Mathematical Structures in Computer Science (2024), 34, pp. 346-374

) CAMBRIDGE
doi:10.1017/S0960129524000136

7 UNIVERSITY PRESS

PAPER

Logical characterizations of algebraic circuit classes
over integral domains

Timon Barlag'(¥, Florian Chudigiewitsch® and Sabrina A. Gaube'

1Leibniz Universitit Hannover, Hannover, Germany and 2Universitit zu Liibeck, Liibeck, Germany

Corresponding author: Timon Barlag; Email: barlag@thi.uni-hannover.de

(Received 14 April 2023; revised 28 February 2024; accepted 8 April 2024; first published online 13 May 2024)

Abstract

We present an adapted construction of algebraic circuits over the reals introduced by Cucker and Meer
to arbitrary infinite integral domains and generalize the ACr and NC; classes for this setting. We give a
theorem in the style of Inmerman’s theorem which shows that for these adapted formalisms, sets decided
by circuits of constant depth and polynomial size are the same as sets definable by a suitable adaptation
of first-order logic. Additionally, we discuss a generalization of the guarded predicative logic by Durand,
Haak and Vollmer, and we show characterizations for the AC; and NC, hierarchy. Those generalizations
apply to the Boolean AC and NC hierarchies as well. Furthermore, we introduce a formalism to be able to
compare some of the aforementioned complexity classes with different underlying integral domains.

Keywords: algebraic circuits; descriptive complexity

1. Introduction

Boolean circuits as a computational model are a fundamental concept in the study of theoretical
computer science. Mainly in computational complexity, Boolean circuits play a central part in the
analysis of parallel algorithms and the corresponding complexity classes, enabling a finer view
and providing new proof methods, especially for subpolynomial complexity classes. An obvious
generalization of Boolean circuits is that instead of dealing with truth values as inputs - or the field
Zj for the algebraically minded - we consider elements from some other algebraic structure. This
approach has its roots in the works of Blum, Shub and Smale, whose model of the BSS-machine is
able to describe computations over real numbers. Following this, Blum, Shub, Smale and Cucker
(Blum et al., 1998) also give a generalization to algebraic circuits over the reals.

1.1 Our contribution

In this article, we provide logical characterizations of circuit complexity classes over integral
domains. In particular, we define natural extensions of the classical circuit complexity hierarchies
AC'and NC' over arbitrary integral domains. The resulting classes are denoted as ACh and NCk,
respectively. We adapt the framework of metafinite model theory to define various extensions of
first-order logic, which capture these new complexity classes.

We establish a Immerman-style theorem stating that FOg = AC} and provide a framework to
establish complexity-theoretic comparisons of classes with different underlying integral domains
and give examples over which integral domain the AC? classes are equal.

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited. .

Check fi
https://doi.org/10.1017/50960129524000136 Published online by Cambridge University Press Updates.

https://doi.org/10.1017/S0960129524000136
https://orcid.org/0000-0001-6139-5219
mailto:barlag@thi.uni-hannover.de
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129524000136&domain=pdf
https://doi.org/10.1017/S0960129524000136

Mathematical Structures in Computer Science 347

We adapt the GPR operator, which Durand, Haak and Vollmer use to provide logical charac-
terizations of AC! and NC! (Durand et al., 2018) to logics over metafinite structures and extend it
to be able to characterize the whole ACgr and NCy, hierarchies.

Finally, we define a formalism suitable for comparing complexity classes with different under-
lying integral domains and we show that a hierarchy of sets of complexity classes emerges, such
that each set is able to “simulate” the complexity classes from the sets lower in the hierarchy.

1.2 Related work

Another model of computation that is commonly known under the name “algebraic circuit” are
Valiant circuits (Valiant, 1979), which are the foundational model in the emerging subfields of
algebraic and geometric complexity theory. They differ from the model we analyse in this work
in the way that we use < gates, which are not available in the Valiant setting. This difference is
of complexity-theoretical significance, since for our model, we have that NC, C NC{&|r ! (Cucker,
1992) but we have that VNC? = VNC? = ... = VP (Biirgisser, 2013) in the Valiant setting for
every field, in particular over the reals.

1.3 Outline of the paper
We start with an overview of some central concepts from algebra and circuit complexity, which
are needed for the definition of our model. We then establish our model of algebraic circuits for
arbitrary integral domains and the analogous complexity classes induced by them in analogy to
the Boolean case. Afterwards, we give a logical characterization of the presented circuit classes
inspired by classical descriptive complexity. However, since our models now have an infinite
component, we build on the foundations of metafinite model theory.

We then go on to define first-order logic over R and show that, like in the classical case, we have
that AC% = FOg[Arbg] + SUMg + PRODk.

In Section 4, we give logical characterizations of AC' and NC'. The tool of our choice is an
adaptation of the guarded predicative logic of Durand et al. (2018).

In Section 5, we discuss connections between AC% classes over different integral domains.

2. Preliminaries

First, we discuss the theoretical background of this paper. We give the basic definitions and
remarks on the notation used in this paper. We denote the set of natural numbers with 0 as N
and the set of natural numbers without 0 as N q.

Notation 1. In this paper, we will generally use overlined letters (e. g. X) to denote tuples.

As the name suggests, algebraic circuit classes make use of concepts originating from abstract
algebra. We assume the reader has basic knowledge of algebra, especially rings, integral domains
and fields, polynomials and adjoining elements to rings. For an introduction to abstract algebra,
the reader may refer to the books by Aluffi (2009) or Lang (2002).

Our considered rings are always assumed to be a commutative ring with unit. Throughout the
paper, whenever not otherwise specified, we use R to denote an infinite integral domain.

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

348 T. Barlag et al.

Remark 2. In particular, we require that for every r € R the equations
rx0=0
O0xr=0

hold.

Example 3. Popular examples of rings include Z, Q, R and C, as well as sets with adjoined elements
like Z[j), Z[¥/—11, Z[/p f, .. L RUk], Zljk), . . ., where k € N, p # q are primes and ji denotes
the kth root of —1, that is ’k = —1. Alternatively, we can adjoin £ algebraic independent prime root
elements with 2¢ = k and get an analogous construction.

Remark 4. The denotation of R[ji] resp. Z[ji] is not unique but the constructions of the circuit
over the underlying rings are analogous except for the placeholders for the adjoined numbers.
For example, 7Z* can denote Zljs] = Zlja,]4,]4] or Z[~/2, /5] = Z[+/2, /5, /10] or many other
rings. Since we only focus on the structure of the tuples, that is the coefficients of adjoint elements,
or later the underlying circuits, our short notation for Z* for arbitrary k > 1 is not unique and
may differ, for example Z? may denote Z[j] or may denote Q. In the context of the placeholder
notation, the arithmetic of the specific ring must be clear, if it is important.

We need some ordering < on our integral domain R. In some cases, like R and Z, we have some
natural ordering that we want to use. In other cases, like C, we have to construct some ordering.
This ordering does not have to be closed under multiplication, and we only have to distinguish
different numbers from each other. So an ordering on tuples (z; =a; + bi1i,z2 =a, + bie C:
(a1,b1) <c (a2, by) <= a; <pay or a; = ap and b; <p b,) is possible.

Definition 5. A strict total order on a set S is a binary relation < on S which is irreflexive, transitive
and total.

Example 6. For some field F . for some prime p and a natural number k, we write the finitely
many elements in a list and then use the lexicographical on this list. For example, let R = Z3. Then,
we define <z, as 0 <1 < 2.

There are multiple possibilities for such a < over the field of complex numbers. Let z=a + bj e C
and let <) be the lexicographic order on pairs (v a? + b?, a). Furthermore, let <, be the lexico-
graphic order on pairs of the form (a, b). Then, both variants are possible since both distinguish
different complex numbers.

Definition 7. A strict total order < over a ring R induces a sign function as follows:

1 ifx>0

sign g .y (x) =
®=) 0 otherwise.

In the following, unless explicitly otherwise specified, the symbol R denotes an infinite integral
domain with a strict total order < on R. Most of the rings we consider have a natural ordering. In
this case, we omit the ordering symbol.

2.1 Algebraic circuits over R

As this work is a generalization of the well established Boolean circuits, some background in circuit
complexity is assumed. Standard literature which introduces this topic is the book by Vollmer
(1999). The generalization to algebraic circuits over real numbers were first introduced by Cucker

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

Mathematical Structures in Computer Science 349

(1992). In analogy to them, Barlag and Vollmer defined an unbounded fan-in version of algebraic
circuits (Barlag and Vollmer, 2021).

Definition 8. We define an algebraic circuit C over an integral domain R with a strict total order
<, or R circuit for short, as a directed acyclic graph. It has gates of the following types:

Input nodes have indegree 0 and contain the respective input values of the circuit.

Constant nodes have indegree 0 and are labelled with elements of R

Arithmetic nodes have an arbitrary indegree > 1, bounded by the number of nodes in the circuit
and are labelled with either + or x.

Comparison (<) nodes have indegree 2.

Output nodes have indegree 1 and contain the output value after the computation of the circuit.

Nodes cannot be predecessors of the same node more than once, and thus, the outdegree of nodes
in these algebraic circuits is bounded by the number of gates in the circuit.

During the computation of an algebraic circuit, the arithmetic gates compute their respective
functions with the values of their predecessor gates being taken as the function arguments and the
comparison gates compute the characteristic function of < in the same way. The values of the output
gates at the end of the computation are the result of the computation.

In contrast to the classical setting, where we consider words over an alphabet X as inputs, and
where languages are thus defined to be subsets of the Kleene closure of the alphabet (in symbols,
L C ¥*), we consider vectors of integral domain elements as input. In analogy to X*, we denote
for an integral domain R:

R = J R

kGN()

With |x|, we denote the length of x, i. e, if x € R* then |x| = k.

Remark 9. We will use the term algebraic circuit to describe circuits in the sense of Blum et al.
(1998) rather than arithmetic circuits as for example in Barlag and Vollmer (2021) to distinguish
them from arithmetic circuits in the sense of Valiant, see for example (Biirgisser et al., 1997).
Valiant circuits are essentially algebraic circuits without sign or comparison gates (Blum et al.,
1998, page 350).

Remark 10. In the special case R = Z;, the definition above yields exactly the Boolean circuits.

Definition 11. We call the number of gates in a circuit the size of the circuit and the longest path
from an input gate to an output gate the depth of the circuit.

Remark 12. Unlike the way algebraic circuits with unbounded fan-in gates were introduced pre-
viously (Barlag and Vollmer, 2021), algebraic circuits in this context have comparison gates instead
of sign gates. This stems from the fact that when dealing with real or complex numbers, we can
construct a sign function from < via Definition 7 and the order relation from the sign function
via

x <y < sign(sign(y — x) - (2 + sign(x — y))) = 1.

If we consider finite integral domains, however, suddenly it becomes less clear how to construct
the < relation from the sign function, while the other way around still works by Definition 7.

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

350 T. Barlag et al.

Given that we define circuits and logic fragments relative to an ordering, it is natural for both
to have access to this ordering. Therefore, we choose to use < gates rather than sign gates. So in
the following, all usages of sign are implicit uses of the order relation as by Definition 7.

In the cases which are considered in other literature (R or IF;), this has no complexity-theoretic
impact, since in the emulation of one formalism using the other, we get a linear overhead in the
size and constant overhead in the depth of the circuit.

In order to define complexity classes with respect to algebraic circuits, we have to define the
function calculated by such a circuit and define the term of circuit families.

Definition 13. The (n ary) function fc: R" — R™ computed by an R circuit C (with n input gates
and m output gates) is defined by

fC(xla cee a-xn) = (yla cee >ym))

where y1, . . ., ym are the values of the output gates of C, when given x1, . . ., X, as its inputs.

Definition 14. A family of R circuits € = (Cp),en is a sequence of circuits which contains one
circuit for every input length n € N. The function fo: R* — R* computed by a circuit family € is
defined by

Fo®) =fo,,)

The size (resp. depth) of a circuit family (Cy,) e is defined as a function mapping n € N to the size
(resp. depth) of C,.

Analogously to the classical case, we say that a set S € R* can be decided by a circuit family %,
if € can compute the characteristic function of S.

Definition 15. Let fi,f,: N — N be two functions. We then write UnbSizeDepthy(fi, f2) to denote
the class of sets decidable by R circuit families of size O(fi(n)) and depth O(f,(n)). We write
SizeDepthy(fi, f2) to denote the class of sets decidable by R circuit families of size O(f,(n)) and
depth O(f,(n)), where each arithmetic gate has indegree bounded by 2 (we call this bounded fan-in).

Definition 16. AC} := UnbSizeDepthy(n?V, (log, n)")
Definition 17. NCk, := SizeDepthp(n?V, (log, n)’)

Remark 18. The circuit families we have just introduced do not have any restrictions on the diffi-
culty of constructing any individual circuit given the input length. If it is important to know how
hard obtaining a particular circuit is, one can consider so-called uniform circuit families. These
families require their circuits to meet restrictions on the difficulties of obtaining them. For more
information on uniformity, cf. (Vollmer, 1999).

Uniformity criteria can be defined for algebraic circuit classes in a similar way. See for example
(Blum et al., 1998, Section 18.5).

2.2 Structures and first-order logic over integral domains

As we want to characterize circuit complexity classes with logical fragments, this work falls broadly
under the umbrella of finite model theory and, in particular, descriptive complexity. Foundational
knowledge of these topics is assumed and can be found in the books by Gridel et al. (2007);

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

Mathematical Structures in Computer Science 351

Immerman (1999); and Libkin (2004). Traditionally, descriptive complexity is viewed as a sub-
discipline of finite model theory. In our setting, however, we want to (carefully) introduce infinite
structures to our reasoning. For this, we use metafinite model theory, an extension of the finite
model formalism first introduced by (Gradel and Gurevich, 1998). A short introduction to metafi-
nite model theory is also featured in the book by Gridel et al. 2007, page 210). The approach was
taken by Gridel and Meer (1995) to describe some essential complexity classes over real numbers.
These descriptions were later extended by Cucker and Meer (1999), where, among other things,
the NC hierarchy over real numbers was defined. For their logical characterizations, these papers
introduce a so-called first-order logic with arithmetics, which we will adapt to be used in our
setting.

To make proofs easier, we will make use of the well-known trick that any predicate can be
emulated by its characteristic function. Thus we only consider predicates, when convenient. We
can furthermore emulate constants in the usual way by 0 ary functions.

Definition 19. Let L, Ly be finite vocabularies which only contain function symbols. An R structure
of signature o = (L, Ly) is a pair I = (o, F) where

1. o is a finite structure of vocabulary L; which we call the skeleton of 2 whose universe A we will
refer to as the universe of 2 and whose cardinality we will refer to by |A|

2. and F is a finite set which contains functions of the form X : AKX — R for k € N which interpret
the function symbols in Ly.

We will use STRUCR(0') to refer to the set of all R structures of signature o, and we will assume
that for any signature o = (Ls, Ly), the symbols in Ls and Ly are ordered.

Remark 20. In this paper, we only consider ranked structures, that is structures, in which the
skeleton is ordered.

It often comes in handy to be able to encode an R structure & over a signature o as an
element of R*. We do so by simply concatenating the function values of all functions of & in
lexicographical order with respect to the function arguments.

Example 21. Let A={, @), fi={C> 1,80}, L ={O—> 7,8 42} and let 9 = (o, F)
be an R structure with universe A, < being ranked below @ and F = {fi, f,}. Then, 9 gets encoded
as (1,0, ,42).

Definition 22 (First-order logic over R). The language of first-order logic over an integral domain
R contains for each signature o = (Ls, Ly) a set of formulae and terms. The terms are divided into
index terms which take values in universe of the skeleton and number terms which take values in R.
These terms are inductively defined as follows:

1. The set of index terms is defined as the closure of the set of variables V under applications of the
function symbols of Ls.

2. Any element of R is a number term.

3. Forindextermshy, ..., hyand ak ary function symbol X € Ly, X(hy, . . ., hy) is a number term.

4. If t1, ty are number terms, then so are t| + t, t; X ty and sign(t)).

Atomic formulae are equalities of index terms hy = hy and number terms t| = t,, inequalities of
number terms t; < t, and expressions of the form P(hy, .. ., hy), where P € Ly is a k-ary predicate
symbol and hy, .., hy are index terms.

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

352 T. Barlag et al.

The set FOp is the smallest set which contains the closure of atomic formulae under the logical
connectives {A, V, =, —, <>} and quantification Ivyr and Vv where v ranges over <.

For better readability, we will use inequalities of the form x < y and the extensions of equal-
ities X =y and the inequalities X <y and x < to tuples throughout this paper. Note that these
extensions are easily definable from = and < in first-order logic.

Remark 23. We call any element of R a number term even though some integral domains can
contain elements like ¢, R or ® which are not numbers.

Equivalence of FOg formulae and sets defined by FOr formulae are done in the usual way,
that is a formula ¢ defines a set S if and only if the elements of S are exactly the encodings of R
structures under which ¢ holds and two such formulae are said to be equivalent if and only if they
define the same set.

With the goal in mind to create a logic which can define sets decided by circuits with
unbounded fan-in, we introduce new rules for building number terms: the sum and the product
rule. We will also define a further rule, which we call the maximization rule. This one is, however,
already definable in FOg, and we thus do not gain any expressive power by using it. We will use it
to show that we can represent characteristic functions in FOg.

Definition 24 (Sum, product and maximization rule). Let ¢t be a number term in which the vari-
ables x and the variables W occur freely and let A denote the universe of the given input structure.
Then,

sumz({(X, w))
is also a number term which is interpreted as)~ 4z t(X, W). The number terms prodg(t(X, w)) and
maxx(t(x, w)) are defined analogously.

We call these operators aggregators, and for any formula ¢ containing aggregators of the above
form, the variables in X are considered bound in ¢.

Example 25. Let o = ({}, {f2}) be the signature of weighted graphs, that is L; is empty and Ly con-
tains the single function symbol fg which is interpreted such that fg(x,y) gives the weight of the
edge from x to y or O if there is none. Let & be a (graph) structure over o. Then, the following
FORr + SUMp sentence ¢ states that there is a node in the skeleton of ¢, for which the sum of its
outgoing edges is more than double the sum of the outgoing edges of any other node.

@ = IxVy(x # y — sumy(fe(x, a)) > 2 x sumy(f(y, b)))
Observation 26. FOr = FOgr + MAXR.

Proof. An occurrence of max;(F(i)) essentially assures that there exists an element x, such that for
all elements y, F(x) > F(y) and takes the value of F(x). Clearly, this can be defined in fist order
logic by a formula of the form Vx3yF(x) > F(y). U

Furthermore, any characteristic function of a logical formula can be described in FOg. The
proof for this runs analogously to that of Cucker and Meer 1999, Proposition 2), since this proof
does not make any use of special properties of the reals.

3. AC) =FOg
In this section, we present a proof that FOg captures the class AC%. The proof idea is similar to
the proof of the established result by Immerman which characterizes AC? via FO.

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

Mathematical Structures in Computer Science 353

When using logics to check, whether a given R tuple would be accepted by a R circuit, one
needs to think about how this R tuple would be interpreted as an R structure 7. This can be
done by interpreting it as the set of the circuit’s input gates along with a single unary function
felement: A — R mapping the ith input gate to the ith input of the circuit. We call this kind of
structure a circuit structure.

In the following, we would like to extend FOr by additional functions and relations that are
not given in the input structure. To that end, we make a small addition to Definition 19 where we
defined R structures. Whenever we talk about R structures over a signature (L, L¢), we now also
consider structures over signatures of the form (Ls, Ly, L,). The additional (also ordered) vocabu-
lary L, does not have any effect on the R structure, but it contains function symbols, which can be
used in a logical formula with this signature. This means that any R structure of signature (Ls, Ly)
is also an R structure of signature (Ls, Ly, L,) for any vocabulary L,. The symbols in L, stand for
functions that we will use to extend the expressive power of FOg to capture various complexity
classes.

Definition 27. Let F be a set of finitary functions. We will write FOR[F] to denote the class of sets
that can be defined by FOpr sentences which can make use of the functions in F in addition to what
they are given in their structure.

Formally, this means that FOg[F] describes exactly those sets S € R* for which there exists an
FOg sentence ¢ over a signature o = (L, Ly, L,) such that for each length n, there is an interpre-
tation I,, interpreting the symbols in L, as elements of F such that for all R* tuples s of length n
it holds that s € § if and only if s encodes an R structure over (Ls, Ly, L,) which models ¢ when
using I,.

Example 28. Let us take as an example the scenario where we are given a graph as a
structure but want to make use of additional functions to interpret that graph as a cir-
cuit, by having those functions determine the gate types of the nodes in the graph. We
will use the signature o = ({E*}, {}, {fyupflupfin})> and we will use a set of functions F=
{Fout,1> Fout,2> - - - » Fadd, 1> Fadd.2> - - - » Fin,1> Fin, 2> - - . }, where each function is a characteristic func-
tion which maps the nodes of the graph to 1, if the gate type matches and 0, otherwise. Hence, if a
node v is an addition gate, we have F,;; 1(v) =1 and F,;1(v) = 0. The number in the subscript of
the functions of F refers to the size of the encoding of the structure, for which the functions should
be used. For example, Fo44 4 is used for structures that are encoded as elements of R*. Now suppose
we are interested in those circuits where there exists an input gate that has an addition gate as a
successor. A fitting FOR[F] sentence would be

@ = 3x3yfin(x) = 1 A faga(y) =1 A E(x,)

The reason why ¢ works is that for each n € N, there exists an interpretation I, which maps the
symbols used in ¢ to functions in F. This interpretation just maps fi to Fin , and faqq to Fagq p.

If we are now given a graph structure of a graph such as the first one in Figure 1, encoded as its
adjacency matrix

0 0 0 O
1 0 0 O
0 1 0 O
0 1 0 O

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

354 T. Barlag et al.

Figure 1. Example graphs that satisfy the imposed conditions of Example 28.

which would amount to the R'® tuple (0, 0,0,0,1,0,0,0,0,1,0, 0,0, 1,0,0), then our interpretation
Ii¢ would map fiy, to Fin 16 and f,q4 to Faq4 16. This means that the set of encodings of circuits which
have gate types according to F that contain at least one input gate followed by an addition gate
is definable in FOR[F]. This is because ¢ is a FOR[F] sentence over o such that for each n, the
interpretation I, interprets the symbols fi, and f,44 as elements of F, such that for all s € R* it holds
that s is an encoding of such a circuit if and only if the graph structure encoded by s satisfies ¢.

Definition 29. We write Arby to denote the set of all functions f: R¥ — R, where k € N.
Theorem 30. Let R be an infinite integral domain. Then, ACY = FOg[Arbg] + SUMR + PRODg.

Proof. The proof for this theorem works similarly to the construction for FOg[Arbgr] + SUMR +
PRODR = ACH% (Barlag and Vollmer, 2021), since this construction does not make use of any
special properties of the real numbers.

The basic idea for this proof is that we first show that for any FOgr[Arbg] + SUMg + PRODy
sentence ¢, we can construct a circuit family which accepts its input if and only if the input encodes
an R structure that satisfies ¢. This is basically done by mimicking the behaviour of the logical
operators of ¢ using the available gate types and evaluating the formula level by level. A universal
quantifier as in Vxg(x), for instance, is implemented by using a sign gate (obtained from < as
per Definition 7) on top of a multiplication gate, which has the circuits for ¢(a) for each a in the
skeleton of the encoded structure as its predecessors.

To translate the semantics of FOpr into a circuit, we can mostly use the same translations as
in the proof for the real case, as for the most part only properties of integral domains are used.
We need ring properties for most of these translations and in particular for universal quantifiers,
we also need commutativity of multiplication and no zero dividers, hence we require integral
domains.

We do need to change the translation for existential quantifiers and Vv, however. In the
real case, the circuit for Ix¢(x) is constructed similarly to the universal case with a sign gate
followed by an addition gate with the circuits for ¢(a) for each a in the skeleton as its pre-
decessors. Since there are infinite integral domains with characteristic greater than 0, that is
where adding a positive amount of 1 elements can yield 0, this would not always produce the
desired result. However, we can overcome this easily by translating Ix¢(x) to =Vx—¢(x) and x v y
to =(—x A —y), as negation, universal quantifiers and A are constructible with integral domain
properties.

For the converse inclusion, a number term val;(g) is created which, when given a circuit family
(Cn)nen, evaluates to the value of gate g if g is on the dth level of the respective circuit C,. For this
purpose, functions encoding the structure of these circuits are given by the Arbg extension of the
logic. These functions provide information about the gate type of each gate, their constant values
if they are constant gates, their index if they are input gates and the edge relation of the circuit.

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

Mathematical Structures in Computer Science 355

For this construction, with integral domain properties no changes need to be made to the formula
in the real setting. U

4. Algebraic Circuits and Guarded Functional Recursion

In this section, we generalize the logical characterizations of NC! and AC! by Durand et al. (2018)
to the respective complexity classes over integral domains NC}, and AC}. We furthermore extend
this method to capture the entire NCj and ACg hierarchies.

In their paper, Durand, Haak and Vollmer use what they call guarded predicative recursion to
extend first-order logic in order to capture the logarithmic depth circuit complexity classes NC!
and AC!. This essentially amounts to a recursion operator, which halves a tuple of variables (in
their numerical interpretation) which is handed down in each recursion step. This ensures that
the total recursion depth is at most logarithmic. The halving of the variable tuple is performed by
using the fact that addition is expressible in FO if BIT and < are expressible (Immerman, 1999) in
the following way

x<y/2 &= x+x=<y.

Note that we do not define the formula of the halving to be equality, since this is not possible for

odd numbers. However, this is not an issue since we only want to bound the worst case recursion

depth. In order to capture classes of polylogarithmic depth, we would like to find a suitable factor

to replace % with, so that the recursion process has polylogarithmic depth as well. As it turns out,
) _ logyn i

for any i € N, we can assure a recursion depth of €'((log, n)’) by using the factor 2 (leg27",

_ logy n])
Observation 31. Any number n € N can be multiplied by the factor 2 (°2"" exactly (log, n)’
times, before reaching 1.

A more general version of this observation can be found in Lemma 58 in the appendix.

Unfortunately, while it is simple to divide by 2 when the BIT predicate is available, it is not at
logy n

all clear if multiplying by a factor such as 2 (*27' can be done in first-order logic.

We can, however, make use of the ability to divide by 2 in order to achieve polylogarithmic
recursion depth, by instead of dividing a number, essentially dividing the digits of a base n number
individually and carrying over once 0 is reached.

Let us take for example the base 5 number 444. The previously mentioned process is illustrated
in Table 1. The table is supposed to be read from top to bottom and then from left to right.

We divide the digits of 444 from the least to most the significant digit until 0 is reached. So,
the first step is dividing the rightmost digit of 444 by 2, getting from 444 to 442. After two more
divisions of that kind, we reach 0 and in the subsequent step we reset the rightmost digit and divide
the second digit once. This works in a similar way to counting down, where instead of taking away
1 in each step, we divide by 2 and carry over in an analogous way. Notably, reaching 000 from 444
takes 63 = ([log, 5] +2)> — 1 steps. This is no coincidence: It can easily be shown that for any
base n number of i digits, this sort of process reaches the smallest possible element after less than
(llog, n—1] + 2)F — 1 steps.

Since we wish to logically characterize languages decided by circuit families, it is useful to briefly
talk about representation of numbers. In descriptive complexity, tuples of elements from a finite,
ordered domain A are often associated with numbers. This is frequently done by interpreting the
tuple as a base |A| number with each element of the tuple representing its position in the ordering
of A.

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

356 T. Barlag et al.

Table 1. Illustration of digit-wise division until 0 of the base
5 number 444 which takes 63 = (|log, 5] + 2)> — 1 steps

444 244 144 044
442 242 142 042
441 241 141 041
440 240 140 040
424 224 124 024
422 222 122 022
421 221 121 021
420 220 120 020
414 214 114 014
412 212 112 012
411 211 111 011
410 210 110 010
404 204 104 004
402 202 102 002
401 201 101 001
400 200 100 000

Example 32. For example, let D ={a, b, c, d} be ordered such that a < b < c < d. Then, the tuple
(b,d, c,a) =(1,3,2,0) would be interpreted as the base 4 number 1320, which would correspond to
60 in decimal.

Whenever we talk about the numerical interpretation of a tuple, we refer to this sort of interpre-
tation. With this interpretation in mind, we now want to define a BIT predicate, which is needed
to express divisions in our logic. In our definition, we assume that the most significant bit of ’s
binary representation is the bit at index 1:

Definition 33. For any ranked structure with universe D, let the relation BIT? C D* x D* be
defined as follows:

BIT :={(i,j) | when i and j are taken as their numerical interpretations, the

ith bit of the binary representation of j is 1,1,j € D*}

Note that the case D* =N yields the classical BIT predicate. With the BIT predicate and an
order relation, we are now able to express division by 2 in first-order logic. We use the fact that
whenever BIT and an order are available, we can express multiplication and addition of numerical
interpretations of tuples (Immerman, 1999). This result was shown for plain first-order logic,
and since our two-sorted first-order logic FOp is equivalent to first-order logic if the secondary
component is ignored, we can apply it here as well.

We express division by 2 as follows:

X<y/2 &< Fzx+x=zZAZ<Yy
Note again that since the numerical interpretations of tuples are natural numbers, expressing
X <y/2is really as good as we can do, since X = ¥/2 would not work for odd numbers.

Next, we will turn to defining the recursion operator which we have alluded to in the begin-
ning of this section. First, we need a little bit of additional notation, that is relativized aggregators.

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

Mathematical Structures in Computer Science 357

A relativization of an aggregator is a formula restricting which elements are considered for the
aggregator.

Notation 34. For a number term t and an FOp formula ¢, we write
max;.(¢(X))t(x)
as a shorthand for
maxz(x [¢(X)] x t(x)).
Analogously, we write
sumz. (¢ (X))¢(x)
for
sumz(x [¢(x)] x (X))
and
prod;.(¢(x))t(x)
as a shorthand for
prod;(x [¢(X)] x t(x) + x [~¢(x)] x 1).
In all these cases, we say that the term t(X) is in the scope of the respective aggregator. For example

in the first case, t(X) is in the scope of the relativized aggregator maxsx.(¢(x)).

We now define the GFR}, operator and logics extended by GFR} of the form .% + GFRj. The
idea is to mimic the behaviour demonstrated in Table 1.

Definition 35 (GFR}}Q). Let F be a set of functions such that BIT is definable in FOR[F] and let £
be FOR[F] or a logic obtained by extending FOr[F] with some construction rules (such as the sum
or the product rule as per Definition 24).

For i> 0, the set of . + GFRy formulae over o = (L, Ly, Ly) is the set of formulae by the
grammar for £ over o extended by the rule

o=@y, .Y yi) =& YL - Yo YirL DIV (),

where is an & formula, f is a function symbol, and t is an £ number term with free variables
X% V1>- - -» Vi Vix1 such that

1. allyj for 1 <j <i contain the same (positive) number of variables,

2. fonlyoccursintheformf(a,zi,...,zziy1), wherezy, . . ., i, ziy1 are in the scope of a guarded
aggregation
i j—1
Az, gz VG <0/2A Nz <w | AEOL . T Tit 2 - Z Zir)
j=1 k=1

with A € {max, sum, prod}, § € £ and & not containing any symbols of Ls or Ly and
3. f never occurs in the scope of any aggregation (or quantification) not guarded in this way.

The function symbol f is considered bound in

=[Gy Yo yiD) =&Y - Y Vi L DIV ().

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

358 T. Barlag et al.

The semantics for the GFRR operator are defined as follows: Let ¢ be an £ + GFR, formula over
o with the single GFR} occurrence

G 1Y yi) = HE YL - Vi Yir b IV (E. f)
and let 9 € STRUCR(o). Then, the operator which is applied to the formula , namely
G5 0 Y1) = &L 5 i Yie1,)], defines the interpretation of f in yr in the follow-
ing way: For all tuples a, by, . . ., b;, bi1 of elements of the universe D of & with the same arities as
X, V1> - - - » Vi Vit 1, respectively,

f(a)b_lx e 75) bi+1) = t(a’b_l) e bi) bi-‘rlaf)'

This means that the formula [(%, 1, . . ., Vi, Vit1) = & V1, - - - Vi, Vir1,)1V (G, f) holds for a tuple
¢ € DIl with the same arity as z if and only if 9 = (c, fi) where f; is the interpretation of f as
defined by the GFRR' operator. Semantics of formulae with several GFRy operators are defined
analogously.

Note that the (i + 1)th tuple does not get restricted by the guarded aggregation.

An example is in order. In the following scenario, we would like to illustrate the use of the
GFR}, operator. A more thorough examination of its recursion depth will follow in Lemma 37.

Example 36. Let us consider the scenario where we are given a graph G, two nodes s and t of G, and
we wish to express that there is a path from s to t in G. Let the graphs we consider be encoded by a
structure 9, such that each node can be uniquely identified with a quadruple of values of the universe
of 9. The signature we will be using is o = ({}, {f3, S‘im,f,‘érget}, (1), where fyare(x1, X2, x3, X4) = 1 if

(x1, X2, X3, X4) encodes the starting node, frarget(x1, X2, X3, X4) = 1 if (X1, X2, X3, X4) encodes the target

node and fg(x1, . . ., x3) = 1 if there is an edge in G from the node encoded by (x1, X2, x3, x4) to the
node encoded by (xs, x6, x7, x3). This means that, if 9 = (<, F), then the graph it encodes has size
JAI%

If we are interested in finding out whether there exists a path of length bounded by (log n)* from
the start node to the target node, we can use the following FOg + SUMg + PRODg + GFR}, sen-

tence. (A more exact treatment of the recursion depth of the GFR, operator will follow this example
in Lemma 37.)

e=[0n....y) =t ..., ys8f)]
A1, X2, X3, X4 fstart (X1, X2, X3, %4) =1 A
Am f(m, m, m, m, x1, x2, X3, x4) > 1
where

t(}’l, cen »)/Saf) tharget(ys) Ye> }/7,)’8) +

4 j—1
sumy, . \/ zjfyj/ZA/\zk <k
j=1 k=1

(fE(}’S;)’@}’%)’S; 255265 275 ZS) Xf(Z], ..)ZS))

In @, we first identify the starting node and then dive into the recursion. Note first that the val-
ues ys, ¥, 7, ys essentially take the place of the yiy1 in Definition 35. Note also that the values
1> Y2, ¥3, Va take the place of the yy . . . y; in the aforementioned definition and are in this example
essentially only used as a counter mimicking the behaviour shown in Table 1 to ensure the correct
recursion depth. The point of m in @ is thus merely to essentially start this counter which will then

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

Mathematical Structures in Computer Science 359

become decreased in the recursion. We could also impose that m be the maximum value of the uni-
verse of 9, but we do not need to, as if any such m exists, our requirement that a path with length
bounded by 0((log n)d) is satisfied.

In t, we first check whether we have already reached the target node. Afterwards, we use a guarded
sum-aggregator to decrease the counter stored in z1, zy, z3, 24, iterate over all nodes zs, z6, 27, 23 and
jump into the recursion, zeroing out all non-neighbouring nodes of the current node.

In total, ¢ essentially describes an algorithm which traverses the given graph in a depth-first man-
ner and which terminates after polylogarithmically many steps because of the guarded aggregations.
The exact recursion depth is not obvious and will be investigated further in the following.

Having introduced the GFR}, operator, it remains to be shown that it indeed ensures polyloga-
rithmic recursion depth in the way that we want it to.

Lemma 37. Let 9 € STRUCR(c) and let ¢ be a formula containing a GFRy operator. Then, the

recursion depth of the GFRY, operator is bounded by O((log, n)’), where n is the size of the universe
of 7.

Proof. Let n be the size of the universe of the structure under which the GFR}, operator is inter-
preted. The bound for the recursion depth of the GFR}, operator stems from the relativization

which guards the aggregated variables. Let f(X, z1, . . . , Z, Zi+1) be an occurrence of a GPR' oper-
ator. Then, the variables in zy, . . ., Z;, Ziy] are in the scope of a guarded aggregation of the form
i j—1
AH,.‘.,Ziixm' \/ 515)7]/2/\/\55)/7 Aé(ﬁw~~>)Tisyi+l>a;--->z_i)zi+l)

as per Definition 35.

Let zj be the numerical interpretation of zj for all 1 <j <i. We interpret the tuple zy, . . ., Z; as
a natural number z of base n where the jth digit of z is z;.

First, observe that in this interpretation, the relativization of the variables used in the recursive

i j—1
call ensures that z strictly decreases in each step. The big disjunction \/ |z <y;/2 A)\ Z < y_k)
=1 k=1
makes sure that there is an index j, such that zj < y;/2, which means that the numerical interpre-
tation of Zj is at most half of the numerical interpretation of y;. It also ensures that all tuples with
smaller indices z; (i.e., the more significant tuples in the interpretation of z7, . . .,Z; as a base n
number) do not increase.

Since each of the tuples Z; (in their numerical interpretation) can only get halved at most
[log, n] 4+ 1 times before reaching 0, it takes at most |log, n] + 2 recursion steps until a tuple
other than the ith has been halved, in the worst case that is the (i — 1)th tuple. This process can
then be repeated at most |log, n] + 1 times, before the tuple at the next lower index gets halved.
In total, in the worst case, it takes (|log, 1] + 2)/ recursion steps until the i — jth tuple gets halved
in this process.

This means that after (|log, 7] + 2)" — 1 recursion steps, each tuple has reached 0. Therefore,
the total maximum recursion depth is (|log, 7] 4 2 —1e0((log, n)h).

This process can be thought of as counting down a base log, #» number. The idea for it has
already been visualized in Table 1. It is also explicitly illustrated in Tables 3 and 4 in the appendix,
for a sequence which we will define shortly in Definition 42 to make use of exactly this kind of
process. U

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

360 T. Barlag et al.

Since our final goal is to characterize both AC% and NCF, we need to also define aggregators
which model the properties of NCy, circuits. For this purpose, we introduce bounded aggregators,
that is relativized aggregators where we only consider the two elements of maximal size meeting
the condition in the relativization.

Definition 38. We define the bounded aggregators sumzpound and prods,,.4- They are used
in the same way as the aggregators defined earlier in Definition 24. The semantics are defined as
follows:

Sumz,bound-(fﬂ(ﬁ))l‘(i w) =
sumz.(@(X) AVYVZ(Y #ZAX <Y AX <Z) = () V —¢(2)))t(x, W)

The bounded aggregators prods p,,,,q @1d Maxz bound are defined analogously.

With this bounded aggregation, we can now define a slightly weaker version of the guarded
functional recursion from Definition 35, which we call bounded guarded functional recursion

GFRE{,bound‘ This allows us then to define logics of the form FOR[F] + GFRy or FOR[F] +

GFR;Q,bound .

Definition 39 (GFR}:,z bound)- A formula is in FOR[F] + GFR}:,2 bound if the same conditions as in
Definition 35 are met, but instead of a guarded aggregation in (2), we require a bounded guarded
aggregation.

Our goal in the following is to characterize the ACg and NCj, hierarchies using first-order logic
and guarded functional recursion. For that purpose, we now define a sequence which we will later
use as part of the numbers of our gates in order to encode the gates’ depth into their numbers. The
idea behind the construction of this sequence will be that for a circuit family (Cy),en with depth
bounded by ¢ - (log, n)’, each of the sequence’s elements is essentially a i digit base c - |log, n] — 1
number with each digit being encoded in unary and padded by zeroes. For readability purposes, we
will refer to this encoding simply as a unary encoding. The sequence can then be seen as counting
down to 0 in that interpretation. This will then result in a length of ¢’ - |log, 1|’ € &((log, n)") for
fixed i. We begin by introducing our conventions regarding unary encodings of numbers.

Definition 40. Let n, £ € N such that £ > n. Then, we will refer to the function unary,: N — {0, 1}¢
defined as

unary,(n) == ot—"1"

as the (length £) unary encoding of n.

Definition 41. For any binary string a of the form
a=0kmm

for some k, m, we define the function uval: {0, 1}* — N defined as
uval(a) :=m

and call uval(a) the value of the unary encoding a.

We now proceed to define the aforementioned sequence d which we will later use to essentially
encode our circuits’ gates’ depth into their gate numbers.

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

Mathematical Structures in Computer Science 361

Table 2. The sequence d(8, 2, 2)

Z\i 1 2

1 11111 11111
2 11111 01111
3 11111 00111
4 11111 00011
5 11111 00001
6 11111 00000
7 01111 11111
8 01111 01111
9 01111 00111
10 01111 00011
11 01111 00001
12 01111 00000
13 00111 11111
35 00000 00001
36 00000 00000

Definition 42. For each n,c,i € N5, we define the sequence d(n, c, i) as follows. For readability
purposes, we leave out the arguments (n, ¢, i) in the definition of the sequence and only write d
instead of d(n, c, i).

1. Each element dy of d consists of i tuples dyj (1<j<i), each of which is the length
Lc-log, n] — 1 unary encoding of a number in [0, |c - log, n| — 1].

2. di=1...1(Le, dy; = unary .o, nj—1(c-llogyn] =1)=1...1foralljwithl <j<i)

unary, .o, nJ_l(lc-log, n] —1) ifuval(de;) =0,

3. dit1i for all £ whered; #0 . ..0.

unary| .joe o J71(uval(dg,,') —1) otherwise,

unary, .o, anl(uval(dg,j —1)) ifuval(dejt1) =0,

4. dey1j= forj<i.

de,j otherwise,

Table 2 shows an abbreviated example for the sequence d. A further example as well as the full
version of Table 2 can be found in the appendix as Tables 3 and 4.

Remark 43. Note that substracting the value 1 in this unary encoding can be seen as an integer
division by 2 in binary. This will become useful later when putting this into the context of guarded

functional recursion with BIT.

Note that the length (i. e. the number of elements) of d(8, 1, 2) is
9=1%. [log, 812°(=c- [log, nh.

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

362 T. Barlag et al.

and the length of d(8, 2, 2) is
36=22. [log, 812(=c- [log, nh.

This is no coincidence. Next, we show that this observation holds in general.
Lemma 44. Let n,c,i € Nog. Then, d(n, c, i) has length - [log, ni.

Proof. Since for each element e in d(#, ¢, i) the successor rule can be interpreted as subtracting
1 from e when e is seen as a base ¢ |log, n| number with 7 digits, we are starting at the largest
possible element in that sense (i. e. 1... 1, which would correspond to (c- |log, n])' —1) and
we are counting down to the lowest possible element (i. e. 0. . . 0, corresponding to 0), there are
exactly (c- |log, n))i=c- [log, n)* elements in d(n, ¢, 7). O

The remaining problem that stands in the way of using the sequence d for the numbering of
gates in descriptions for circuits is that the length of the elements in d depends on #n (which will
be the number of input gates of our circuit). However, we can remedy this, since we essentially
have access to base n numbers in the description for a circuit with # input gates (by virtue of
interpreting circuit inputs as circuit structures). Combining those with the BIT predicate and now
interpreting the unary encoded tuples in elements of d as binary numbers allows us to encode
elements of d using a constant number of digits.

Observation 45. Let n,c € Nog and 1 <€ <c- |log, n]. The number 2t — 1 can be encoded by a
base n number of length c.

Proof. The largest possible number of that form is 282" — 1 < »¢ — 1, which corresponds to
"n—1...n—1"in base n. Therefore, 2¢11°%2") — 1 can be encoded with ¢ base n digits and thus
—_—

¢ times
also all smaller natural numbers can be encoded in this way. U

We can thus encode the binary valuations of tuples in elements of d as base n numbers of length
c. Therefore, each element of d can be encoded using i base n numbers of length ¢ (or i - ¢ base n
digits).

Before we proceed to use the sequence d for circuit descriptions, we need one more lemma
which provides a useful property of AC]’R resp. NCj circuits. We would like to be able to talk
about the depth of gates, that is the distance of a gate to the input gates of the circuit. For this
reason, we will establish the fact that for the circuit families we investigate, circuits exist where for
each gate g, each input g path has the same length.

Lemma 46. Let L be in AC};2 or NCE'2 via the circuit family € = (Cp)nen. Then, there exists a circuit
family €' = (C',)nen deciding L, such that for all n € N and each gate g in C',, each path from an
input gate to g in C'y, has the same length. We call C',, a balanced DAG.

The lemma follows from standard circuit manipulation (cf. also (Vollmer, 1999, Exercise 4.35)).
For convenience, a proof is provided in the appendix.

As previously mentioned, whenever we are dealing with balanced DAGs, we will refer to the
unambiguous length from input gates to a gate g as the depth of g.

Now we will turn to a lemma which will then finally enable us to use the previously defined
sequence d to encode our gates’ depth into their circuit numbers. The idea is for a gate g, to
prepend the depth(g)th element of d to the gate number of g. This way each path from an input
gate to the output essentially contains elements of d in order in the prefixes of its gate numbers.

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

Mathematical Structures in Computer Science 363

This, combined with Lemma 44, provides us with a way to logically ensure the polylogarithmic
depth of a circuit given as a circuit structure.

Lemma47. Let L be in AC;2 or NC}'2 via the circuit family € = (Cy)nen. Then, there exists an AC}'2
(resp. NCk) circuit family € = (C'y)nen deciding L with depth bounded by c - (log, n)', such that
each circuit in ¢’ is a balanced DAG, numbered by base n numbers and each gate g in €' encodes
the depth(g)’s element of d in the first ¢ - i digits of its gate number.

The numbering after the first c - i digits can be chosen arbitrarily.

Proof. LetL e AC@2 orLe NC}Iq via the circuit family € = (C,),en the depth of which is bounded
by ci - (log, n)’. Without loss of generality, let the circuits of ¢’ be balanced DAGs as per Lemma
46. That means that for each circuit C,, in %, for each gate g in C,, the length of all paths from input
gates to g is the same. Let ¢ € N~ ¢ be such that ¢’ - |log, n|" is larger than the depth of C,, (which is
bounded by c; - (log, n)"). We pad each path in C, to length ¢’ - [log, 1]’ by replacing each edge
from an input gate to a gate in C, by a path of dummy gates of length ¢ - |log, n]" — depth(C,) so
that the resulting circuit has exactly depth ¢’ - [log, n]’.

We now use any base n numbering for the gates of C, and for each gate g prepend the
depth(g)th element of d(n, c, i) to the number of g. Since we made sure that each input-output-
path in C, has length exactly ¢’ - |log, n]’, we can encode exactly the sequence d(, ¢, i) in the
numbers of each input-output-path. So now for each input-output-path, the first ¢ - i digits of gate
numbers encode the elements of d(#, ¢, i) in the order that they appear in the sequence. U

With the normal form from Lemma 47 and the previous definitions, we can now turn to a
theorem characterizing ACj and NCy, logically by tying it all together.

Theorem 48.

1. ACk = FOg[Arbg] + SUMg + PRODg + GFRR! for i € N
2. NCh = FOR[Arbg] + SUMg + PRODg + GFRR bound' for i € N=g

Proof. We start by showing the inclusions of the circuit classes in the respective logics and will
then proceed with the converse directions.

Step 1: ACh C FOR[Arbg] 4+ SUMg + PRODg + GFRy':

LetL e qu via the nonuniform circuit family € = (C,),en and let the depth of " be bounded by
c- (log, n)!. We construct an FOg[Arbg] + SUMg + PRODg + GFR}; sentence ¢ defining L. As
the circuit input is interpreted as a circuit structure, the signature o of ¢ contains only the single
unary function symbol felement-

We define the following additional relations and functions which will essentially encode our
given circuits. We will have access to them because of the Arbg extension of our logic and we
use relations here instead of functions for ease of reading, since we essentially have access to rela-
tions in functional structures if we consider the respective characteristic functions of the relations
instead.

o G4 (¥) < Xxisan addition gate.
o Gy (x) <= Xxisamultiplication gate.

o« G.(x) & X is a < gate, the left predecessor of which is lexicographically lower than the
right predecessor.

*+ Ginput(X) <= Xisan input gate.

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

364 T. Barlag et al.

o Gg(X,y) < yisasuccessor gate of X.
+ Goutput(X) <= xis the output gate.
o Geonst(X¥) <= X1is a constant gate.
o feonst val(X) =y € R <= yis the value of X if X is a constant gate and y = 0 otherwise.
Without loss of generality let all circuits of € be in the normal form of Lemma 47 and let the
numbering of C, be such that the last digit of the number of the jth input gate is j for 1 <j <n.

Recall that this means that for each gate number of a gate g represented as a tuple g, the first ¢ - i
elements of g encode the depth(g)th element of d(n, ¢, 7). The following sentence ¢ defines L:

¢ = [f() =1},)]Fa Gouput(@) A f(@) =1
where t is defined as follows (with z; denoting the jth ¢ long subtuple in the ¢ - i long prefix of Z,
which, as per the normal form of Lemma 47, encodes the jth tuple of an element of d(#, ¢, i)):
i

j—1
ty.f) = x[G+(] x sumz (/\/ (7]' <yi/l2A N\ 5Sy_k) A GE(}_GE)) f@ +
k=1

i1

j=1

i

j—1
x[Gx(] x prod;. (/\/ (515)7/2/\ A ﬁiy_k> A GE(?,?«))f(?) +
k=1

x[G<()] x maxz-</

i1

j—1
<z7- STEAVICE y—k) A GG, z))

i [__ i—1 __ _ _
(maxb. (/\/ (b] S)Tj/Z A]/\ by Sy_k> ANGE(, D) A b < 2))
j k=1
(xlr®) <11)) +
X [Ginput(y)] X felement(}’ |y|) +

X [Gconst(y)] X fconst_val (?) +

X

X [Goutput (?)]
=1

i j=1
sum;. Cv (Ej ST y—k) A Gy (5, z)) f@.
=1

Here, the relations Gg(y) for g € {+, X, <, input, const, output} give information about the gate
type of the gate encoded by ¥ and are provided by the Arbg extension of FORg. They are interpreted
as mentioned above. The BIT predicate is provided in the same way.

We will now prove that ¢ does indeed define L. Let a € R" be the input to C,,. We will show
that for all g € R/, where [is the encoding length of a gate in €, the value of the gate encoded by
g in the computation of C,, when C,, is given a as the input is f(g). Let g be the gate encoded by
g- We will argue by induction on the depth of the gate g, that is by the distance between g and an
input gate.

d=0:1f d = 0, then g is an input gate. Therefore, the only summand in #(g, f) that is not trivially
0 is the fourth one, which is equal to felement(g]g)) (Which is the value of the gz th input gate).

d— d+ 1: Since d 4+ 1 > 0, g is not an input gate. This means that there are the following 5
possibilities for g:

1. gis an addition gate: In that case, the only summand in (g, f) which is not trivially 0 is the
first one. All predecessors of ¢ have a number, the first ¢ - i digits of which are the successor
of the first ¢ - i digits of g in the sequence d(n, ¢, i) because of the normal form of Lemma 47.
Additionally, the relativization ensures that the gate encoded by Z in the respective summand

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

Mathematical Structures in Computer Science 365

has exactly the successor in the sequence d(n, c, i) of ¢’s first ¢ - i digits in its first ¢ - i digits.
This means that by the induction hypothesis

i j—1
sumz. [\/ |z =5/2n \z <y | AGe(2) | f2)
j=1 k=1

yields exactly the sum of all the values of predecessor gates of g.
2. gisamultiplication gate: Analogously to the above case,

i j—1
prod.. [\/ |z =5/2n Nz <y | A G2 | f?)
j=1 k=1

yields exactly the product of all predecessor gates of g.
3. gisa < gate: In that case, the relativization

i j—1
maxz. | \/ | 5=<5/27 \Z <5 | A Ge(7>2)
j=1 k=1

makes sure that z is the maximum gate number of a predecessor of g and

i i1
(maxb. \V Bi=72n \Nb<3k | A G b nb <D | (xf®) <f@)))
j=1 k=1
makes sure that b is the gate number of the other predecessor of g and that therefore x [f(b) <
f(2)] is the value of ¢(g, f), which is exactly the value of g in the computation of C,,.
4. gisa constant gate: Since feonst val(g) returns exactly the constant that g is labelled with, that

value is taken by g.
5. gisthe output gate: In that case, g only has one predecessor and thus
i i1
sumz. [\/ |z =5/2n \z <y | AGe3h2) | f@)
=1 k=1

ensures that g takes the value of that predecessor, since there is only one element matching
the relativization.

Finally, by
o =[f()=t@y.flIa Goutput(a) nf@ =1
we make sure that there exists an output gate which has the value 1 at the end of the computation.

Step 2: NCf, C FOg[Arbg] 4+ SUMR + PRODg + GFRy 4

The proof for this inclusion follows in the same way as the proof for the ACk, case, by just replacing
all guarded aggregations in the formulae by bounded guarded aggregations.

Step 3: FOR[Arbg] + SUMg + PRODg + GFR;, € ACk:
Let L € FOg[Arbr] + SUMg + PRODy + GFR}q via a formula ¢ over some signature o =

(Ls, Ly, Ly) and let there be only one occurrence of a GFR}‘2 operator in ¢. This proof easily extends
to the general case. This means that ¢ is of the form

=&y, Y yir) =& YL - V0 Vi IV ().
We now construct an AC}'2 circuit family ¢ = (Cy)nen deciding L.

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

366 T. Barlag et al.

We first construct an ACy, family evaluating ¢ without the occurrences of f as in Theorem 30.
This is possible, since ¢ is an FOr[Arbg] + SUMg + PRODy formula over (Ls, Ly, Ly U {f}), and
by Theorem 30, there is such a circuit family for ¢.

Next, we explain how we build an AC circuit family for the whole formula ¢ from this point.
For this, we need to construct an AC} circuit family computing the value of f(%,) for each pair
@, b with @€ A™ for some k € N and b € A*D11+i+11 Notice that ¢ is an FOg[Arbg] + SUMg +
PRODg + GFRg’ number term and can therefore be evaluated by an ACY circuit family, except
for the occurrences of f. We now obtain C, by taking the nth circuit of all those (polynomially
many) ACY circuit families and for all g, b replacing the gate labelled f(@, b) by the output gate of

the circuit computing t(a, E,).
Since all occurrences of f(x, y) are in the scope of a guarded aggregation

the number of steps from any f(@, b) before reaching a function call of the form f(z, 0, d), with
|c| = |%| and |d| = [yi+1], terminating the recursion, is bounded by &((log, 1)’) as per Lemma 37.

Since each such step — computing f(ay, b;), when given values of the next recursive call
f(@z, by) - is done by an ACY circuit and therefore has constant depth, in total, any path from the
first recursive call to the termination has length in &((log, n)). Since the starting circuit decid-
ing ¢ had constant depth, the circuit we constructed now has polylogarithmic depth in total. And
given that we only added polynomially many subcircuits with polynomially many gates each, the
whole circuit is an ACj circuit deciding ¢.

For the general case of several GFR}, operators, we construct a circuit for each operator in the
same way and connect them to the circuit evaluating ¢.

Step 4: FOR[Arbg] + SUMg + PRODg + GFRy 4 © NCp:

This case can be proven analogously to the case for AC. Instead of AC% families for evaluating ¢
and f, we now need to use NC}, families, which is why this result only holds for i > 0. With this,
we have logarithmic depth for evaluating ¢, which would generally be a problem, since repeating
this (log, n)’ times would yield a NC};H family.

However, this would only be the case, if the f gate (which would later be replaced by an edge to
another copy of the circuit evaluating ¢) was to occur at logarithmic depth in the circuit evaluating
t. Fortunately, due to our requirement that f must never occur in the scope of any unbounded
quantifier or aggregator, this is not the case, because the only cases where unbounded fan-in gates
would be needed are the ones of unbounded quantifiers and aggregators.

It remains to be shown that evaluating a number term without unbounded quantifiers and
aggregators can be done in constant depth with bounded fan-in, that is in NC%. This might
seem surprising at first glance, as NCY circuits can essentially only access a constant num-
ber of their input gates. However, if no unbounded quantifiers or aggregators are present,
FORgr[Arbgr] + SUMpg + PRODg number terms only contain variables introduced by bounded
aggregators or quantifiers, and their behaviour can essentially be hardwired. We will now show
that the bounded aggregators do not introduce logarithmic depth, because, as mentioned above,
only the unbounded quantifiers and aggregators would require unbounded fan-in gates and thus
introduce logarithmic depth when being restricted to bounded fan-in. The saving grace here is
that we only need to aggregate over the maximum two elements which satisfy the relativization of
the bounded aggregation. The relativization only depends on the ranking of the input structure
and not on the actual functions and relations given therein. Since the ranking is implicitly given
to the circuit by the length of the input structure’s encoding and thus the number of input gates of

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

Mathematical Structures in Computer Science 367

the circuit, we thus essentially hard-code, which the two maximum elements satisfying the rela-
tivization are. Once we have done that we can simply use a single addition (multiplication) gate to
mimic the behaviour of a bounded sum (product) construction which has as its two predecessors
the circuits for the term, which is being aggregated over, with the two aforementioned maximum
values satisfying the relativization.

Putting this all together, f gates only ever occur at constant depth in the circuit for ¢, and thus,
replacing this gate by a copy of the circuit for t and doing this iteratively (log n)’ many times yields
a circuit of depth &((log n)?). i

As mentioned previously, the basis of the idea for guarded functional recursion was the guarded
predicative recursion used for plain first-order logic (Durand et al., 2018). The same extension to
polylogarithmic recursion depth that was showcased in this paper for GFRg can be applied to
GPR. Similarly to the relativized aggregators in Notation 34, for relativized quantifiers, we write

Fx1s .o X6 Q)Y
as a shorthand for 3x; . .. Jxx (@ A) and
(Yx1, - . o X)W

as a shorthand for Vxi, . .., x(¢ — V).
For an FO formula ¢ and a relation variable P, we write ¢ (P") if P does not occur in the scope
of a negation in ¢.

Definition 49 '(GPR"). Let % be a set of relations such that BIT is definable in FO[Z]. The set of
FO[Z] + GPR' formulae over o is the set of formulae by the grammar for FO[Z] formulae over o
extended by the rule

@ =[PV, .. .» ¥ Vir1) =O0FE V1 - - > Vi Vix1> PDHIW(PY),

where r and 6 are FO[Z] formulae over o, %, y1, . . ., ¥i, yiy1 are tuples of variables, P is a relation
variable and each atomic sub-formula involving P in 6

1. isof the form P(X, 1, ..., i Vit1), the Y1, . . ., Vi, Yit1 are in the scope of a guarded quantifica-

tion
i -1
Q1> > Vi Vitl- \/ Zi <¥i/2 A /\Z_kfy_k ANEVL -+ > Vi Vit 1 21> + - + > Zis Zit 1)
j=1 k=1

with Q € {V, 3}, & € FO[Z] with & not containing any relation symbols for relations given in the
input structure and

2. never occurs in the scope of any quantification not guarded this way.

The semantics for GPR' are defined analogously to the semantics for GFRY, in Definition 35.

As stated, the proof of Theorem 48 can easily be adapted to the GPR? operator, so we obtain
the following result.

Corollary 50.

1. FO[Arb] + GPR' = AC forie N
2. FO[Arb] + GPR{ ,=NC' forieN.g

oun

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

368 T. Barlag et al.

5. Relationship Between Versions of AC3 Over Different Integral Domains

Intuitively, a circuit deciding a problem in AC% should also be able to simulate circuits deciding
problems in, for example, AC% and ACOZZ' Furthermore, we should be able to simulate an ACOZS

circuit by an AC%2 circuit by simulating the operations defined in the integral domain Z3 by
operations of tuples of Z;. To formalize this intuition, we propose the notion of & simulation
maps. Since the focus of this paper is on circuit complexity, we introduce simulation maps only in
the context of circuit size and depth, but this formalism does not depend on specific properties of
circuits and can easily be adapted to time and space complexity classes, which can, for example be
defined via a suitably adapted definition of R machines as presented in (Blum et al., 1998).

Definition 51. Let fi,f,: N— N be two functions and let € be a complexity class with € e
{SizeDepth(fi, f2), UnbSizeDepth(fi, f2)}.

A € simulation map from an integral domain Ry to an integral domain R, is an injective function
f: R — R such that the following holds:

For all ke N.g and A € €R11<, there exists an £ € N~ and a language B € Q:Rg such that for all

X =(x1,%2, ..., X|x) with x; € Rll‘for all i:

X€A < f(®) = (f(x1).f(x2),....f(xx)) €B.

If there exists a € simulation map from an integral domain R, to an integral domain R,, we also
write €p, CimCr,. The relations =gm and Cm are defined analogously.

Similar to the formalism of reductions in classical complexity theory, the relation induced by
CimY is reflexive and transitive. Since in this work the main focus is on the ACg and NC;, hierar-
chies, we will proceed to restrict ourselves to these classes. But note that the simulation methods
we show trivially extend to larger complexity classes.

The formalism essentially divides our integral domains into a three-tier hierarchy. The first tier
in this hierarchy consists of the complexity classes over finite integral domains, the second tier
consists of the classes over integral domains which are simulatable by Z, and the third tier consists
of classes over integral domains which are simulatable by R. In this setting, a complexity class over
a certain integral domain is able to simulate the complexity classes over integral domains in the
same tier or below. To make this explicit, we show the following three equalities:

Theorem 52. The following three equations hold:

1. NCprzsimNCqu for all prime powers p, q and i € N.
2. NCj=imNCyy; | forallieN.
3. NCﬁ{:SimNCkUk]for allieN.

Proof. We split the proof into two main parts: the finite case, in which simulations of integral
domains are trivial, and the infinite case, where we have to be more careful about the new opera-
tions our simulating circuits execute to uphold that the structure of the circuits simulate are still
integral domains.

The finite case. The simulation of finite integral domains is quite trivial. For NC%PgsimNCﬁ;q

where p < g, the simulation is straightforward. For NCﬁ;p - simNCqu where p > g, choose the length
of tuples that the NCqu circuit uses to be the smallest k € N such that p < g* holds. Map the p

elements to the first p elements in FX and define addition and multiplication tables of constant
size which simulate the addition and multiplication in [F,.

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

Mathematical Structures in Computer Science 369

The infinite case. We will prove that NCizzsimNCiZUk] for any fixed k € N. Note that the fol-
lowing proof does not depend on the countability of the set, so the proof for the uncountable case
runs analogously. The direction NCizgsimNCiZ[jk] is trivial. In the other direction, note that when
simulating infinite integral domains, we can no longer hard-code the addition and multiplication
tables in a trivial way. Furthermore, integral domains are not closed under cartesian products,
since for two integral domains Rj, Ry, we have for Ry x R, that (1,0) x (0, 1) = (0, 0) using com-
ponentwise multiplication. We fix this by still using k tuples to emulate the adjoint elements and
using componentwise addition, but adapting multiplication so that it simulates multiplication of
two elements with adjoint elements, where the mth index of the tuple stands for the mth power
of the adjoint element, which we call j here. Explicitly, we use the integral domain (Z, 4+, X 7),
where +x is componentwise addition, and x 4 is defined as follows:

If we want to multiply two tuples of length k

Z=(X1,%2, .. s XK) Xk (V1> Y25 - 5 Vi)s
we simulate the multiplication in the original, adjoint integral domain
(Xl + xj 4 - - —I—xkjk_l) X Z[j] (y1 + vyt +ykjk_1> ,

by constructing the following matrix of constant size which corresponds to expanding the

multiplication:
X1y xX1y2 e xygt!
x2)1j x2y2f° - Xy (= —xay)
A= (aw)=
X 2 (= —xga) - g
Observe that, due to the fact that j* = —1, every entry a,, of the matrix contributes to the term at

index (u 4+ v —2) mod k in the tuple. The entry of the resulting tuple Z at index £ is thus

a= Y aw

1<u,v<k

(u+v—2) mod k=¢ O
Theorem 53. The following three equations hold:

1. AC]%pzsimACqu for all prime powers p, q and i € N.
2. ACizzsimAC%Uk]for allie N,
3. ACfstimAC]"RU JorallieN.
k
Proof. We use the strategy from the proof of Theorem 52 and show that unbounded addition and

multiplication can be realized without a significant increase in the complexity.
For n given tuples of length k

(xl,l) X1,25+« > xl,k)) (xz,la X225+« 4> xZ,k)) cee (xn,la Xn2se > xn,k),

the simulation of unbounded addition by unbounded componentwise addition of tuples is
straightforward. For unbounded multiplication, we extend the strategy for the bounded case by

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

370 T. Barlag et al.

computing the matrix A iteratively. That is, for a sequence of tuples Xy, . . . , Xy, first compute the
matrix A; from the tuples X1 and X;, resulting in a tuple z;. The matrix A; is then computed
from the tuples z; and X3, and so on. In the resulting tuple Z, the value of each tuple entry can
only depend on the values x;;. So to simulate an unbounded multiplication gate, we need only an
unbounded multiplication gate with a linear number of predecessors. 0

Corollary 54. Forallie N, we have NC]istimNCfb and ACfstimACfc.
Proof. Observe that C =R[jz)]. O

Lemma 55. Forallie N, we have NCl'ZzsimNCfQ and ACizzsimACf@.

Proof. For NCZ'ngimNCfQ (resp. ACiZQSimACb), take f(x) :=x and for NCfQQSimNC% (resp.
ACszimACiZ), take f(x) := (a, b), where x = 7. O

Lemma 56. Forallie N, NCbgsimNCfR and ACbgsimACfR.

Proof. We use the fact that R is a transcendental field extension of @, that is there is no finite set
of numbers M which we can adjoin to @ in order to get Q[M] =R. In our setting, this means
that we cannot simulate all numbers r € R by a set of finite tuples (ao, . . ., a,) of numbers where
ag, . ..,ay € Q. O

6. Conclusion

In this paper, we introduced algebraic complexity classes with respect to algebraic circuits over
integral domains. We showed a logical characterization for AC% and further characterizations for
the ACg and NCy, hierarchies, using a generalization of the GPR operator of Durand et al. (2018).
We constructed a formalism to be able to compare the expressiveness of complexity classes with
different underlying integral domains. We then showed that using this formalism, we obtain a
hierarchy of sets of complexity classes, each set being able to “simulate” the complexity classes
from the sets below.

For future work, it would be interesting to investigate the logical characterizations made in
this paper in the uniform setting. We know that for the real numbers, the characterization
AC?R = FORr[Arbgr] + SUMR + PRODgr holds both non-uniformly and for uniformity criteria
given by polynomial time computable circuits (Pr uniform), logarithmic time computable cir-
cuits (LTr uniform) and first-order definable circuits (FOr uniform) (Barlag and Vollmer, 2021).
We believe that the results we presented here hold in analogous uniform settings as well, though
this would need to be further examined. The case of Pr uniformity seems like it should follow
relatively directly with similar ideas as in the AC% setting. For LT and FOg uniformity, though,
some more work would be required, since polylogarithmic depth can neither be trivially simu-
lated in logarithmic time nor can it be simply encoded in fixed length gate numbers, which is
how the proofs for the real cases go. However, the periodic nature of the circuits simulating GFRL
extensions makes it plausible, and they are describable in a more compact way.

Another open direction is to find interesting problems (potentially even complete) for these
new complexity classes. This could even provide new insights for the classical case.

A promising approach to the separation of algebraic circuit complexity classes could be an
adaption of the approach taken by Cucker, who showed that the problem FER, which essentially
asks whether a point lies on a Fermat curve, separates the (logarithmic time uniform) NC]’E classes

(Cucker, 1992). The same proof could also hold for the NCfC classes.

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

Mathematical Structures in Computer Science 371

Another model deserving of the name “algebraic circuit” is arithmetic circuits in the sense of
Valiant (1979). This model is similar to the model presented here, with the exception that gener-
ally, only addition and multiplication gates are permitted. Hence, there is no sign or comparison
function, which gives easy access to control flow constructions such as conditional statements and
also allows for the study of functions which are not differentiable. Maybe the ideas presented in
this paper can lead to further insights with regard to this model of computation as well.

In the Boolean case, in addition to the AC and NC hierarchies, one commonly investigated
hierarchy is the so-called SAC hierarchy. This hierarchy is defined by bounding the fan-in of only
one gate type, that is either the conjunction or the disjunction gates. It is known that it does not
make a difference in that setting which gate type is bounded. A possible next step is to define a sen-
sible analogue of the SAC hierarchy in the algebraic setting or as a previous step in the real setting.
We believe that in the algebraic case, it does make a difference which gate type we bound. The next
step is to decide which version of bounded gates yields the more interesting class and afterwards
one can relate it to any GPR' like operator in the real or the algebraic setting. This model could
then possibly be useful to investigate algebraic structures where the respective operations do not
adhere to the same axioms.

Acknowledgements. We thank Sebastian Berndt and Anselm Haak for fruitful discussions.

References

Aluffi, P. (2009). Algebra: Chapter 0. Graduate Studies in Mathematics. American Mathematical Society.

Barlag, T. and Vollmer, H. (2021). A logical characterization of constant-depth circuits over the reals. In: Silva, A,
Wassermann, R., and de Queiroz, R. J. G. B. (eds.), Logic, Language, Information, and Computation - 27th International
Workshop, WoLLIC 2021, Virtual Event, October 5-8, 2021, Proceedings, vol. 13038. Lecture Notes in Computer Science.
Springer, 16-30.

Blum, L., Cucker, F., Shub, M. and Smale, S. (1998). Complexity and Real Computation. Springer New York.

Biirgisser, P. (2013) Completeness and Reduction in Algebraic Complexity Theory, Bd., 7, Springer Science & Business Media.

Biirgisser, P., Clausen, M. and Shokrollahi, M. A. (1997). Algebraic Complexity Theory, Vol. 315. Grundlehren der
mathematischen Wissenschaften. Springer.

Cucker, F. (1992). Pr # NCg. Journal of Complexity 8 (3) 230-238

Cucker, F. and Meer, K. (1999). Logics which capture complexity classes over the reals. The Journal of Symbolic Logic 64 (1)
363-390.

Durand, A., Haak, A. and Vollmer, H. (2018). Model-theoretic characterization of boolean and arithmetic circuit classes of
small depth. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS, New York, NY,
USA: Association for Computing Machinery, vol. 18, 354-363

Gradel, E. and Gurevich, Y. (1998). Metafinite model theory. Information & Computation. 140 (1) 26-81

Grédel, E., Kolaitis, P. G., Libkin, L., Marx, M., Spencer, J., Vardi, M. Y., Venema, Y. and Weinstein, S. (2007) Finite model
theory and its applications, Texts in Theoretical Computer Science. An EATCS Series, Springer.

Grédel, E. and Meer, K. (1995). Descriptive complexity theory over the real numbers. In Leighton, F. T. and Borodin, A. (eds.)
Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, May-1 June 1995, ACM, 315-324.

Immerman, N. (1999). Descriptive Complexity. Graduate Texts in Computer Science, Springer.

Lang, S. (2002). Algebra, Springer New York.

Libkin, L. (2004) Elements of finite model theory, Texts in Theoretical Computer Science. An EATCS Series. Springer.

Valiant, L. G. (1979). Completeness classes in algebra. In Proceedings of the Eleventh Annual ACM Symposium on Theory of
Computing.

Vollmer, H. (1999). Introduction to Circuit Complexity - A Uniform Approach, Springer.

Appendix
A. Bounding Circuit Depth

In this section, we show in general how to bind the depth of a circuit with a recursively defined
constraint on the number of gates in the layers of the circuit.

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

372 T. Barlag et al.

Definition 57. Let C be a circuit and let Ly be the set of all gates g € C with depth(g) = k. Then, we
call Ly the kth layer of C.

Lemma 58. Let € = (Cy)nen be a circuit family, f a sublinear function and gc(k) the number of
_logyn
gates at layer k for a circuit C € €. Furthermore, let ¢ :=2 /0 .

A circuit C has depth O(f(n)) if we request that for every layer k, the inequality gc(k) < |« -
gc(k —1)] holds.

Proof. We want to bound the depth of the circuit (i.e., the number of layers k) by the sublinear
function f. For any input size n, we therefore set k =f(n) < n. Furthermore, if we require that
the inequality gc(k) < | - gc(k — 1)] holds, the circuit reaches its maximum depth when nak <1
holds, since the factor of « is applied k times, once for each layer. Substitution yields

k _logznk
n-a"<l<—=n-2 /» <1

<:>n_2710g2n§1' 0

Corollary 59. A circuit C has depth O((log, n)') if we request that for every layer k, the inequality

logy n

go(k) < Lz‘mgz T - golk — 1>J holds.

B. Examples for the Sequence d(n, ¢, i)

Here, we develop two examples of the sequence d(n, c, i) from Definition 42. Table 3 shows the
sequence d(8, 1,2). Since ¢ [log, 8] — 1 =2, each element of d(8, 1,2) contains i =2 tuples of
length 2. Each line is one element of the sequence, and the columns determine the tuples in the
elements. This means that the first element here is the element (11, 11), the second one is (11, 01)
and so on.

Table 4 shows the sequence d(8, 2, 2). Since ¢ - |log, 8] — 1 =5, each element of d(8, 2, 2) con-
tains i = 2 tuples of length 5. Each line is one element of the sequence, and the columns determine
the tuples in the elements. This means that the first element here is the element (11111, 11111),
the second one is (11111,01111) and so on.

Table 3. The sequence
d(s, 1,2)

o~
—

-

N

1 11 11
2 11 01
3 11 00
4 01 11
5 01 01
6 01 00
7 00 11
8 00 01
9 00 00

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

Mathematical Structures in Computer Science 373

Table 4. The sequence
d(s,2,2)

o~
—

"

N

1 11111 11111
2 11111 01111
3 11111 00111
4 11111 00011
5 11111 00001
6 11111 00000
7 01111 11111
8 01111 01111
9 01111 00111
10 01111 00011
11 01111 00001
12 01111 00000
13 00111 11111
14 00111 01111
15 00111 00111
16 00111 00011
17 00111 00001
18 00111 00000
19 00011 11111
20 00011 01111
21 00011 00111
22 00011 00011
23 00011 00001
24 00011 00000
25 00001 11111
26 00001 01111
27 00001 00111
28 00001 00011
29 00001 00001
30 00001 00000
31 00000 11111
32 00000 01111
33 00000 00111
34 00000 00011
35 00000 00001
36 00000 00000

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136

374 T. Barlag et al.

C. Proof of Lemma 46

Lemma 60. Let L bein qu or NC}Iz via the circuit family € = (Cy)ueN. Then, there exists a circuit
family €' = (C'y)nen deciding L, such that for all n € N and each gate g in C',, each path from an
input gate to g in C',, has the same length. We call C', a balanced DAG.

Proof. Let L be in AC}:,2 or NC}I2 via ¥ = (Cy,)nen. For each circuit C,, € €, we construct a circuit
C'y, such that fc, = f+ and for each gate g in C'y, all input g paths in C’,, have the same length.

We transform C, into C',, by creating paths of dummy gates to replace edges that go over more
than one level of depth.

Let the depth of C, be bounded by ¢; - (log, n)i, and let its size be bounded by ¢z - n%. We
proceed by structural induction over the depth d of gates g in C,, that is, the maximum length of
paths from an input gate to g.

d = 1: Each gate g at depth d is a direct successor of an input gate. Therefore, no changes need
to be made, since all gates at depth d only have input g paths of length 1 and therefore have
the desired property.

d — d + 1: For each gate at depth d + 1, all predecessors are gates of depth < d + 1 for which
it holds that all paths from input gates to them are of the same length. Keep all those predeces-
sors at depth d as they are and replace the edge from predecessors of smaller depths d’ < d to
g by a path of dummy (unary addition) gates of length d — d’. Now all paths from input gates
to g have exactly length d + 1, and we only added at most c; - (log, n)’ gates per predecessor
of g. In total, the number of dummy gates added for g is bounded by c; - n% - ¢; - (log, n)".

The resulting circuit is C',,. Since addition gates with only a singular predecessor are essentially
identity gates, the value of each gate in any computation of C’,, remains the same. Thus, fc, = fe,

Additionally, for each gate in C,, we add at most ¢ - (log, n)’ - c; - n® gates to arrive at C',,.
Therefore, the size of C',, is bounded by ¢; - (log, ey Ny -nB=c - (log, n)-(c-n®)? e
0(n?W). The depth of C’,, does not change, since we only ever add gates, when longer paths
within C, exist so that they end up at the same length.

In total, ', computes the same function as C,, - and thus decides L - and has the property that
for each of its gates g, all input g paths have the same length. U

Cite this article: Barlag T, Chudigiewitsch F and Gaube SA (2024). Logical characterizations of algebraic circuit classes over
integral domains. Mathematical Structures in Computer Science 34, 346-374. https://doi.org/10.1017/50960129524000136

https://doi.org/10.1017/5S0960129524000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000136
https://doi.org/10.1017/S0960129524000136

	
	Introduction
	Our contribution
	Related work
	Outline of the paper
	Preliminaries
	Algebraic circuits over R

	Structures and first-order logic over integral domains
	"026E30F textrmAC2 0_R = "026E30F textrmFO_R

	Algebraic Circuits and Guarded Functional Recursion
	Relationship Between Versions of "026E30F textrmAC2 0_R Over Different Integral Domains

	Conclusion
	
	
	

