right) \sum_{\substack{k=1 \\
k=2(\bmod 4)}}^{N} \sum_{\substack{h=0 \\
(h, k)=1}}^{k-1} \exp \left(-2 \pi i m \frac{h}{k}\right) \\
& \cdot \int_{-\phi^{\prime}}^{\phi^{\prime \prime}} f_{1}\left(\exp \left\{2 \pi i\left(\frac{h^{\prime}}{k}+\frac{i}{k z}\right)\right\}\right) \exp (-2 \pi i m \phi) d \phi \\
& =I_{2,1}+I_{2,2},
\end{aligned}
$$

where $f_{1}\left(q^{\prime}\right)$ is replaced by $1 / 16 q^{\prime}$ in $I_{2,1}$ and by $f_{2}\left(q^{\prime}\right)$ in $I_{2,2}$. Introducing the function $g(N, \phi, h, k)$ into the integral $I_{2,2}$ and proceeding as in $\S 4$ gives

$$
\begin{aligned}
\left|I_{2,2}\right| & =O\left(\sum_{\substack{k=1 \\
k=2(\bmod 4)}}^{N} \sum_{n=0}^{\infty} b_{n} e^{-\pi n} \int_{-1 / k(N+1)}^{1 / k(N+1)} \sum_{r=1}^{k}\left|b_{r}\right| \exp \left(2 \pi m N^{-2}\right) k^{2 / 3+\epsilon} m^{1 / 3} d \phi\right) \\
& =O\left(\frac{1}{N} \sum_{k=1}^{N} k^{2 / 3+\epsilon} m^{1 / 3}\right) \\
& =O\left(N^{-1 / 3+\epsilon} m^{1 / 3}\right)
\end{aligned}
$$

Next,

$$
\begin{aligned}
I_{2,1}= & \exp \left(2 \pi m N^{-2}\right) \sum_{\substack{k=2 \\
k=1 \\
(\bmod 4)}}^{N} \sum_{\substack{h=0 \\
(h, k)=1}}^{k-1} \exp \left(-2 \pi i m \frac{h}{k}\right) \\
& \cdot \int_{-\phi^{\prime}}^{\phi^{\prime \prime}} \frac{1}{16} \exp \left(-2 \pi i\left\{\frac{h^{\prime}}{k}+\frac{i}{k z}\right\}\right) \exp (-2 \pi i m \phi) d \phi \\
= & \left.\left.\frac{1}{16} \sum_{k=2}^{N} \sum_{\substack{k=1 \\
h=0 \\
(\bmod 4) \\
(h, k)=1}}^{N-1} \exp \left(\frac{2 \pi i}{k}\right\}^{\prime} m h+h^{\prime}\right\}\right) \\
& \cdot \int_{-\phi^{\prime}}^{\phi^{\prime \prime}} \exp \left(2 \pi m \omega+\frac{2 \pi}{k^{2} \omega}\right) d \phi \\
= & \frac{i}{16} \sum_{k=2}^{k=1} \sum_{\substack{h=0 \\
k=1 \\
(\bmod 4) \\
(h, k)=1}}^{k-1} \exp \left(-\frac{2 \pi i}{k}\left\{m h+h^{\prime}\right\}\right) \\
& \cdot \int_{N^{-3}-i \phi^{\prime \prime}}^{N^{-3}+i \phi^{\prime}} \exp \left(2 \pi m \omega+\frac{2 \pi}{k^{2} \omega}\right) d \omega .
\end{aligned}
$$

Now,

$$
\phi^{\prime}=\frac{1}{k\left(k_{1}+k\right)} \leqslant \frac{1}{k(N+1)}
$$

and

$$
\phi^{\prime \prime}=\frac{1}{k\left(k_{2}+k\right)} \leqslant \frac{1}{k(N+1)},
$$

and so

$$
\begin{aligned}
& I_{2,1}=-\frac{1}{16} \sum_{k=2}^{k=1} \sum_{(\bmod 4)}^{N} \sum_{\substack{h=0 \\
(h, k)=1}}^{k-1} \exp \left(-\frac{2 \pi i}{k}\left\{m h+h^{\prime}\right\}\right) \\
& \cdot {\left[\int^{(0+)} \exp \left(2 \pi m \omega+\frac{2 \pi}{k^{2} \omega}\right) d \omega-\left\{\int_{N^{-2}+i \phi^{\prime}}^{N^{-2}+i / k(N+1)}\right.\right.} \\
&+ \int_{N^{-2}+i / k(N+1)}^{-N^{-2}+i / k(N+1)}+\int_{-N^{-2}+i / k(N+1)}^{-N^{-2}-i / k(N+1)}+\int_{-N^{-2}-i / k(N+1)}^{N^{-2}-i / k(N+1)} \\
&+\left.\left.\int_{N^{-2}-i / k(N+1)}^{N^{-2}-i \phi^{\prime \prime}}\right\} \exp \left(2 \pi m \omega+\frac{2 \pi}{k^{2} \omega}\right) d \omega\right] \\
&=\frac{\pi}{8} \sum_{k=2(\bmod 4)}^{N} A_{k}(m) \frac{1}{2 \pi i} \int^{(0+)} \exp \left(2 \pi m \omega+\frac{2 \pi}{k^{2} \omega}\right) d \omega \\
&+K_{1}+K_{2}+K_{3}+K_{4}+K_{5},
\end{aligned}
$$

where

$$
A_{k}(m)=\sum_{h \bmod k} \exp \left(-\frac{2 \pi i}{k}\left\{m h+h^{\prime}\right\}\right) .
$$

Now

$$
K_{1}=\frac{i}{16} \sum_{\substack{k=1 \\ k=2(\bmod 4)}}^{N} A_{k}(m) \int_{N^{-2}+i \phi}^{N^{-2}+i / k(N+1)} \exp \left(2 \pi m \omega+\frac{2 \pi}{k^{2} \omega}\right) d \omega .
$$

Introducing the function $g(N, \phi, h, k)$, and integrating from $N^{-2}+i / k(N+k)$ to $N^{-2}+i / k(N+1)$ gives

$$
\left|K_{1}\right|=O\left(\sum_{k=1}^{N} k^{2 / 3+\epsilon} m^{1 / 3} \log 4 k \frac{1}{k N}\right)=O\left(N^{-1 / 3+\epsilon} m^{1 / 3}\right) .
$$

Similarly

$$
\left|K_{\overline{5}}\right|=O\left(N^{-1 / 3+\epsilon} m^{1 / 3}\right) .
$$

In K_{2},

$$
\begin{aligned}
& \omega=u+i / k(N+1), \quad-N^{-2} \leqslant u \leqslant N^{-2}, \\
& \Re\left(\frac{1}{\omega}\right)=\frac{u}{u^{2}+1 / k^{2}(N+1)^{2}}<N^{-2} k^{2}(N+1)^{2}<k^{2},
\end{aligned}
$$

so that

$$
\left|\exp \left(2 \pi m \omega+\frac{2 \pi}{k^{2} \omega}\right)\right| \leqslant \exp \left(2 \pi m N^{-2}+2 \pi\right)
$$

Therefore

$$
\left|K_{2}\right|=O\left(\sum_{k=1}^{N} k^{2 / 3+\epsilon} m^{1 / 3} N^{-2}\right)=O\left(N^{-1 / 3+\epsilon} m^{1 / 3}\right)
$$

Similarly

$$
\left|K_{4}\right|=O\left(N^{-1 / 3+\epsilon} m^{1 / 3}\right) .
$$

Again, in K_{3},

$$
\omega=-N^{-2}+i v, \quad-\frac{1}{k(N+1)} \leqslant v \leqslant \frac{1}{k(N+1)} .
$$

Also

$$
\begin{aligned}
& \Re(\omega)=-N^{-2}<0 \\
& \Re\left(\frac{1}{\omega}\right)=\Re\left(\frac{1}{-N^{-2}+i v}\right)=\frac{-N^{-2}}{N^{-4}+v^{2}}<0,
\end{aligned}
$$

and hence

$$
\left|\exp \left(2 \pi m \omega+\frac{2 \pi}{k^{2} \omega}\right)\right|<1 .
$$

Therefore

$$
\left|K_{3}\right|=O\left(\sum_{k=1}^{N} k^{2 / 3+\epsilon} m^{1 / 3} \frac{1}{k N}\right)=O\left(N^{-1 / 3+\epsilon} m^{1 / 3}\right)
$$

Collecting these results together and substituting back into (7) gives

$$
I_{2,1}=\frac{\pi}{8} \sum_{k=2}^{k=1} \bmod _{k)}^{N} A_{k}(m) L_{k}(m)+O\left(N^{-1 / 3+\epsilon} m^{1 / 3}\right),
$$

where $[6 ; 3]$

$$
L_{k}(m)=\frac{1}{2 \pi i} \int^{(0+)} \exp \left(2 \pi m \omega+\frac{2 \pi}{k^{2} \omega}\right) d \omega=\frac{1}{k \sqrt{ } m} I_{1}\left(\frac{4 \pi \sqrt{ } m}{k}\right),
$$

$I_{1}(z)$ being the Bessel function of the first order with purely imaginary argument. Therefore

$$
I_{2}=\frac{\pi}{8 \sqrt{ } m} \sum_{\substack{k=1 \\ k=2 \\(\bmod 4)}}^{N} \frac{A_{k}(m)}{k} I_{1}\left(\frac{4 \pi \sqrt{ } m}{k}\right)+O\left(N^{-1 / 3+\epsilon} m^{1 / 3}\right) .
$$

6. Evaluation of the integral I_{1}. In I_{1}, consider

$$
\tau=\frac{h}{k}+\frac{i z}{k}, \quad \mathrm{~T}=\frac{h^{\prime}}{k}+\frac{i}{k z}
$$

so that

$$
f\left(\exp \left\{2 \pi i\left(\frac{h}{k}+\frac{i z}{k}\right)\right\}\right)=f(\exp \{2 \pi i \tau\})=\lambda(2 \tau)
$$

Then, by Theorem 2, with $t=\exp \pi i \mathrm{~T}$,

$$
\lambda(2 \tau)=1+16 i t^{\frac{1}{2}}-128 t+\ldots
$$

when $h^{\prime} \equiv 1(\bmod 2)$, and

$$
\lambda(2 \tau)=1-16 t^{\frac{1}{2}}+128 t-\ldots
$$

when $h^{\prime} \equiv 0(\bmod 2)$. These may be combined by replacing t by $t^{\prime}=\exp \pi i\left(\mathrm{~T}+h^{\prime}\right)=t \exp \left(\pi i h^{\prime}\right)$, giving

$$
\begin{aligned}
\lambda(2 \tau) & =1+16 t^{\frac{1}{2}}+128 t^{\prime}+\ldots \\
& =\sum_{n=0}^{\infty} u_{n} t^{t^{\prime} n} .
\end{aligned}
$$

Applying the transformations of Theorem 2 to the integrand of I_{1} gives

$$
\begin{aligned}
I_{1}= & \exp \left(2 \pi m N^{-2}\right) \sum_{\substack{k=1 \\
k=1}}^{N} \sum_{\substack{h=0 \\
(\bmod 2 \\
(h, k)=1}}^{k-1} \exp \left(-2 \pi i m \frac{h}{k}\right) \\
& \cdot \int_{-\phi^{\prime}}^{\phi^{\prime \prime}} \sum_{n=0}^{\infty} u_{n} \exp \left\{\frac{\pi i n}{2}\left(\frac{h^{\prime}}{k}+\frac{i}{k z}\right)\right\} \exp \left(\frac{\pi i n h^{\prime}}{2}\right) \exp (-2 \pi i m \phi) d \phi \\
= & \sum_{\substack{k=1 \\
k=1}}^{N(\bmod 2)} \sum_{n=0}^{\infty}(-1)^{n h^{\prime} / 2} \int_{-1 / k(N+1)}^{1 / k(N+1)} \sum_{r=1}^{k} b_{r} \exp \left(2 \pi i r \frac{h^{\prime}}{k}\right) \\
& \cdot \exp \left(2 \pi m \omega-\frac{\pi n}{2 k^{2} \omega}\right) \sum_{\substack{h=0 \\
(h, k)=1}}^{k-1} \exp \left\{\frac{\pi i}{2 k}\left(n h^{\prime}-4 m h\right)\right\} d \phi
\end{aligned}
$$

Now the latter sum in the integrand is an incomplete Kloosterman sum for which we have $[2 ; 4]$ the estimate

$$
O\left(k^{2 / 3+\epsilon}(4 m, k)^{1 / 3}\right)=O\left(k^{2 / 3+\epsilon} m^{1 / 3}\right)
$$

Also

$$
\Re\left(\frac{\pi n}{2 k^{2} \omega}\right)=\frac{\pi n N^{-2}}{2\left(k^{2} N^{-2}+k^{2} N^{2} \phi^{\prime \prime 2}\right)} \geqslant \frac{\pi n}{4}
$$

Therefore

$$
\begin{aligned}
\left|I_{1}\right| & =O\left(\sum_{k=1}^{N} k^{2 / 3+\epsilon} m^{1 / 3} \sum_{h=0}^{\infty}\left|u_{n}\right| e^{-\pi n / 4} \exp 2 \pi m N^{-2} \int_{-1 / k(N+1)}^{1 / k(N+1)} d \phi\right) \\
& =O\left(\frac{1}{N} \sum_{k=1}^{N} k^{-1 / 3+\epsilon} m^{1 / 3}\right) \\
& =O\left(N^{-1 / 3+\epsilon} m^{1 / 3}\right) .
\end{aligned}
$$

7. The convergent series for a_{m}. Collecting together the results of $\S \S 4,5$, and 6 , we have

$$
\begin{aligned}
a_{m} & =I_{1}+I_{2}+I_{3} \\
& =\frac{\pi}{8 \sqrt{ } m} \sum_{\substack{k=1 \\
k \equiv 2(\bmod 4)}}^{N} \frac{A_{k}(m)}{k} I_{1}\left(\frac{4 \pi \sqrt{ } m}{k}\right)+O\left(N^{-1 / 3+\epsilon} m^{1 / 3}\right) .
\end{aligned}
$$

Finally, letting $N \rightarrow \infty$, we get

$$
\begin{equation*}
a_{m}=\frac{\pi}{8 \sqrt{ } m} \sum_{\substack{k=1 \\ k \equiv 2 \\(\bmod 4)}}^{\infty} \frac{A_{k}(m)}{k} I_{1}\left(\frac{4 \pi \sqrt{ } m}{k}\right) . \tag{4}
\end{equation*}
$$

As a numerical example we may compare the actual value of a_{16} with the value obtained from the series (4). Thus $a_{16}=-316342272$. Using the series for a_{16}, we have

$$
\begin{array}{cc}
a_{16}=\frac{\pi}{32} \sum_{\substack{k \equiv 2=1 \\
k=1 \\
\bmod 4)}}^{\infty} \frac{A_{k}(16)}{k} I_{1}\left(\frac{16 \pi}{k}\right), \\
\frac{\pi}{64} A_{2}(16) I_{1}\left(\frac{16 \pi}{2}\right) & =-316342253.1678 \\
\frac{\pi}{192} A_{6}(16) I_{1}\left(\frac{16 \pi}{6}\right) & =- \\
\frac{\pi}{320} A_{10}(16) I_{1}\left(\frac{16 \pi}{10}\right) & =-
\end{array}
$$

8. The reciprocal function $\mu(\tau)$.

Theorem 3. Let

$$
\begin{aligned}
\mu(\tau) & =g(q)=\frac{1}{\lambda(\tau)}=\left[\frac{\theta_{3}(0 \mid \tau)}{\theta_{2}(0 \mid \tau)}\right]^{4} \\
& =\frac{1}{16 q}\left(1+8 q+20 q^{2}+\ldots\right) \\
& =\frac{1}{16 q}+\sum_{m=0}^{\infty} b_{m} q^{m}
\end{aligned}
$$

Then, for $m>0$,

$$
\begin{equation*}
b_{m}=\frac{\pi}{8 \sqrt{ } m} \sum_{\substack{k=1 \\ k=0 \\(\bmod 4)}}^{\infty} \frac{A_{k}(m)}{k} I_{1}\left(\frac{4 \pi \sqrt{ } m}{k}\right) . \tag{5}
\end{equation*}
$$

Proof. Since the analysis in this case is essentially the same as for $\lambda(\tau)$, we will only outline the proof. The transformation equations for $\mu(\tau)$ may be obtained directly from those for $\lambda(\tau)$. Now, by Cauchy's theorem, for $m>0$,

$$
b_{m}=\frac{1}{2 \pi i} \int_{C} \frac{g(q)}{q^{m+1}} d q
$$

where, as before, C is the circle of radius $|q|=\exp \left(-2 \pi N^{-2}\right)$. Therefore

$$
\begin{aligned}
b_{m}= & \exp \left(2 \pi m N^{-2}\right) \sum_{k=1}^{N} \sum_{\substack{h=0 \\
(h, k)=1}}^{k-1} \exp \left(-2 \pi i m \frac{h}{k}\right) \\
& \cdot \int_{-\phi^{\prime}}^{\phi^{\prime \prime}} g\left(\exp \left\{2 \pi i\left(\frac{h}{k}+\frac{i z}{k}\right)\right\}\right) \exp (-2 \pi i m \phi) d \phi
\end{aligned}
$$

Let $b_{m}=b_{m, 1}+b_{m, 2}+b_{m, 3}$, where $b_{m, 1}$ consists of the terms of b_{m} for which $k \equiv 1(\bmod 2), b_{m, 2}$ those for which $k \equiv 2(\bmod 4)$, and $b_{m, 3}$ those for which $k \equiv 0(\bmod 4)$. Then it may be shown that

$$
b_{m, 1}=O\left(N^{-1 / 3+\epsilon} m^{1 / 3}\right), \quad b_{m, 2}=O\left(N^{-1 / 3+\epsilon} m^{1 / 3}\right)
$$

and

Then letting $N \rightarrow \infty$ we get equation (5).
Similar results may be obtained for the Fourier coefficients of powers of $\lambda(\tau)$ and $\mu(\tau)$. However, these are omitted here since the method used in obtaining them is merely a repetition of that given for $\lambda(\tau)$.

References

1. H. Davenport, On certain exponential sums, J. Reine Angew. Math., Bd. 169 (1933), 158-176.
2. T. Estermann, Vereinfachter Beweis eines Satz von Kloosterman, Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universität, Bd. 7 (1939), 82-98, especially 94.
3. H. Rademacher, The Fourier coefficients of the modular invariant $J(\tau)$, Amer. J. Math., vol. 60 (1938), 501-512.
4. H. Salié, Zur Abschatzung der Fourierkoeffizienten ganzer Modulformen, Math. Z., Bd. 36 (1933), 263-278.
5. J. Tannery and J. Molk, Théorie des fonctions elliptiques, Tome II (Paris, 1896), 290.
6. G. N. Watson, Theory of Bessel functions (Cambridge, 1922), 181.

The University of British Columbia

