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107.07 A geometric illustration for infinite sequences and series

We can use a positive vanishing sequence to construct a sequence of
squares. This so-called square set can then be used to visualise sums
involving the sequence. As a first example, we use the sequence
to construct the arrangement of squares seen in Figure 1, which we call the
square set for . We define  to be the length of this set,  to be the height to
which the squares converge, and  to be the total area of the set.
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FIGURE 1: The square set for 
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Such objects provide a useful visual representation of positive or
alternating series. For example, notice that the boundedness of the
alternating series  is immediately clear in Figure 1. To
calculate both  and , we can use the geometric series sum formula [1]:
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There are other approaches for calculating . A series totalling the
lengths of the vertical segments only approaching  from below arrives at
the same result as the first alternating sum:
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A more entertaining approach makes use of the self-similarity of the
square set; observe that in Figure 2 the shaded section is a quarter-scale
copy of the entire object. This property gives rise to the equation
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FIGURE 2: Square sets display self-similarity

Moving on from , we can also calculate the area  of the square set:h A

A = 1 +
1
4

+
1
16

+  … =
1

1 − 1
4

=
4
3

.

We then see that , as . Surprisingly, this identity
holds for all square sets whose side-lengths are given by a vanishing
positive geometric sequence!

l · h = A 2 · 23 = 4
3

Theorem: If  is the square set with length , height  and area  whose sides
are given by the geometric sequence  with , then

.
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l · h = A
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Proof
We use the geometric series sum formula to calculate as follows:
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While simple and sharp, this algebraic proof is not visually illuminating.
As such, we present a geometric proof of the previous result.

Proof

Let  be a right-angled triangle with legs of  and .

Then the area of  is . To see that the square set  and
triangle  have equal areas, rearrange  into the set , then coordinatise
and  as shown in Figure 3.
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FIGURE 3: A coordinatisation of  and T S ′

Observe that the dark-shaded triangles inside  and above  correspond to
the portion of  that lies outside of , (see Figure 4). As such, the area of
is indeed equal to the area of  and .
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FIGURE 4: Congruent triangles inside and outside T

To confirm that the hypotenuse of  does indeed intersect the midpoints
of the top edges of the squares of , we first write the equation of the
hypotenuse line, which is .

T
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(1 − r) x + 1
2 (1 + r)  y = 1

Notice that  is both a solution to this linear equation and the
midpoint of the top edge of the first square in . A dilation with centre

 and scale factor  maps each square to its right-hand neighbour,

allowing us to conclude that the hypotenuse maintains this behaviour for
every square in .
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The relation  does not hold for square sets constructed using

general sequences. A quick counterexample can be seen with the harmonic
series:
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As  is unbounded, we immediately know that . It is also worth
noting that  is calculated using the Maclaurin series for  [1],  is
the result of the Basel problem [2], and this shrinking square set is an object

with infinite length and finite area, similar to the integral . If one

wishes to see a counterexample in which  is bounded, the sequence

suffices. It is not yet known if the sequence describing the square set must
be geometric to ensure that .
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107.08 An interesting equivalent of squaring the circle

Consider the following task.
Given the rectangular strip shown in Figure 1(a), construct the
point  on the mid-line such that, when the circle with centre
which touches the horizontal edge of the strip is drawn, the
area outside the circle at the top of the strip is equal to the area
of the segment on the side.
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FIGURE 1
With notation added as in Figure 1(b), the area, , of the segment on the
side is given by

As

As = 1
2R2 (2θ − sin 2θ) = R2θ − 1

2R2 sin 2θ.
The area, , of the area outside the circle at the top of the strip is given byAt

At = 1
2R2 sin (π − 2θ) + 2R cos θ · R (1 − sin θ) − 1

2R2 (π − 2θ)

= 1
2R2 sin 2θ + 2R2 cos θ − R2 sin 2θ − 1

2R2π + R2θ

= 2R2 cos θ − 1
2R2π + R2θ − 1

2R2 sin 2θ.

Equality of areas, , thus necessitates .As = At cos θ =
π
4

If point  were constructible using ruler and compasses, we could
continue the construction as shown in Figure 2 where chord  produced
is parallel to the horizontal chord in Figure 1(b). Point  is on the line
such that . Point  is on the extension of the left-hand edge of the
strip with  and  is a square.
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