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Abstract 

A data analysis method aiming to support cause and effect analysis in design exploration studies is 

presented. The method clusters and aggregates effects of multiple design variables based on the 

structural hierarchy of the evaluated system. The resulting dataset is intended as input to a 

visualization construct based on colour-coding CAD models. The proposed method is exemplified 

in a case study showing that the predictive capability of the created, clustered, dataset is comparable 

to the original, unmodified, one. 
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1. Introduction 

The act of designing industrial products or services is seldom done by one individual, rather it is 

normally a group effort (McComb et al., 2015). Collaboration in design can therefore be thought of as 

joint problem solving, i.e. working with others, sharing a common understanding of goals and available 

means, attempting to find solutions that are satisfying to all involved stakeholders. The knowledge 

needed to make well informed decisions rarely resides in single persons, not even departments. In 

contrast, cross-functional teams willing to share their knowledge and values are needed (Murakami, 

2016). Wang et al. (2002) further emphasize the importance of cross-functional teams for rapid and 

reliable evaluation of different options in conceptual design. This development is fueled by the since 

long prevailing concurrent engineering approach in product development, and the transition towards 

product-service systems as well as increasing product complexity (Sundin et al., 2009). 

As a consequence of the evolving product development landscape there is a significant need for 

collaboration, both internally within an organisation but also externally with suppliers, customers and 

other stakeholders. This is especially true in the early conceptual phase of product development where 

information is scarce and potentially conflicting. Hence, there is a clear incentive to involve all 

stakeholders into the decision process. Gathering the involved, normally diverse, group of stakeholders 

in a collaborative setting for design exploration exercises, sharing knowledge, values, and data is 

believed to augment decision making ability in early design. Research interest regarding an interactive 

group workspace focused on digital workflows has increased in recent years, see for example Nieminen 

et al. (2013) or Benyon and Mival (2015). Research regarding model-centric interactive workspaces are 

however not as common, an exception is the decision theatre at Arizona State University, see for 

example White et al. (2015). At Arizona State focus is on sustainability and how decisions affect the 

system in study on a macroscale. The need for model-centric environments in engineering design has 
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been presented by Rhodes and Ross (2016). In line with that, Wall et al. (2018) proposes a model-driven 

environment for collaborative decision making focused on early phases of engineering design and 

presents initial work on conceptualizing, developing, and testing such an environment. Data analysis and 

visualisation become key enablers in these environments aiding information sharing, communication, 

understanding and building of knowledge within the cross-functional team (Wall et al., 2018). 

Visualization may augment problem-solving capabilities by enabling the processing of more data 

without overloading the user. Cognitive tools propel users into far more effective thinkers and 

computer-based tools with visual interfaces may be the most powerful and flexible cognitive systems 

(Ware, 2005). Several authors have proposed visualisation constructs intended to support the product 

development process based on colour-coding the CAD model of the studied system. In colour-coding, 

system attributes are mapped to a colour scale to highlight components or subsystems that are 

negatively or positively affected by new designs, schematically exemplified in Figure 1. Ostad-

Ahmad-Ghorabi et al. (2009) discusses colour-coding of the CAD model to visualise the 

environmental impact of components based on a life cycle assessment. Bertoni (2013) developed a 

lifecycle value representation approach connecting qualitative value scores to the actual CAD 

representation of the product under analysis. Geromin et al. (2018) proposes to colour-code CAD 

models to visualize design rationale maturity. Described applications of colour-coded CAD models are 

either described on a conceptual basis or based on qualitative assessments of attributes to be 

visualized. However, for colour-coding to be viable in design exploration schemes based on automated 

simulation setups, methods supporting quantitative analysis linking attributes to specific components 

in the studied system is necessary. 

 
Figure 1. Example of colour-coded visualization  

Based on the hypothesis that “Associating data and information with identifiable components and 

subsystems within the studied system is an efficient way to share information, aiding understanding in 

a cross-functional team” this paper presents a data analysis method enabling visualisation of quantified 

cause and effect relationships by colour-coding the CAD representation of the studied system. More 

specifically the aim is to develop a method able to support quantification of dependencies between 

design variables (independent variables) and design attributes (dependent variables) on a component 

or subsystem level in cases where more than one independent variable drives the configuration of the 

component or subsystem. 

The remainder of this paper is organized as follows; In Section 2, the hierarchical system view is 

presented. Section 3 presents the proposed data analysis method. In section 4 the proposed method is 

exemplified through a case study. The paper concludes with discussion, conclusions and directions for 

future research. 
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2. System view and analysis 

Complexity of engineered systems has increased rapidly over the last decades going from essentially 

mechanical towards mechatronic systems that to a large extent relies on embedded software to fulfil 

functionality. Demands on a prospective solutions connectedness carried by the rapid development of 

Internet of Things combined with the conceivable development of communication and information 

technology further adds to this. There is no concise definition of what a complex system is (Ladyman et 

al., 2013). In the current work a complex system is defined by the integration of subsystems forming a 

system that exhibits behaviour not attainable by any of the subsystems alone. The interaction of the 

subsystem elements often results in emergent behaviour of the complex system that was not originally 

intended, designed, or desired. To be able to assess such system using a model-based approach, concept 

description needs to consider these interactions and component interdependencies according to overall 

system description. A common approach, attempting to make complex systems comprehensible, is to 

view them as a top-down hierarchy, decomposing the system down to indivisible parts. This 

decomposition is generally done from a structural point of view. In a structural hierarchy, components 

reside at the lowest level. At the mid-level, components are assembled into functional units, so-called 

sub-systems. At the top-level of the hierarchy, an assembly of sub-systems are connected to form a 

system able to perform a desired function. This way of visualizing systems makes them comprehensible 

for a wider audience within the development effort of the solution. 

Information about a system might be conveyed using other hierarchical descriptions, for example the 

attribute hierarchy. An attribute can be defined as any aspect of the product itself or its use that can be 

used to compare product alternatives (Grunert, 1989). As an example, attributes of an automobile 

might be acceleration or fuel consumption. System attributes might be classified in numerous ways, 

see for example Crnkovic and Larsson (2004). In the current study attributes are divided into two 

types, directly composable and derived attributes. A directly composable attribute is a function of and 

only of the same attribute. Whereas a derived attribute is composed by other attributes of the system. 

As a derived attribute and the attributes it is derived from has a parent-child relationship, a hierarchy 

of attributes and associated quantifiable models used to predict them may be defined as exemplified in 

Figure 2. The structural and attribute hierarchies are directly interrelated as the structural hierarchy in 

combination with contextual information, such as usage scenarios, are the input to the models used to 

predict the attributes in the performance and resource space respectively. 

 
Figure 2. Attribute hierarchy  

A hierarchical description of attributes might foster a shared understanding how these attributes are 

related. As such it might act as a boundary object (Larsson, 2003), mitigating negotiation regarding 

system design within the cross-functional team. However, to truly understand cause and effect 

relationships, i.e. how alternation of a proposed design concept affects a specific attribute or the 
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understanding of how the concept should be modified in order to reach a specific target, experimentation 

is needed. By generating, and through computational methods evaluate and compare all feasible 

conceptual solutions in the current design space is rarely a practical solution. Furthermore, in an extreme 

case, if an optimal solution was stumbled upon early on in an exploration endeavour the ability to 

recognize that is lacking unless comparative studies are conducted. Commonly, datasets to be analysed 

origins from experiments varying independent variables according to a specified experimental plan, this 

is referred to as Design-of-Experiment (DOE). DOE is a technique for choosing a limited set of data 

samples in the design space with the goal of maximizing the amount of information produced (Giunta et 

al., 2003). When the experiment is executed, associated attributes for all concept variants in the DOE 

generated experimental plan are predicted and stored in a database. This type of design exploration 

activities in relation to complex systems may generate an abundance of data containing an intricate 

hierarchy of attributes. To understand how attributes on different levels is affected by system/sub-

system/components or on a more detailed level relates to component features is imperative, making 

exploration of cause and effect relationships through data analysis a vital task. 

The independent variables in a design exploration study might, for example, be associated with the 

proposed mechanical structure, usage scenario or even other attributes of the studied system. The 

resulting data structure of an experiment, including independent and dependent variables, is 

classified as a two-level variable hierarchy according to the left part of Figure 3. However, typically 

these independent variables are not identifiable as components or subsystems. Rather a subset of the 

independent variables in an experiment, combined with parameters and constants, drive the 

configuration of a particular component or sub-system and, as a consequence, also attributes 

associated with that component or sub-system. This might be visualized as an intermediate level in 

the variable hierarchy of the analysis as exemplified in the right part of Figure 3. As this 

intermediate level is not directly included in the conducted experiment, data to populate and in the 

next step analyse it, does not exist. To create this intermediate level, data may be synthesized by 

clustering the identified subset of independent variables and aggregate their effect on the dependent 

variable. To fit the intended visualisation scheme, by colour-coding the CAD model as discussed in 

the introduction, the independent variables are clustered based on the structural decomposition 

given by the structural hierarchy. A method for how to synthesis data for this intermediate level is 

described in section 3. 

 
Figure 3. Variable hierarchy  

3. Data analysis method 

The cause and effect relationship between dependent and independent variables may be studied by 

establishing mathematical relationships between them and analysing the dependent variable 

dependencies on independent variables from the equation coefficients as is done in for example 

regression analysis (Allen, 1997). This type of analysis is well established studying relationships 

between dependent and independent variables that are directly observable. Generating new, clustered, 
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variables that are inferred from the direct variables and establishing the relationship between clustered 

variables and the dependent variables are however challenging. A data analysis method is proposed to 

cluster the independent variables according to the structural hierarchy and construct a new intermediate 

level in the variable hierarchy. The method is designed to work under the assumptions that the variables 

are continuous and that the relationships between dependent variable and independent variables are 

linear. The assumption of linearity is a simplification applied in this work aiming at presenting an initial 

methodology for this type of analysis. Furthermore, the method is designed to analyse relationships 

between one dependent variable and several independent variables. Figure 4 depicts an overview of the 

proposed method, schematically also showing its role in the concept evaluation process. In the proposed 

method, data is partially regressed between dependent and independent variables and the respective 

independent variable coefficient is utilized to cluster the variables, creating an intermediate hierarchical 

level. All the variables are standardized to bring down the variables with different metric units to a single 

scale, to analyse the dependent variable dependencies on the independent variables (Bring, 1994). 

Standardization reduces the mean value of the variables to “0” and standard deviation to “1”, implying 

that all the variables are distributed normally on the same scale, which helps to understand which 

independent variables has greater effect on the dependent variable, when they have different metric units 

(Devore, 2012). Partial least square regression is applied again to understand the cause and effect 

relationships for the desired hierarchical levels or between desired dependent and independent variables. 

 
Figure 4. Overview of proposed method  

3.1. Partial regression 

Partial least square (PLS) regression is a statistical method to find the linear regression model for the 

desired input and output variables. It generates a regression model even when there are less number of 

concepts than number of variables (Rännar et al., 1995). The dataset consists of generated independent 

and dependent variable, where the dependencies are expressed in terms of an equation between them, 

there can be an infinite number of solutions satisfying the equation i.e., either nonparallel lines or 

identical lines or intersecting at a common point on independent variables plane. Using PLS, helps to 

identify the unique solution, which inter-links grouping variables and the output variable. PLS is 

useful to extract the variables that are not directly observed but are rather being inferred from other 

variables, in a way it assists to cluster the variables for a new hierarchical level (Pirouz, 2006). 

In this context, partial least squares regression is used before standardization to understand the 

dependencies of the independent variables to be clustered and to generate an intermediate level in the 

variable hierarchy with respect to the dependent variable. In general, only a subset of existing independent 

variables are clustered and mapped onto the new intermediate level. The generated variables of the new 

hierarchy level are created with respect to the dependent variable to keep the contributions of the non-

clustered independent variables being fixed with respect to the output at any hierarchy level. If the variables 

are clustered by dimension reduction method and without considering the dependent variable, then the 

significance of the contributions of the non-clustered variables are lost during the experimentation. 

Dependency of dependent variable on the independent variables are analysed using the regression 

coefficients (β). PLS finds the regression model by projecting the dependent variable (Y) and 

independent variable matrix (X) to another new space, finding the multidimensional direction in X 
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space that explains the maximum multidimensional variance direction in the Y space. Considering the 

linear assumption between the dependent and independent variables, according to the Equation (1). 

        (1) 

where Y is (n x 1) matrix of the dependent variable and X is (n x p) matrix of the independent 

variables, C is the noise (p x 1) matrix and β is an (n x 1) matrix of regression coefficients. PLS 

decomposes the dependent and independent variables according to Equations (2) and (3) to maximise 

the covariance of T in X and Y space (Boulesteix and Strimmer, 2006). 

        (2) 

        (3) 

where T is (n x 1) matrix giving the latent components for the variable observations, P (p x 1) matrix 

and Q (q x 1) matrix are matrices of coefficients and E (n x p) and F (n x q) are random error terms. 

The latent component T matrix is constructed as a linear function of X, as in Equation (4). 

      (4) 

where W is (p x 1) matrix of weights. The latent components matrix T is used to predict the regression 

coefficients and matrix of coefficients Q. Q matrix is obtained as the least square solution of Equation (2). 

              (5) 

   in Equation (2), transformed to Equation (6) 

           (6) 

Comparing Equation (6) and Equation (1) results in Equation (7) 

      (7) 

Regression coefficients ( ) has a minimum norm satisfying the Equation (1) 

Min ‖ ‖ such that   =     

Where β is calculated using the Equation (8) 

              (8) 

The regression coefficients (β) signifies how much the mean of the dependent variable changes when 

there is a one-unit shift of independent variable while keeping the others fixed. The sign represents the 

directional change, i.e., when there is a positive coefficient the dependent variable increases, as the 

particular independent variable increases and vice versa. 

3.2. Variable clustering 

Variable clustering involves the grouping of independent variables to form a new variable. Initial 

regression coefficients of the original independent variables are utilized to cluster the variables, 

according to Equation (9). In this work independent variables are clustered according to referenced 

structural hierarchy, independent variables belonging to the same component or subsystem are 

clustered together. Partial least square regression is applied with the dependent variable and independent 

variables to generate the regression coefficient matrix [             ] and the respective regression 

coefficient is multiplied with the respective independent variable. 

       
 
   

  
   

   
  
   

    (9) 

where      is new derived variable created by clustering sub-set of the independent variables.    is 

the intercept term,     the regression coefficient for i1 independent variable and dependent variable and 

    is the independent variable to be clustered. The regression coefficients are either negative or 

positive, when combined with the independent variables according to the Equation (9), it is most likely 

that there will be a positive regression coefficient for the clustered variable with the dependent 

variable, in-order to maintain the sign convention with the original independent variables. To avoid 
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this issue, the individual effect of the variables in the clustered group is investigated, whether there is a 

larger negative regression coefficient or larger positive regression coefficient by summing up all the 

similar independent variables regression coefficient. If the summation is negative value, then Equation 

(9) is multiplied by -1 or else the Equation (9) is valid. 

4. Case study 

To exemplify the proposed method, it was used to analyse an existing dataset originating from a 

design exploration study evaluating proposed concepts of road construction equipment. In the study 

different design configurations for the vehicle platform were evaluated considering both performance 

and resource space. Concept evaluations were done through model-based experimentation 

(simulation). Simulation is an effective means to enable extensive exploration, so to learn faster (by 

performing more and earlier iterations) about the characteristics of the best possible design (see: 

Thomke and Fujimoto, 2000). A Value Driven Design (VDD) approach were applied as Systems 

Engineering (SE) research has stressed the importance of the value model to frontload engineering 

design activities (Collopy and Hollingsworth, 2011). This model is expressed as a single objective 

function that aims at measuring the “goodness” of the design. 

In the study 700 variants of the vehicle platform was studied. Variations were driven by seven design 

variables (independent variables in the study) and 16 functional attributes were assessed. Based on these, 

derived attributes in resource space was assessed. More information on how this dataset is generated and 

the applied modelling and simulation scheme can be found in Bertoni et al. (2019). The value model was 

fed with the output of these models to render a value score for the design configuration under analysis. 

All aspects of value was quantified in monetary terms, enabling easy trade-off with more traditional 

requirements. This quantification process was based on the implementation of Net Present Value (NPV) 

from the VDD literature (Price et al., 2012). The dataset also contained information enabling mapping 

each independent variable directly to components or subsystems in the structural hierarchy. 

The studied dataset contained three categorical variables rendering a non-linear behaviour. As 

proposed method is valid only for systems showing a linear behaviour, the dataset was linearized by 

fixing two out of three categorical variables to a specific choice and transforming the third one to 

continuous, making use of the dummy variables (Yip and Tsang, 2007). Dummy variables are 

numerical variables representing subgroups of the categorical variable. Number of subgroups for a 

categorical variable depends on the number of classes it contains. The model was custom trained to 

identify the type of categorical variable and regress accordingly. To exemplify the method, NPV was 

chosen as dependent variable, and the effect of the seven design variables were assessed. The 

regression coefficients for the dependent variable “NPV” are shown in the left part of Figure 5. 

 
Figure 5. Regression Coefficients, example NPV  

In the next step the independent variables were clustered according to the structural hierarchy, 

reducing them to five at the intermediate level of the variable hierarchy. These five variables are at 

this stage directly interpretable as components or subsystems of the studied system. The regression 
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coefficients of the second stage are shown in the right part of Figure 5. In Figure 5, it can be seen that 

nor motor type or bearing type has an effect in this experiment. This is due to the applied linearization 

procedure where both these variables are set to fixed values. 

Regression coefficients from the intermediate level are used to drive colour-coding of associated 

CAD-model. The data exchange between the simulation environment and the CAD application is 

enabled by establishing generic communication protocols/functions that exploits the application 

programming interface of each software. A colour scheme ranging from red to green over yellow is 

used. Red represents a negative effect on studied attribute whereas green represents a positive effect. 

Yellow indicates no or little effect on studied attribute. Figure 6 shows a mock-up of an intended 

implementation visualizing cause and effects within the attribute hierarchy. In this simplified example 

of visualisation, three out of the assed 16 attributes are shown as well as their aggregation in form of 

NPV rendered by the value model. Results from Figure 5 accompanied by results from similar results 

of the in the figure exemplified derived attributes, manoeuvrability, visibility and upgradeability, are 

shown. Components and subsystems not included in the experiment are shown as transparent. 

 
Figure 6. Colour-coded CAD-model in case study (CAD mock-up)  

Coefficient of determination (R
2
) of a statistical model was used to validate the methodology. It 

determines how close the predicted data matches to the original data, according to the Equation (10) 

(Loretan and Kurz-Kim, 2007). 

      
∑      

∑    ̅  
 (10) 

where y represents the actual data values, Y is the predicted data values and  ̅ is the mean value of y. 

The value of the regression coefficient of determination ranges from [0,1]. As the value of R
2
 

approaches unity, the predicted values are equal to the actual data values, i.e., the closer the value of 

R
2
 to 1, the greater is the fit of the data, and the closer the value of R

2
 to 0, the poorer is the fit of the 

data. For the NPV approximation, R
2
 is 0.6402, in comparison coefficient of determination of assessed 

derived attributes are 0.95 and above. 

5. Discussion and conclusion 

A data analysis method that clusters and aggregates effects of multiple design variables, independent 

variables in a study, is presented. The method aims to support cause and effect analysis supplying 

structured input to a visualisation construct. The intent is to map the analysed data based on the structural 

hierarchy of the proposed concept and to visualise the result using the CAD geometry as base. 
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The proposed data analysis method is based on the partial least square regression method. The 

regression is conducted in two steps with an intermediate variable clustering through linkage to the 

proposed concept’s structural hierarchy. The proposed method ensures that the significance of the 

contributions of the non-clustered variables are not lost during the experimentation. The proposed 

method has no limitation on number of variables it can handle. In practice however this will be an 

issue of availability of computational resources and time. 

The method is exemplified through a case including visualisation by colour-coding the CAD model of the 

studied concept. Applying a validation scheme based on coefficient of determination analysis it is shown 

that the data structure using a “virtual” intermediate level performs, considering the non-linearities in the 

original dataset, comparably to the original dataset when it comes to predicting attributes. 

As of now the application of the presented method is limited to problems where relationship between 

dependent and independent variables may be categorised as linear. During development of the 

algorithm datasets from multiple test cases were analysed. It was found that non-linear effects may 

affect the accuracy of the method to such an extent that, depending on the stage of the development 

project, these effects might need to be considered. Future work aims to extend the feasibility of the 

method to also include problems featuring non-linear relationships. An enhanced and generalized 

version of the proposed method, combining the data analysis and the visualisation construct, could be 

implemented as a design support in CAD software’s enabling visualisation of quantified cause and 

effect relationships and thereby supporting collaborative decision making in design. 
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