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1. Introduction: motives and quantum cohomology

1.1. A summary

Let Vark be the category of smooth complete algebraic varieties defined over a field k.
The category of classical motives MotK

k , with coefficients in a Q-algebra K, is the
target of a functor h : Varopk → MotK

k , which, in the vision of Alexandre Grothendieck,
ought to be a universal cohomology theory, with values in a tensor K-linear category.

Morphisms X → Y in MotK
k are represented by classes of correspondences, algebraic

cycles on X × Y with coefficients in K. Depending on the equivalence relation imposed
on these cycles, one could consider Chow motives, numerical motives, etc.

Besides the objects h(V ) for V ∈ Vark, the category MotK
k contains their direct sum-

mands (‘pieces’) and their twists by Tate’s motive. Formally adding these objects, one
turns the category of motives into a Tannakian category. One can then apply the philoso-
phy of the motivic fundamental group to it. Ideally, all inherent structures of cohomology
objects can be encoded/replaced by the representations of the respective motivic funda-
mental group.

What is special about ‘total motives’ h(V ), as opposed to pieces and twists?
For example, the objects h(V ) bring with them a natural structure of commutative

algebras in MotK
k . It is not determined only by h(V ): isomorphic motives h(V )s may well

have different multiplications; but, of course, this classical multiplication is motivic in
the sense that it is induced by the diagonal map V → V × V in Vark and by the class of
its graph in MotK

k .
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The advent of quantum cohomology from physics to algebraic geometry opened our
eyes to the fact that classical cohomology spaces of algebraic varieties, say, over C, possess
an incomparably richer structure: they (or rather their tensor powers) are acted upon by
cohomology of moduli spaces of pointed curves H∗(M̄g,n), much as Steenrod operations
act in the topological situation. From the physical perspective, these operations encode
‘quantum corrections to the classical multiplication’.

Grothendieck’s vision, however, turned out to be prophetic. This new structure is
motivic as well in the same sense: it is induced by canonical Chow correspondences,
Gromov–Witten invariants IV

g,n,β in A∗(M̄g,n × V n) indexed by effective classes β in
A1(V ). This was conjectured in [24], worked out in more detail in [7] and finally proved
in [4], where the virtual fundamental classes in the Chow groups of spaces of stable maps
were constructed by algebraic–geometric techniques.

This construction allowed Behrend to establish a list of universal identities between
the Gromov–Witten invariants that were conjectured earlier.

Taken together, these identities imply that, for each total motive h(V ), the infinite
sum of its copies indexed by the numerical classes β of effective curves on V possesses
the canonical structure of an algebra over the cyclic modular operad HM:

HM(n) :=
∐
g

h(M̄g,n).

This is the motivic core of quantum cohomology.
However, this discovery also stressed an inherent tension between the initial Grothen-

dieck vision and the highly non-Tannakian character of the quantum cohomology
expressed in the following observations.

First, these structures of HM-algebras are not functorial in any naive sense with
respect to morphisms in Vark (except isomorphisms). Note that the classical multiplica-
tion is functorial with respect to morphisms in Vark; quantum corrections destroy this.
However, as was shown in [27], quantum multiplication is functorial with respect to at
least certain isomorphisms in MotK

k (flops) that do not agree with classical multiplication:
quantum corrections exactly compensate classical discrepancies. This is a remarkable fact,
suggesting that motivic functorality might be an important hidden phenomenon.

Second, being total motives, h(M̄g,n) themselves have quantum cohomology, that is,
they define algebras over HM.

One aim of this paper is to draw attention to this self-referentiality and to start study-
ing the quantum cohomology of HM and its relation to the quantum cohomology action
of this operad upon other total motives. Analogies with homotopy theory, in particular,
A1-homotopy formalism, might help us to recognise a pattern in algebraic geometry
similar to that of iterated loop spaces.

A warning is in order: many meaningful questions cannot be asked, or answers obtained,
until one extends both parts of the theory, motives and quantum cohomology, from the
category Vark to at least the category of smooth DM-stacks. Some of the complications
arising can be avoided if one restricts the problem to the case of genus 0 quantum
cohomology. We adopt this restriction in this paper.
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1.2. Results of this paper

This paper is the first installment in a project whose goal is to understand the Gromov–
Witten theory of the moduli spaces of curves, preferably on the motivic level, that is,
the level of J- and I-correspondences (see [6] for a clear and intuitive introduction).

Specifically, the spaces M̄0,S (with variable S) and their products are interrelated by a
host of natural morphisms expressing embeddings of boundary strata, forgetting labelled
points, relabelling, etc. (see [7,21,22] for a systematic description).

The Gromov–Witten classes that we study in this paper are certain Chow correspon-
dences

I(S, Σ, β) ∈ A∗(M̄Σ
0,S × M̄0,Σ), (1.1)

where S, Σ are (disjoint) finite sets of labels and β runs over classes of effective curves
in A1(M̄0,S).

Our main motivation is the following vague conjecture.

Guess 1.1. Classes (1.1) are ‘natural’ in the sense that they can be functorially
expressed through canonical morphisms in the category of moduli spaces of labelled
trees of various combinatorial types.

This guess is a natural first step towards understanding the self-referential nature of
Gromov–Witten theory in motivic algebraic geometry: the fact that components of the
basic modular operad ‘are’ algebras over the same operad (if one takes into account
twisting and grading by the cones of effective curves).

The main result of this paper is an explicit description, in the spirit of our guess, of
those I-correspondences of M̄0,S that correspond to the classes β of boundary curves (see
Theorem 5.2 in § 5).

The question this answers is quite natural, in particular, because there is a conjecture
that boundary curve classes are generators of the Mori cone (see [10,11,14,17,23] for
this and related problems).

1.3. From curves to surfaces and further on?

One can imaginatively say that the quantum cohomology of V reveals hidden geometry
that can be seen only when one starts probing V by mapping curves C (‘strings’) to V .
A natural question arises of how to use, say, surfaces (‘membranes’) in place of curves,
and how to do it in algebraic, rather than symplectic or differential, geometry?

If we expect to discover new universal motivic actions in this way, we must first con-
template the case when V is a point and pose the following question.

What are the analogues of moduli spaces M̄g,n (or at least M̄g,0) for surfaces in this
context?

The experience of the stringy case indicates that these analogues must be rigid objects,
as M̄g,n themselves are (see [16]).
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In fact, moduli spaces are only rarely rigid, but, according to a brave guess of Kapranov,
if one starts with an object X = X(0) of dimension n, produces its moduli space of
deformations X(1), then produces the moduli space X(2) of deformations of X(1) etc.,
then X(n) must be rigid. Quoting [16], which summarizes the philosophy expressed in
an unpublished manuscript by Kapranov.

One thinks of X(1) as H1 of a sheaf of non-abelian groups on X(0). Indeed,
at least the tangent space to X(1) at [X] is identified with H1(TX), where
TX is the tangent sheaf, the sheaf of first-order infinitesimal automorphisms
of X. Then one regards X(m) as a kind of non-abelian Hm, and the analogy
with the usual definition of abelian Hm suggests the statement above.

Extending this idea, one might guess that an imaginary ‘membrane quantum cohom-
ology’ should define motivic actions of rigid (iterated) moduli spaces of surfaces (endowed
with cycles to keep track of incidence conditions) upon certain total (ind-) motives. One
motivation of this paper is to make some propaganda for this idea.

2. Gromov–Witten correspondences

We start with background terminology and notation.

2.1. Moduli stacks

We consider schemes over a fixed field k of characteristic 0.
Any scheme W ‘is the same as’ the contravariant functor of its T -points W (T ) =

Hom(T, W ) with values in Sets.
More generally, a stack (of groupoids) F ‘is the same as’ the class of its T -points FT ,

where T runs over schemes. The main new element of the situation is that each FT itself,
and their union F over ‘all’ T , are not simply sets or classes, but categories. Moreover,
they form a sheaf on the étale (or fppf) site of schemes.

So we think about the individual objects of FT as schematic T -points of F , whereas the
non-trivial morphisms between them are functors subject to a list of restrictions specific
to stacks. We recall this list informally below.

As in [28, V.3], we imagine that the objects of FT are ‘families (of something) over T ’.
In practical terms, one family is usually given by a diagram of schemes and morphisms,
in which a part of the data remains fixed, including its ‘base’ T , and the rest is subject
to a list of explicit restrictions.

For example, if F is represented by a scheme W , then ‘one family over T (of points
of W )’ is a very simple diagram T → W .

The following requirements must be satisfied.

(i) Each object of F belongs to an FT for a unique scheme T , and the map b : F → Sch,
sending a family to its base, is a functor. The groupoid property requires that if
b(f) = idT , then f is an isomorphism between two respective T -points.
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(ii) With respect to the morphisms ϕ : T1 → T2, FT must be contravariant: we must be
given ‘base change’ functors ϕ∗ : FT2 → FT1 , together with functor isomorphisms
(ϕ ◦ ψ)∗ → ψ∗ ◦ ϕ∗ and associativity diagrams for them.

Moreover, if F ∈ ObFT2 , then the lifted family ϕ∗(F ) ∈ ObFT1 must be endowed
with a canonical morphism F → ϕ∗(F ) lifting ϕ and satisfying a set of conditions.

For example, the base change for T2 → W is simply the composition T1 → T2 → W .

(iii) F is a stack, if each T -family is uniquely defined by its restrictions to an étale
(or fppf) covering of T and the standard descent data. The same must be true for
morphisms of T -families etc.

(iv) Morphisms of stacks are functors between the respective categories of families,
identical on bases of families.

Thus, an object F ∈ ObFT can also be treated as a stack, and, as such, it is
endowed with a morphism of stacks F ⇒ F .

2.2. Families of stable maps: preliminaries

We now describe the main classes of families and stacks with which we deal here.
First of all, fix a finite set Σ, a genus g � 0, a smooth projective manifold W over k

and an effective class β ∈ A1(W ).
One can then define a (proper DM)-stack M̄g,Σ(W, β).
For a k-scheme T , one object of the groupoid M̄g,Σ(W, β)(T ) of T -points of this stack

consists of a diagram of schemes of the following structure:

CT
fT ��

hT

��

W

T

(2.1)

and a family of sections xj,T : T → CT , j ∈ Σ, hT ◦ xj,T = idT .
They must satisfy the following conditions.

(a) CT → T and (xj,T ) constitute a flat prestable T -family of curves of genus g.

(b) fT : (CT ; (xj,T )) → W is a stable map of class β.

For precise definitions of (pre-) stability and the class of the map that we use here, see [7]
or [28].

Given such a diagram with sections, we call (W, β) its target, T its base, and the
whole setup a T -family of stable maps. Isomorphisms of families, lifting idT , must also
be identical on W . Base changes are defined in a rather evident way.
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The stack M̄g,Σ(W, β) is defined as the base of the universal family of this type with
given target (W, β):

C̄g,Σ(W, β)
f ��

h

��

W

M̄g,Σ(W, β)

(2.2)

It is endowed with sections xj : M̄g,Σ(W, β) → C̄g,Σ(W, β), j ∈ Σ.
Naturally, C̄g,Σ(W, β) is a stack as well.
If W is a point, β = 0, we routinely omit the target and write simply M̄g,Σ , C̄g,Σ etc.
Moreover, (2.2) produces the evaluation/stabilization diagram

M̄g,Σ(W, β) st ��

ev
��

M̄g,Σ

WΣ

(2.3)

Here,
ev = (evj = f ◦ xj | j ∈ Σ) : M̄g,Σ(W, β) → WΣ , (2.4)

and, in the case 2g + |Σ| � 3, the absolute stabilization morphism st discards the map f

and stabilizes the remaining prestable family of curves

st : M̄g,Σ(W, β) → M̄g,Σ . (2.5)

The virtual fundamental class, or the J-class [M̄g,Σ(W, β)]virt, is a canonical element in
the Chow ring A∗(M̄g,Σ(W, β)):

Jg,Σ(W, β) ∈ AD(M̄g,Σ(W, β)), (2.6)

where D is the virtual dimension (Chow grading degree)

(−KW , β) + |Σ| + (dimW − 3)(1 − g). (2.7)

The respective Gromov–Witten correspondence, defined for 2g + |Σ| � 3, is the proper
pushforward

Ig,Σ(W, β) := (ev, st)∗(Jg,Σ(W, β)) ∈ AD(WΣ × M̄g,Σ). (2.8)

Understanding these correspondences is the content of motivic quantum cohomology.

Example 2.1 (g = 0, β = 0). In this case the universal family (2.2) is

W × C̄0,Σ

pr1 ��

idW ×h

��

W

W × M̄0,Σ

(2.9)

with structure sections idW ×xj .
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The stabilization morphism is simply the projection

st = pr2 : W × M̄0,Σ → M̄0,Σ . (2.10)

The evaluation morphism is the projection followed by the diagonal embedding ∆Σ :

ev : W × M̄0,Σ → W → WΣ . (2.11)

We have (see [4, p. 606]) that

J0,Σ(W, 0) = [M̄0,Σ(W, 0)] = [W ] ⊗ [M̄0,Σ ]. (2.12)

The virtual dimension (2.7) is

|Σ| + dimW − 3 = dim(W × M̄0,Σ).

Thus, finally, the Gromov–Witten correspondence is the class

I0,Σ(W, 0) = [∆Σ(W )] ⊗ [M̄0,Σ ] ∈ A∗(WΣ × M̄0,Σ). (2.13)

2.3. Strategy

In the remaining sections of this paper, we study the Gromov–Witten correspondences
of genus 0 for W = M̄0,S and β a class of a boundary curve in M̄0,S (see below). This is
the first step of a much more ambitious program in which all components of the stable
family diagrams are allowed to be stacks, and in which we take for targets the stacks
M̄g,S and arbitrary β.

Our modest goal here allows us to basically restrict ourselves to the case of schemes,
whose geometry is already well known. However, some intermediate constructions require
the use of stacks.

In particular, we need to understand the relevant J-classes and the diagrams

ev : M̄0,Σ(M̄0,S , β) → M̄Σ
0,S , st : M̄0,Σ(M̄0,S , β) → M̄0,Σ . (2.14)

We also want to be able to trace various functorialities, in particular, in both S and Σ.
However, this may result in rather clumsy notation.

In order to postpone its introduction, in the remaining parts of this section we describe
a somewhat more general situation. Afterwards, we show that our main problem is con-
tained in it.

2.4. Setup, part I

Consider a morphism of smooth irreducible projective manifolds b : E → W . Let βE be
an effective curve class on E, and let β := b∗(βE) be its pushforward to W . Any stable
map CT /T → E, (xj : T → CT | j ∈ Σ), of class βE , induces, after composition with b

and stabilization, a stable map with target (W, β). Thus, we get a map

b̃ : M̄0,Σ(E, βE) → M̄0,Σ(W, β)
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that clearly fits into the commutative diagram

M̄0,Σ(E, βE) b̃ ��

(evE ,stE)
��

M̄0,Σ(W, β)

(evW ,stW )
��

EΣ × M̄0,Σ
bΣ×id �� WΣ × M̄0,Σ

(2.15)

If |Σ| � 2, the space M̄0,Σ is not a DM-stack; if we discard it and the stabilization
morphisms in (2.15), we still get a commutative diagram. Whenever M̄0,Σ appears, we
assume that |Σ| � 3.

Proposition 2.2.

(i) Assume that

J0,Σ(W, β) = b̃∗(J0,Σ(E, βE)). (2.16)

Then,

I0,Σ(W, β) = (bΣ × id)∗(I0,Σ(E, βE)). (2.17)

(ii) Let γj ∈ H∗(W ), j ∈ Σ, be a family of cohomology classes marked by Σ. Then,
from (2.16) it follows that

pr∗
W (⊗j∈Σγj) ∩ I0,Σ(W, β) = (bΣ × id)∗[pr∗

E(⊗j∈Σb∗(γj)) ∩ I0,Σ(E, βE)]. (2.18)

Here, we denote by prW : WΣ × M̄0,Σ → WΣ and prE : EΣ × M̄0,Σ → EΣ the
respective projection morphisms, and H∗ can be any standard cohomology theory.

Proof. (i) This follows directly from (2.16) and the commutativity of (2.15).

(ii) We have, using the projection formula, that

(bΣ × id)∗[pr∗
E(⊗j∈Σb∗(γj)) ∩ I0,Σ(E, βE)]

= (bΣ × id)∗[(bΣ × id)∗ ◦ pr∗
W (⊗j∈Σγj) ∩ I0,Σ(E, βE)]

= pr∗
W (⊗j∈Σγj) ∩ (bΣ × id)∗(I0,Σ(E, βE)).

The last expression coincides with the left-hand side of (2.18) in view of (2.17). This
completes the proof. �

Remark 2.3. In our applications to the case W = M̄0,S (see § 5), E is a bound-
ary stratum containing the boundary curve representing β, and the virtual fundamental
classes J0,Σ coincide with the usual fundamental classes, since the relevant deforma-
tion problem is unobstructed. Moreover, E has a very special additional structure. We
axiomatize the relevant geometry in the next subsections.
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2.5. Setup, part II

Keeping the notation of § 2.4, we make the following additional assumptions.

(a) E is explicitly represented as E = B × C, where C is isomorphic to P 1. This iden-
tification, including the projections p = prB : E → B and prC : E → C, constitutes
a part of the structure.

(b) βE is the (numerical) class of any fibre of p.

(c) The deformation problem for any fibre C0 of p embedded via b0 in W is trivially
unobstructed in the sense of [6]:

H1(C0, b
∗
0(TW )) = 0. (2.19)

(d) The map b̃ in (2.15) is an isomorphism.

These assumptions are quite strong. In particular, from (b)–(d) it follows that (2.16)
holds, since the relevant virtual fundamental classes coincide with the ordinary ones.
Thus, we can complete the explicit computation of I0,Σ(W, β) starting with the right-
hand side of (2.17). We do so in the remaining part of the section.

First of all, we have that

prB∗(βE) = 0, prC∗(βE) = 1,

where 1 is the fundamental class [C] in the Chow ring of C.
Thus, the two projections induce the map

(p̃rB , p̃rC) : M̄0,Σ(E, βE) → M̄0,Σ(B, 0) × M̄0,Σ(C,1).

Stabilization maps embed this morphism into the commutative diagram

M̄0,Σ(E, βE) ��

stE

��

M̄0,Σ(B, 0) × M̄0,Σ(C,1)

stB×stC

��
M̄0,Σ

∆M̄0,Σ �� M̄0,Σ × M̄0,Σ

(2.20)

where the lower line is the diagonal embedding (see [5, Proposition 5]).
Similarly, evaluation maps embed this morphism into the commutative diagram

M̄0,Σ(E, βE) ��

evE

��

M̄0,Σ(B, 0) × M̄0,Σ(C,1)

evB×evC

��
EΣ

s �� BΣ × CΣ

(2.21)

where the lower line is now the evident permutation isomorphism induced by E = B×C.

https://doi.org/10.1017/S0013091513000886 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000886


210 Y. I. Manin and M. Smirnov

Combining these two diagrams, we get

M̄0,Σ(E, βE) ��

(evE ,stE)
��

M̄0,Σ(B, 0) × M̄0,Σ(C,1)

(evB ,stB)×(evC ,stC)
��

EΣ × M̄0,Σ
∆̃ �� BΣ × M̄0,Σ × CΣ × M̄0,Σ

(2.22)

Here the lower line is an obvious composition of permutations and the diagonal embedding
of M̄0,Σ .

From (2.22) and [5] it follows that

I0,Σ(E, βE) = ∆̃!(I0,Σ(B, 0) ⊗ I0,Σ(C,1)). (2.23)

(Note that for x ∈ A∗(X), y ∈ A∗(Y ) we often denote simply by x ⊗ y ∈ A∗(X × Y ) the
image of x ⊗ y ∈ A∗(X) ⊗ A∗(Y ) with respect to the canonical map A∗(X) ⊗ A∗(Y ) →
A∗(X × Y ).)

Furthermore, according to (2.13),

I0,Σ(B, 0) = [∆Σ(B) × M̄0,Σ ] ∈ A∗(BΣ × M̄0,Σ). (2.24)

Finally, the space M̄0,Σ(C,1) and the class I0,Σ(C,1) can be described as follows.
Recall a construction from [12]. Let V be a smooth complete algebraic manifold. For

a finite set Σ, let V Σ be the direct product of a family of V s labelled by elements of Σ.
Denote by Ṽ Σ the blow-up of the (small) diagonal in V Σ . Finally, define V Σ,0 as the
complement to all partial diagonals in V Σ .

The Fulton–MacPherson configuration space V 〈Σ〉 (for curves it was introduced earlier
by Beilinson and Ginzburg) is the closure of V Σ,0 naturally embedded in the product

V Σ ×
∏

Σ′⊂Σ, |Σ′|�2

Ṽ Σ′
.

In [13], it was shown that M̄0,Σ(C,1) can be identified with C〈Σ〉 in such a way that
the birational morphism evC becomes the tautological open embedding when restricted
to CΣ,0.

Therefore, denoting by DΣ ⊂ CΣ × M̄0,Σ the closure of the graph of the canonical
surjective map CΣ,0 → M0,Σ , we get that

I0,Σ(C,1) = [DΣ ]. (2.25)

We can now state the main result of this section.

Proposition 2.4. Assuming that (a)–(d) in § 2.5 hold, we have that

I0,Σ(E, βE) = ∆̃!([∆Σ(B) × M̄0,Σ × DΣ ]). (2.26)

and

I0,Σ(W, β) = (bΣ × id)∗ ◦ ∆̃!([∆Σ(B) × M̄0,Σ × DΣ ]). (2.27)

This is a straightforward combination of (2.23)–(2.25) and (2.17).
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3. Target space M̄0,4

3.1. Notation

Stressing functoriality with respect to labelling sets, and having in mind further devel-
opments, in this section we denote by S a set of cardinality 4, with a marked point •. We
set S = P 
 {•}. Thus, we are considering the moduli space M̄0,P�{•}. It is a projective
line endowed with three pairwise distinct points Dσ labelled by unordered partitions
σ : P 
 {•} = S1 
 S2, |Si| = 2. These are exactly those points over which the universal
stable curve C̄0,P�{•} splits into two components, and labelled points are redistributed
among them according to σ. Now, the set of such partitions is naturally bijective to P :
j ∈ P corresponds to the partition {•, j} 
 (P \ {•, j}). Hence, finally, M̄0,P�{•} is a pro-
jective line P 1 stabilized by three points labelled by P . This identification is functorial
with respect to pointed bijections of S.

The only boundary class of curves in A1(M̄0,P�{•}) is the fundamental class β = 1 :=
[M̄0,P�{•}]. We have already invoked the description of the universal family of stable
maps with this target and the relevant I-class at the end of § 2.5 (see (2.25)). But now,
for the sake of a future generalization, we use a slightly different family and an alternative
description of I0,Σ ∈ A∗((P 1)Σ × M̄0,Σ) that will better fit the passage to target spaces
M̄0,S with |S| > 4.

3.2. An alternative family

Consider the moduli space M̄0,Σ�P�{•}.
Recall that, for any finite set R and its subset Q ⊂ R with complement of cardinality

greater than or equal to 3, the space M̄0,R is the source of the standard forgetful morphism
ψQ : M̄0,R → M̄0,R\Q: ‘forget the subset of sections labelled by Q and stabilize’.

Thus, we get the diagram

M̄0,Σ�P�{•}
ψΣ ��

ψ{•}

��

M̄0,P�{•}

M̄0,Σ�P

(3.1)

Another standard morphism identifies the vertical arrow in (3.1) with the projection of
the universal (Σ
P )-labelled curve C̄0,Σ�P to its base (see, for example, [28, Chapter V,
Theorem 4.5]).

From the explicit form of this identification, one can easily see that the image in
M̄0,Σ�P�{•} of the section xj : M̄0,Σ�P → C̄0,Σ�P for j ∈ Σ
P is precisely the boundary
divisor of M̄0,Σ�P�{•} corresponding to the stable 2-partition

Σ 
 P 
 {•} = {•, j} 
 ((Σ 
 P ) \ {j}). (3.2)

Here, we denote this divisor by Dj .
Consider (3.1) now as the family of maps of class 1, in which only the sections xj

for j ∈ Σ are counted as structure sections, whereas those labelled by P are discarded.
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The family will then no longer be stable: if an irreducible component of the fibre curve
contains only three special points and one of them corresponds to the section labelled by
an element of P , then this component will be contracted by ψΣ . We can stabilize this
new family and get a diagram

C̄
ψ̄Σ ��

��

M̄0,P�{•}

M̄0,Σ�P

(3.3)

endowed additionally with sections labelled by Σ and the stabilizing morphism

χ : M̄0,Σ�P�{•} → C̄, ψΣ = ψ̄Σ ◦ χ. (3.4)

For each j ∈ Σ, denote by ξj : M̄0,Σ�P → M̄0,Σ�P�{•} the section of ψ{•} identifying
M̄0,Σ�P with Dj ⊂ M̄0,Σ�P�{•} from (3.2). Consider the map

ēv := (ψΣ ◦ ξj | j ∈ Σ) : M̄0,Σ�P → (M̄0,P�{•})Σ . (3.5)

The stable family (3.3) may be obtained by a base change from the universal family of
stable maps of class β. Let

µ : M̄0,Σ�P → M̄0,P�{•}〈Σ〉 (3.6)

be the respective morphism of bases.
Dimensions of the two smooth irreducible schemes in (3.6) coincide. It is not diffi-

cult to see that the morphism µ is birational and, hence, surjective. In fact, consider
a generic fibre of C̄0,Σ�P . It is simply P 1 with pairwise distinct (Σ 
 P (Π))-labelled
points. When we discard Σ-labelled points, we land in P 1 endowed with three points
labelled by P (Π) (inverse images of them are just missing sections that we discarded
when constructing (3.3) from (3.1)), so in fact at a generic point we neither lose nor gain
any information passing from (3.1) to (3.3).

We can now prove the main result of this section.

Proposition 3.1. We have, for |Σ| � 3, that

I0,Σ(M̄0,P�{•},1) = (ēv, ψP )∗([M̄0,Σ�P ]) ∈ A|Σ|((M̄0,P�{•})Σ × M̄0,Σ). (3.7)

Proof. Since µ is birational and surjective, we can identify the relevant J-class with

µ∗([M̄0,Σ�P ]) = [M̄0,P�{•}〈Σ〉].

In order to prove (3.7), it remains to check that

ev ◦ µ = ēv, st ◦ µ = ψP . (3.8)

Both facts follow from the discussion in § 3.2. �
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4. Boundary curve classes in M̄0,S

In this section, after recalling some basic facts about the boundary of M̄0,S following [28]
and [7], we summarize relevant parts of [23] and fix our notation.

4.1. Boundary strata of M̄0,S

The main combinatorial invariant of an S-pointed stable curve C is its dual graph
τ = τC . Its set of vertices Vτ is (bijective to) the set of irreducible components of C.
Each vertex v is a boundary point of the set of flags f ∈ Fτ (v) that is (bijective to)
the set consisting of singular points and S-labelled points on this component. We set
Fτ =

⋃
v∈Vτ

Fτ (v). If two components of C intersect, the respective two vertices carry
two flags that are grafted to form an edge e connecting the respective vertices; the set
of edges is denoted by Eτ . The flags that are not pairwise grafted are called tails. They
form a set Tτ that is naturally bijective to the set of S-labelled points and, therefore, is
itself labelled by S. Stable curves of genus 0 correspond to trees τ whose every vertex
carries at least three flags.

The space M̄0,S is a disjoint union of locally closed strata Mτ indexed by stable
S-labelled trees. Each such stratum Mτ represents the functor of families consisting of
curves of combinatorial type τ . In particular, the open stratum M0,S classifies irreducible
smooth curves with pairwise distinct S-labelled points. Its graph is a star: a tree with
one vertex, to which all tails are attached, and having no edges.

Generally, a stratum Mτ lies in the closure M̄σ of Mσ, if and only if σ can be obtained
from τ by contracting a subset of edges. Closed strata M̄σ corresponding to trees with
non-empty sets of edges, are called boundary strata. The number of edges is the codi-
mension of the stratum.

4.1.1. Boundary divisors and A1(M̄0,S)

The classes of boundary divisors generate the whole Chow ring, but are not linearly
independent. The following useful basis is constructed in [11].

For s ∈ S, let Ls be the line bundle on M̄0,S whose fibre over a stable curve (C, (xt |
t ∈ S)) is T ∗

xs
C. Set ψs := c1(Ls).

Proposition 4.1. The classes of boundary divisors DS with |S1|, |S2| � 3 and
classes ψs, s ∈ S, constitute a basis of the group A1(M̄0,S).

The rank of this group is 2n−1 − n(n − 1)/2 − 1.

This is [11, Lemma 2]. An expression of ψs through boundary classes is given in [11,
Lemma 1].

Below, we give some details on one-dimensional strata.

4.2. Boundary curves and A1(M̄0,S): preparatory combinatorics

We start with the following combinatorial construction.
We use here the term an unordered partition of a set S as synonymous to an equivalence

relation on S. A component of a partition is the same as an equivalence class of the
respective relation; in particular, all components are non-empty.
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Call an unordered partition Π of S distinguished if it consists of precisely four compo-
nents. Denote by S(Π) the set of the components, that is, the quotient of S with respect
to the respective equivalence relation.

Distinguished partitions are in a natural bijection with isomorphism classes of dis-
tinguished stable S-labelled trees π. By definition, such a tree is endowed with one dis-
tinguished vertex v0, the set of flags at this vertex Fπ(v0) being (labelled by) elements
of S(Π). Clearly, this vertex is of multiplicity 4. The flags labelled by one-element com-
ponents {s} of Π are tails, carrying the respective labels s ∈ S. The remaining flags
are halves of edges; the second vertex of an edge, one half of which is labelled by a
component Si, carries tails labelled by elements of Si.

We routinely identify Fπ(v0) with S(Π).

Definition 4.2.

(i) Given a distinguished partition Π, denote by P = P (Π) the set of those stable
2-partitions σ of S, each component of which is a union of two different components
of Π. For |S| � 4 we have that |P (Π)| = 3.

(ii) N = N(Π) is the set of those stable 2-partitions of S whose one component coin-
cides with one component of Π. We have, for |S| � 5, that 1 � |N(Π)| � 4.

Lemma 4.3. Π can be uniquely reconstructed from P (Π); hence, P (Π) uniquely
determines N(Π) as well.

Proof. In fact, if Π = (S1, S2, S3, S4) (numeration arbitrary), then by definition P (Π)
must consist of the partitions

σ1 = (S1 ∪ S2, S3 ∪ S4), σ2 = (S1 ∪ S3, S2 ∪ S4), σ3 = (S1 ∪ S4, S2 ∪ S3).

Hence, conversely, knowing P (Π), we can unambiguously reconstruct Π: its components
are exactly the non-empty pairwise intersections of components of different σi ∈ P (Π).

�

4.3. Boundary curves and A1(M̄0,S): geometry

Each distinguished partition Π of S determines the following boundary stratum of
M̄0,S :

bΠ : M̄Π :=
⋂

σ∈N(Π)

Dσ ↪→ M̄0,S . (4.1)

Equivalently, M̄Π is the stratum, corresponding to the special tree π associated with Π.
In other words, all components of Π are now indexed by the flags f ∈ Fπ(v0) at the
special vertex v0, whereas components of cardinality � 2 are also naturally indexed by
the remaining vertices of π:

M̄Π = M̄0,Fπ(v0) ×
∏

v �=v0

M̄0,Fπ(v). (4.2)
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Here the equality sign refers to the canonical isomorphism that is defined for any stable
marked tree: it produces from such a tree the product of moduli spaces corresponding to
the stars of all vertices.

The information about edges determines the embedding morphism (4.1) of such a
product as a boundary stratum. On the level of universal curves, it is defined by merging
the pairs of sections labelled by halves of an edge.

The codimension of M̄Π is |N(P )|, and 1 � |N(Π)| � 4. Since |Fπ(v0)| = 4, the moduli
space M̄0,Fπ(v0) is P 1 with three points naturally labelled by the set of stable partitions
of Fπ(v0), which in turn is canonically bijective to P (Π) (cf. § 3.1).

Hence, the representation (4.2) allows us to define the projection map

p = pΠ : M̄Π → BΠ :=
∏

v �=v0

M̄0,Fπ(v) (4.3)

having three canonical disjoint sections canonically labelled by P (Π).
Clearly, all fibres of pΠ are rationally equivalent, so they define a class β = β(Π) ∈

A1(M̄0,S).

Lemma 4.4 (Keel and McKernan [23]).

(i) For n := |S| � 4, each boundary curve (one-dimensional boundary stratum) Cτ is
a fibre of one of the projections (4.3).

(ii) [Cτ1 ] = [Cτ2 ] ∈ A1(M̄0,S) if and only if these curves are fibres of one and the same
projection (4.3).

We reproduce the proof for further use.

Proof. (i) Since Cτ is a curve, the S-labelled stable tree τ is a tree with |Eτ | = n − 4
and, hence, |Vτ | = n − 3. Since the tree is stable, all but one of its vertices must have
multiplicity 3. The exceptional vertex, denoted v0 = v0(τ), has multiplicity 4.

If we delete from the geometric tree τ the vertex v0, it will break into four connected
components. Thus, the set S of labels of tails will be broken into four non-empty subsets.
Among them there are |Tτ (v0)| one-element sets (labels of tails adjacent to v0), and
|Eτ (v0)| sets of cardinality greater than or equal to 2: each part consists of labels of
those tails that can be reached from the critical vertex by a path (without backtracks)
starting with the respective flag. We denote this partition Π(τ). Hence, if we contract all
edges of τ excepting those that are attached to v0, we get the distinguished tree associated
with a distinguished partition Π = Π(τ). It determines the required projection.

(ii) Now consider two sets of stable 2-partitions of S produced from Π = Π(τ) as in
Definition 4.2, and denote them, respectively, by P (τ) and N(τ).

First of all, we check that

(Dσ, Cτ ) = 1 if σ ∈ P (τ),

(Dσ, Cτ ) = −1 if σ ∈ N(τ),

(Dσ, Cτ ) = 0 otherwise.

⎫⎪⎬
⎪⎭ (4.4)
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We now use formulae and facts proved in [28, III.3] and [25, Appendix]. In particular, we
use the notion of good monomials, elements of the commutative polynomial ring freely
generated by symbols m(σ), where σ runs over stable 2-partitions of S. These monomials
form a family indexed by stable S-labelled trees τ : m(τ) :=

∏
e∈Eτ

m(σe), where σe is
the 2-partition of S obtained by cutting e.

Assume first that m(σ)m(τ) is a good monomial, so (Dσ, Cτ ) = 1. It is then of the
form m(ρ), where ρ is a stable S-labelled tree with all vertices of multiplicity 3 and an
edge e such that m(σ) = m(ρe). This edge is unambiguously characterized by the fact
that, after collapsing e in ρ to one vertex, we get the labelled tree (canonically isomorphic
to) τ . But the vertex to which e collapses must then have multiplicity larger than 3. It
follows that e must collapse precisely to the exceptional vertex v0 of τ . Conversely, the
set of ways of putting e back is clearly in a bijection with P (τ): the four flags adjacent
to v0 must be distributed in two groups, two flags in each, that will be adjacent to two
ends of e.

Assume now that m(σ) divides m(τ). Using [25, Proposition 1.7.1], one sees that
m(σ)m(τ) represents 0 in the Chow ring (and so (Dσ, Cτ ) = 0) unless σ = τe, where e is
an edge adjacent to v0. In this latter case, Kaufmann’s formula [25, (1.9)] implies that
(Dσ, Cτ ) = −1. The set of such σ is in a bijection with N(τ).

Finally, for any other stable 2-partition σ there exists an e ∈ Eτ such that we have
a(σ, τe) = 4 in the sense of [28, III.3.4.1]. In this case, (Dσ, Cτ ) = 0 in view of [28,
III.3.4.2].

We now have that [Cτ1 ] = [Cτ2 ] if and only if (Dσ, Cτ1) = (Dσ, Cτ2) for all stable
2-partitions σ, because boundary divisors generate A1. In view of (4.4), this latter con-
dition means precisely that

P (τ1) = P (τ2), N(τ1) = N(τ2).

But Lemma 4.3 shows that in this case Π(τ1) = Π(τ2). This completes the proof. �

Proposition 4.5. Denote the canonical class of M̄0,S by KS . Using the notation
of § 4.3, we have that

(−KS , β(Π)) = 2 − |N(Π)|. (4.5)

Proof. For 2 � j � [n/2], denote by Bj the sum of all divisors Dσ such that one part
of the partition σ is of cardinality j, and denote by B the sum of all boundary divisors.
We have that

−KS = 2B −
[n/2]∑
j=2

j(n − j)
n − 1

Bj (4.6)

(see [11,23] and the references therein).
For a stable 2-partition σ = (S1, S2) of S, set c(σ) := |S1||S2|. Then, combining (4.4)

and (4.6), we get that

(−KS , β(Π)) = 2(|P (τ)| − |N(τ)|) −
∑

σ∈P (τ)

c(σ)
n − 1

+
∑

σ∈N(τ)

c(σ)
n − 1

. (4.7)
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The most straightforward way to pass from (4.7) to (4.5) is to consider the four cases
|N(Π)| = 1, 2, 3, 4 separately. We include here the calculation for |N(Π)| = 3; it demon-
strates the typical cancellation pattern. We leave the remaining cases to the reader.

We have that 2(|P (Π)|−|N(Π)|) = 0. Let (1, a, b, c) be the cardinalities of the compo-
nents of Π, where a, b, c � 2, a + b + c = n − 1. Then, P (Π) consists of three partitions,
of the following cardinalities, respectively:

(a + 1, b + c), (b + 1, a + c), (c + 1, a + b).

Hence, ∑
σ∈P (Π)

c(σ) = 2(ab + ac + bc) + 2(a + b + c).

Similarly, partitions in N(Π) produce the list

(a, 1 + b + c), (b, 1 + a + c), (c, 1 + a + b),

so ∑
σ∈N(Π)

c(σ) = 2(ab + ac + bc) + (a + b + c).

Combining all these together, we get that (−KS , β(Π)) = −1 = 2 − |N(Π)|. �

Proposition 4.6. Each class of a boundary curve β is indecomposable in the cone of
effective curves.

Proof. This follows from (4.5) and [23, Lemma 3.6]: (KS + B, β(Π)) = 1, and the
divisor KS + B is ample. �

Examples 4.7 (M̄0,4 and M̄0,5). If |S| = 4, there exists one distinguished parti-
tion Π, with all components of cardinality 1. The respective ‘boundary’ curve is in fact
the total space M̄0,S .

If |S| = 5, the boundary curves are ten exceptional curves on the del Pezzo sur-
face M̄0,S corresponding to ten different distinguished partitions of S whose components
have cardinalities (1, 1, 1, 2). They define ten different Chow classes.

Example 4.8 (M̄0,6). There exist two combinatorial types of unlabelled trees τ

corresponding to boundary curves. Below, we draw their subgraphs, consisting of all
vertices and edges, and mark them with the numbers of tails at each vertex:

3 • − • 1 − •2, 2 • − • 2 − •2.

If we take into account possible labellings by S, we get 60 boundary curves of the first
type and 45 boundary curves of the second type. They form two different S6-orbits.

If τ is of the first type, then c(σ) = 8 for all three partitions σ ∈ P (τ). The set N(τ)
contains the unique partition σ, with c(σ) = 9. Applying Proposition 4.5, we get that

(−K6, Cτ ) = 1.
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If τ is of the second type, we have, respectively, c(σ) = 8, 9, 9 for σ ∈ P (τ). The set N(τ)
consists of two partitions σ, with c(σ) = 8. Applying Proposition 4.5, we get that

(−K6, Cτ ) = 0.

Chow classes of the boundary curves for n = 6 are extremal rays of the Mori cone. There
are 20 classes of the first type and 45 classes of the second type.

Example 4.9 (M̄0,7). Similarly, there are four combinatorial types of unlabelled
trees τ corresponding to boundary curves:

A : 3 • − • 1 − •1 − •2, B : 2 • − • 2 − •1 − •2

and

C : 3 • −•/•2

\•2
, D : 2 • −1 •/•2

\•2
.

Here the numerology looks as follows.

Type A. We have that c(σ) = 10 for all σ ∈ P (τ); |N(τ)| = 1, c(σ) = 12 for σ ∈ N(τ).
Hence,

(−K7, Cτ ) = 1.

Finally, there are 420 labelled trees/boundary curves of this type.

Type B. We have that c(σ) = 10, 12, 12 for σ ∈ P (τ); |N(τ)| = 2, c(σ) = 10, 12 for
σ ∈ N(τ). Hence,

(−K7, Cτ ) = 0.

There are 630 boundary curves of this type.

Type C. We have that c(σ) = 10 for all σ ∈ P (τ); |N(τ)| = 1, c(σ) = 12 for σ ∈ N(τ).
Hence,

(−K7, Cτ ) = 1.

There are 105 boundary curves of this type.

Type D. Finally, here c(σ) = 12 for all σ ∈ P (τ); |N(τ)| = 3, c(σ) = 10 for σ ∈ N(τ),
and

(−K7, Cτ ) = −1.

There are 105 boundary curves of this type.

In the Chow group, there are 35 classes of types A and C altogether, 210 classes of
type B, and 105 classes of type D.

5. Gromov–Witten correspondences for boundary curves in M̄0,S

In this section we state and prove the main theorem of this paper. We start with some
preparation.
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5.1. Preparation: combinatorics

In this section, we choose and fix two disjoint finite sets S and Σ. Assume that |S| � 4
and |Σ| � 3.

Fix one element s0 ∈ S. Choose and fix a distinguished partition Π of S into four
disjoint non-empty subsets (see § 4.2). Denote by S(Π) the set containing elements that
are components of Π. Thus, |S(Π)| = 4. Denote by • ∈ S(Π) the component of Π that
contains the marked element s0 ∈ S.

The sets P (Π) and N(Π) are defined as in Definition 4.2. In our setup, the three-
element set P (Π) is canonically bijective to the following two additional sets.

(a) The set of stable unordered partitions of S(Π) into two parts (each consisting of
two elements).

(b) The set S(Π) \ {•}: any j ∈ S(Π) \ {•} corresponds to the partition S(Π) =
({•, j} 
 S(Π) \ {•, j}). We have already used this trick in § 3.1, and here we use it
again to translate the results of § 3 to a new context.

Slightly abusing the notation, we sometimes consider these last identifications as identical
maps.

Being more fussy, we can say that our constructions are functorial on the category of
pointed finite sets S with bijections. Eventually, they must be extended to the category of
marked trees (and more general modular graphs) encoding boundary combinatorial types
of curves and maps. Dependence of our geometric construction on the target boundary
curve class β is reflected in the dependence of its combinatorial side on Π.

5.2. Preparation: geometry

We intend to show that the results of §§ 2.4 and 2.5 are applicable in the present
situation.

More precisely, specialize the objects introduced in § 2.4 in the following way (see (4.1)):

W := M̄0,S , E := M̄Π , b := bΠ , β := β(Π). (5.1)

Furthermore, specialize the objects described in § 2.5 as follows (see (4.2), (4.3)):

B := BΠ , C := M̄0,Fπ(v0), p := pΠ . (5.2)

Proposition 5.1. The assumptions (a)–(d) of § 2.5 hold for (5.1)–(5.2).

5.3. Proof of Proposition 5.1

Assumptions (a) and (b) of § 2.5 hold by definition.

5.3.1. Assumption (c)

Let C be a closed fibre of p : M̄Π → BΠ . We have already used the fact that it is
isomorphic to P 1. Let j : C → M̄0,S be the natural closed embedding. We assert that

j∗(TM̄0,S
) ∼= O(2) ⊕ On−4−|N(Π)| ⊕ O(−1)|N(Π)|, (5.3)

where TM̄0,S
is the tangent sheaf and O := OC .
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In fact, consider the embedding i : C → M̄Π and the natural filtration

{0} ⊂ TC ⊂ i∗(TM̄Π
) ⊂ j∗(TM̄0,S

). (5.4)

The consecutive summands in (5.3) correspond to the consecutive quotients of (5.4).
Namely, TC

∼= O(2); i∗(TM̄Π
)/TC is trivial of rank

dim BΠ =
∑

v∈Vπ

(|Fπ(v)| − 2) = |S| − 4 − |N(Π)|.

Finally, the last isomorphism follows from (4.1) and (4.4).
From (5.3) we see that H1(C, j∗(TM̄0,S

)) = 0.

5.3.2. Assumption (d): preparation I

Any curve X in M̄0,S of class β(Π) is a closed fibre of pΠ : M̄Π → BΠ . In fact, by (4.1)
and (4.4) the curve X is contained in M̄Π . Below, we show that it is indeed a fibre of pΠ

by analysing degeneration patterns of fibres of the universal family C̄0,S over points of X.
Let σ be the dual graph of the curve from the universal family C̄0,S over a generic point

of X. We know that σ admits a contraction onto π. If pΠ(X) is not a point, then X must
contain a point over which the dual graph σ′ of the universal family is not isomorphic
to σ. In this case it must admit a non-trivial contraction σ′ → σ. Compose it with the
canonical contraction σ → π.

One of the following two alternatives must hold.

(A) There is an edge of σ′ that contracts onto one of the vertices v �= v0 of π.

(B) No edge of σ′ contracts onto one of the vertices v �= v0, but there is an edge
contracting to v0.

Consider the stable 2-partition ρ of S corresponding to the contracting edge, and the
respective boundary divisor Dρ in M̄0,S . Geometrically, (A) implies that X is a curve
that does not lie in Dρ, but intersects Dρ; hence, we must have that

(Dρ, β) = (Dρ, [X]) > 0.

But, from (4.4) it follows that if ρ contracts onto a vertex v �= v0, then (Dρ, β) = 0.
Hence, this possibility is excluded.

Consider now alternative (B). We must then have ρ ∈ P (Π). This implies the following
degeneration pattern of the induced family of curves parametrized by X. At a generic
point, the tree of the curve consists of one irreducible component C, to which trees are
attached at |N(τ)| different points of this component. When the degeneration at a point
of Dρ occurs, C breaks down into two components, say, C1 and C2, and the attached
trees are distributed among them: some become attached to C1, and the remaining ones
become attached to C2. What is important here is that the labelled combinatorial type
of each of the attached trees does not change, otherwise we could have used (A), which
was already excluded.

But, in this case the image pΠ(X) must land in the product of the open strata∏
v �=v0

MFπ(v). This is possible only if this image is a point, because such a product
is an affine scheme.
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5.3.3. Assumption (d): preparation II

Let Hilb(M̄0,S) be the Hilbert scheme of M̄0,S . As usual, it can be written as a disjoint
union Hilb(X) =

∐
P HilbP (X), where P is a Hilbert polynomial (for this, one should

fix an ample line bundle) and each HilbP (M̄0,S) is a quasi-projective scheme.
Let C be a closed fibre of pΠ : M̄Π → BΠ . It defines a closed point P in Hilb(M̄0,S).

The tangent space to Hilb(M̄0,S) at the point P is identified with H0(C, NC/M̄0,S
), and

the obstruction space is identified with H1(C, NC/M̄0,S
). From computations in § 5.3.1,

it follows that
dim H1(C, NC/M̄0,S

) = 0.

Therefore, P is a smooth point of Hilb(M̄0,S).
Consider the locus in Hilb(M̄0,S) parametrizing closed fibres of pΠ : M̄Π → BΠ . It

is a connected component of Hilb(M̄0,S). Denote it by Y , and let U → Y be the uni-
versal family over it. We have just seen that Y is a smooth (in particular, reduced and
irreducible) scheme. Its dimension is

dim Y = dimH0(C, NC/M̄0,S
) = dimBΠ ,

which follows from computations in § 5.3.1.
Therefore, we can identify the universal family U → Y with the projection pΠ : M̄Π →

BΠ .

5.3.4. Assumption (d): proof

We need to show that the canonical morphism of stacks

b̃Π : M̄0,Σ(M̄Π , βΠ) → M̄0,Σ(M̄0,S , β(Π)), (5.5)

induced by bΠ : M̄Π → M̄0,S , is an isomorphism. Here, βΠ is the Chow class of a fibre
of pΠ : M̄Π → BΠ .

One T -point of M̄0,Σ(M̄0,S , β(Π)) is a family of connected prestable curves

pT : CT → T

together with a stable map fT of the class β(Π) and labelled sections

fT : CT → M̄0,S , xj,T : T → CT , j ∈ Σ.

Below, we show that any such map fT can be factored through bΠ . Since bΠ is a closed
embedding, such a factorization is unique if it exists.

Consider the diagram

CT
fT ×pT ��

pT
���

��
��

��
� M̄0,S × T

prT�����������

T

provided by the T -point. Since β(Π) is indecomposable (see Proposition 4.6), for any
geometric fibre of CT /T , fT must contract each of its components, excepting one, to a
point. On the uncontracted component it is a closed embedding.
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Irreducible geometric fibres. Assume that all geometric fibres of pT are irreducible, and,
hence, fT × pT induces closed embeddings on all geometric fibres. By faithfully flat
descent it is then a closed embedding on all fibres. Therefore, the fibre of fT × pT at a
point s ∈ M̄0,S × T is either empty or κ(s)-isomorphic to Spec(κ(s)), where κ(s) is the
residue field at s.

Since pT and prT are proper, the morphism fT × pT is also proper. By [15, Propo-
sition 8.11.5], this implies that fT × pT is a closed embedding. Thus, we see that if we
forget the sections (xj,T ) the stable morphism (CT , (xj,T ), fT ) gives us a T -point of the
Hilbert scheme of M̄0,S .

Therefore, by § 5.3.3 the diagram

CT
fT ��

��

M̄0,S

T

is obtained from

M̄Π

bΠ ��

pΠ

��

M̄0,S

BΠ

by a unique pullback. Hence, the stable map (CT , (xj,T ), fT ) factors through M̄Π .

General case. Let (CT , (xj,T )j∈Σ , fT ) be an arbitrary Σ-labelled stable map to M̄0,S

of class β(Π), and let Σ′ ⊂ Σ be the subset that labels sections that land on the
non-contracted component of geometric fibres. Consider the induced prestable map
(CT , (xj,T )j∈Σ′ , fT ). Stabilizing it, we get a stable map (C̃T , (yj,T )j∈Σ′ , gT ) to M̄0,S of
class β(Π), such that fT = gT ◦ st. In other words, we get the diagram

CT

��

st �� C̃T

gT ��

����
��

��
��

M̄0,S

T

where C̃T → T has irreducible geometric fibres. As we have seen above, gT factors through
the embedding bΠ : M̄Π → M̄0,S , and, hence, so does fT .

We have shown that any family of stable maps to M̄0,S of class β(Π) can be factorized
uniquely via the closed embedding bΠ : M̄Π → M̄0,S . Therefore, it gives a family of stable
maps to M̄Π of class βΠ .

This procedure gives a map of T -points of stacks appearing in (5.5) for any T . One
can check that it naturally extends to morphisms of T -points and gives a functor

M̄0,Σ(M̄0,S , β(Π)) → M̄0,Σ(M̄Π , βΠ). (5.6)

Moreover, one can easily check that (5.6) is indeed inverse to (5.5). We leave these checks
to the reader.

https://doi.org/10.1017/S0013091513000886 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000886


Motivic quantum cohomology of M̄0,S 223

5.4. The final summary

We now briefly restate the results of the stepwise calculations of §§ 2 and 3 in our
current situation (5.1), (5.2).

5.4.1. Step I: Gromov–Witten correspondences for the target space M̄0,S(Π)

We reproduce here the main result of § 3 applied to the target space M̄0,S(Π) and its
fundamental class 1. Note that the sets denoted S (respectively, P ) in § 3 are now S(Π)
(respectively, P (Π)) and S(Π) = P (Π) 
 {•}.

According to Proposition 3.1, we have

I0,Σ(M̄0,P (Π)�{•},1) = (ev, ψP (Π))∗([M̄0,Σ�P (Π)]) ∈ A|Σ|((M̄0,P (Π)�{•})Σ × M̄0,Σ).
(5.7)

5.4.2. Step II: Gromov–Witten correspondences for the target space BΠ and the zero
beta-class

According to Example 2.1, we have that

I0,Σ(BΠ , 0) = [∆Σ(BΠ) × M̄0,Σ ] ∈ A∗(BΣ
Π × M̄0,Σ). (5.8)

Here, ∆Σ(BΠ) is the diagonal in the Cartesian product BΣ
Π of Σ copies of BΠ .

5.4.3. Step III: Gromov–Witten correspondences for the target space M̄Π and the fibre
beta-class

In this subsection, βΠ is the Chow class of a fibre of the projection M̄Π → BΠ . We
now have the canonical splitting

M̄Π = BΠ × M̄0,P (Π)�{•},

since Fπ(v0) is identified with S(Π) = P (π) 
 {•} (cf. § 4.3).
Thus, using (5.7) and (5.8), we have that

I0,Σ(M̄Π , βΠ) = ∆̃!([∆Σ(BΠ) × M̄0,Σ ] ⊗ (ev, ψP (Π))∗([M̄0,Σ�P (Π)])). (5.9)

To summarize, we have proved our final theorem, a specialization of Proposition 2.4,
which is as follows.

Theorem 5.2. The structure embedding bΠ : M̄Π → M̄0,S induces a canonical iso-
morphism

b̃Π : M̄0,Σ(M̄Π , βΠ) → M̄0,Σ(M̄0,S , β(Π)),

where βΠ is the Chow class of a fibre of pΠ : M̄Π → BΠ .
This isomorphism b̃Π is compatible with evaluation/stabilization morphisms for both

moduli spaces, and induces the identity

I0,Σ(M̄0,S , β(Π)) = (bΣ
Π × id)∗(I0,Σ(M̄Π , βΠ)), (5.10)

where
bΣ
Π × id : M̄Σ

Π × M̄0,Σ → (M̄0,S)Σ × M̄0,Σ .

The right-hand side of (5.10) is given by (5.9).

https://doi.org/10.1017/S0013091513000886 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000886


224 Y. I. Manin and M. Smirnov

5.5. Gromov–Witten numbers

In this subsection, we specialize (2.18) to our situation in order to calculate numerical
invariants of Chow classes of boundary curves.

Let γj ∈ H2dj (M̄0,S) be a family of cohomology classes indexed by j ∈ Σ. If
∑

j∈Σdj =
dim BΠ , then the correspondence

I0,Σ(M̄0,S , β(Π)) ∈ A∗((M̄0,S)Σ × M̄0,Σ)

maps ⊗j∈Σγj ∈ (H∗(M̄0,S))⊗Σ to a class of maximal dimension in H∗(M̄0,Σ). The degree
of this class is denoted by

〈IM̄0,S

0,Σ,β(Π)〉(⊗j∈Σγj).

Generally, this degree is the virtual number of stable maps of pointed curves of class β(Π)
satisfying the incidence conditions f(xj) ∈ Γj , where (Γj) are cycles in general position
whose dual classes are γj :

f : (C; (xj | j ∈ Σ)) → M̄0,S ,

whenever such incidence conditions are strong enough to enforce existence of only a finite
(virtual) number of such maps. In our unobstructed case, this virtual number is the actual
number of such maps whenever the incidence cycles are in general position.

Recall also that this number is polylinear in (γj).

Proposition 5.3. We have that

〈IM̄0,S

0,Σ,β(Π)〉(⊗j∈Σγj) = deg
( ⋂

j∈Σ

prBΠ∗ ◦ b∗
Π(γj)

)
. (5.11)

Sketch of proof. Skipping a clumsy but straightforward formal derivation of (5.11)
from (2.18), we describe the geometric content of this counting formula in the general
situation axiomatized in § 2.5.

First of all, (2.18) reduces the count to the case of an incidence condition represented
by some cycles in E = M̄Π . In fact, b∗

Π(γj) are represented by Γj ∩ M̄Π in the case of
transversal intersections.

Now, in M̄Π the incidence cycles can be replaced by ones of the form ∆j ×cj +∆′
j ×C,

where cj are points on a projective line C, as in (5.2), corresponding to the decomposition
M̄Π = BΠ × C.

Assume first that ∆′
j �= 0 for some j = j0. If, for such an incidence condition, there

exists a fibre C0 of M̄Π → BΠ satisfying it at all, then the number of relevant pointed
stable maps must be infinite, because xj0 can be chosen arbitrarily along this fibre.
Hence, decomposable cycles containing at least one factor of the form ∆′

j × C give zero
contributions to (5.11).

Now consider the case of incidence conditions of the form ∆j × cj for all j ∈ Σ. Let
∆j = prBΠ

(∆j×cj) be in a general position in BΠ , so that the intersection cycle
⋂

j∈Σ∆j

is a sum of points ya ∈ BΠ , of multiplicity one each. We can also lift ∆j arbitrarily to
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M̄Π , that is, choose all cj ∈ C pairwise distinct, and consider ∆j × cj as a geometric
incidence condition representing the initial cohomological incidence condition (γj).

Subsequently, the geometric count becomes straightforward: each point ya produces
one fibre of the class β(Π) intersecting each ∆j × cj at one point corresponding to cj .

The number of (ya) is the right-hand side of (5.11), and the curve count interprets the
left-hand side of (5.11).

6. Examples and remarks

6.1. ‘Naturality’ of Gromov–Witten correspondences

In this subsection we try to make Guess 1.1 somewhat more precise. To this end, we first
recall that natural objects in the relevant category are moduli spaces M̄τ , and natural
morphisms/correspondences are those that are produced from morphisms in the cate-
gory of modular graphs. The latter include contractions, forgetful morphisms, relabelling
morphisms etc. (see [7]).

The least controllable characteristic of GW-correspondences is their dependence on
the argument β in the relevant Mori cone. So far we have considered only boundary βs,
and they are, of course, ‘natural’ by definition.

In this subsection we show that, keeping the notation of § 5, we may naturally encode
most of the relevant combinatorial and geometric information in one moduli space
M̄0,Σ×(S\{s0}) and a configuration of certain of its boundary strata. This is only a ten-
tative suggestion; we do not develop it fully, because we still lack even a conjectural
description of the situation for more general βs.

6.1.1. The tree T

The tree T has one special vertex, called the central vertex, denoted by vc. Its flags
are bijectively labelled by Σ: we use the notation

FT (vc) := {〈j〉 | j ∈ Σ}. (6.1)

The remaining vertices constitute a set bijective to Σ × {s0}. Together with (6.1), this
bijection is a part of the structure, and we may refer to a non-central vertex v ∈ VT as
vj := 〈j, s0〉, j ∈ Σ.

Furthermore, we set

FT (vj) := {j} × S = {(j, s) | s ∈ S}. (6.2)

Thus, the standard identification of M̄T with the product of moduli spaces corresponding
to stars of all vertices,

∏
v∈VT

M̄0,FT (v), can be rewritten as

M̄T = (M̄0,S)Σ × M̄0,Σ , (6.3)

where the last factor corresponds to the central vertex.
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Edges. The flag 〈j〉 attached to the central vertex (see (6.1)) is grafted to the flag (j, s0)
incident to the vertex vj (see (6.2)). There are no more edges.

Thus, the central vertex carries no tails, and the set of edges ET is naturally bijective
to Σ. The set of tails is

TT =
∐
j∈Σ

(FT (〈j, s0〉) \ (j, s0)) =
∐
j∈Σ

({j} × (S \ {s0})) ∼= Σ × (S \ {s0}). (6.4)

If we interpret the last set in (6.4) as the set of labels of tails, then the above-described
set of edges of T determines the canonical embedding of M̄T as a boundary stratum:

M̄T ↪→ M̄0,Σ×(S\{s0}). (6.5)

This embedding corresponds to full contraction of all edges of T to the star with flags Tτ .
We now encode information about Π into another tree T (Π), together with its con-

traction onto T .

6.1.2. The tree T (Π)

Briefly, to get T (Π), we replace each non-central vertex vj , j ∈ Σ, by a copy πj of the
tree π described in § 4.2.

More precisely, the special vertex of πj denoted v0,j now carries tails (6.2) distributed
among other vertices of πj according to Π, and its tail (j, s0) is grafted in T (Π) to the
same flag 〈j〉 of its central vertex as it was in T .

The contraction T (Π) → T contracts each πj to the star of vj , and is identical on the
stars of the central vertices. Combining the relevant boundary morphism with (6.5), we
get the diagram of strata embedding

M̄T (Π) ↪→ M̄T ↪→ M̄0,Σ×(S\{s0}). (6.6)

The intermediate and final correspondences considered in § 5 can be expressed using the
geometry of (6.6).

6.2. Using the reconstruction theorems

For a general target W , if the Chow ring A∗(W ) (with coefficients in Q) coincides
with the whole of H∗(W ) and is generated by A1(W ), then the total motivic quantum
cohomology of W of genus 0 understood as the family of I-correspondences is completely
determined by triple correlators (3-point GW-invariants) of codimension 0. This follows
from the first and second reconstruction theorems of [24]; see also [26].

In any case, these triple correlators are precisely the coefficients of small quantum
cohomology as a formal series in qβ . Hence, under the same assumptions the total
quantum cohomology is completely determined by the small quantum multiplication
in H∗(V )[[qβ ]]:

∆a · ∆b = ∆a ∪ ∆b +
∑
β �=0

∑
c�=0

〈∆a∆b∆c〉β∆cqβ .
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Here, (∆a) is a basis of H∗ such that ∆0 is identity, gab = (∆a, ∆b), (gab) is the inverse
matrix to (gab) and ∆a :=

∑
bg

ab∆b.
This is applicable to all M̄0,n.
In turn, the associativity equations allow one to express all triple correlators through

a part of them. We now make explicit this subset for M̄0,n.

6.3. A generating subset of triple correlators

Set |∆| = i for ∆ ∈ H2i(M̄0,n). (No confusion with the cardinality |S| of a set S should
arise.) All invariants can then be recursively calculated through the 3-point invariants
〈∆a∆b∆c〉β with ∆c divisorial, |∆a|, |∆b| � 1, β �= 0 and

|∆a| + |∆b| = (−Kn, β) + n − 4,

where Kn is the canonical class of M̄0,n. Hence, β are restricted by

2 − (n − 3) � (−Kn, β) − 1 � n − 3.

See [24, Theorem 3.1], with the following easy complements. If |∆a| or |∆b| = 0, β �= 0,
then the respective GW-invariant is 0 because of [24, (2.7)]. If β = 0, we can use [24,
(2.8)]. It remains to consider the following list of parameters:

6 − n � (−Kn, β) � n − 2,

2 � |∆a| + |∆b| = (−Kn, β) + n − 4 � 2n − 6.

Finally, if ∆ is a divisorial class with (∆, β) = 0, then 〈∆′∆′′∆〉β = 0 for any ∆′, ∆′′ due
to the divisor axiom.

6.3.1. Tables for the first values of n

In Table 1 we collect values of (−Kn, β) and (|∆a|, |∆b|) for n = 5, 6, 7.
Note that M̄0,5 is the del Pezzo surface of degree 5; in particular, its anticanonical class

is ample, and, hence, the generating subset of triple correlators is finite. In fact, generating
sets for del Pezzo surfaces are collected in [2]. It is also known that all del Pezzo surfaces
have generically semi-simple quantum cohomology, and, more generally, this remains true
for blow-ups of any finite set of points on or over P 2 (see [1]).

Already for M̄0,6 the situation is more mysterious. For 45 out of 105 generators of the
cone of βs, we have that (−K6, β) = 0. (See also [9].) Hence, our generating list above is,
in principle, infinite. Semi-simplicity is an open question as well. For n � 7 the difficulties
grow.

6.4. Strategies of computation

A possible way to compute some Gromov–Witten invariants of M̄0,n with non-
boundary βs consists of choosing a birational morphism pn : M̄0,n → Xn such that the
following hold.

(a) (Sufficiently many) GW-invariants of Xn are known/computable.

(b) Morphism pn is such that there exist ‘naturality’ formulae that allow one to com-
pute (some) GW-invariants of M̄0,n through (some) GW-invariants of Xn.
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Table 1. Tables for the first values of n

(−K5, β) 1 2 3

(|∆a|, |∆b|) (1,1) (1,2) (2,2)

(−K6, β) 0 1 2 3 4

(|∆a|, |∆b|) (1,1) (1,2) (2,2) (2,3) (3,3)
(1,3)

(−K7, β) −1 0 1 2 3 4 5

(|∆a|, |∆b|) (1,1) (1,2) (2,2) (2,3) (3,3) (3,4) (4,4)
(1,3) (1,4) (2,4)

For ‘naturality’ results see, for example, [8,18,19,27,29–31] (where [8] contains correc-
tions to [18]). We discuss the relevant classes of morphisms below.

6.4.1. Blowing M̄0,n down

The following choices of morphisms seem promising for the application of this strategy,
at least for small values of n.

(i) Xn = P n−3, pn is Kapranov’s morphism, representing M̄0,n as the result of the
consecutive blowing up of n−1 points, preimages of lines connecting pairs of these points,
preimages of planes, passing through triples of these points, etc. (see [17]). It involves
forgetting the nth point, then fixing p1, . . . , pn−1 ∈ P n−3.

(ii) Xn = (P 1)n−3, pn is a similar morphism that was described explicitly by Tavakol.

(iii) Xn = L̄n−2, the Losev–Manin moduli space parametrizing stable chains of P 1 with
marked points and a specific stability condition, and pn is the respective stabilization
morphism.

It makes sense to not just use L̄n−2 in order to help calculate GW-invariants of M̄0,n,
but to treat these moduli spaces as replacements of M̄0,n in their own right. In fact, one
can define GW-invariants based upon L̄n−2; essentially, no information is thereby lost
(see [3]).

The spaces L̄n−2 are toric, and have the largest Chow ring of these three examples.
These manifolds are not Fano for n � 6, but, according to [20], any toric manifold has
generically semi-simple quantum cohomology; therefore, it can be more accessible.

(iv) Finally, combining two or more forgetful morphisms, one can birationally map
M̄0,n and L̄n−2 onto products of similar manifolds, thus opening a way to an inductive
calculation of GW-invariants. Here is the simplest example: for n � 5, forgetting at first
xn, and then all points except for (x1, x2, x3, xn), we get a birational morphism

M̄0,n → M̄0,n−1 × M̄0,4, M̄0,4 ∼= P 1.
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GW-invariants of a product can be calculated via the general quantum Künneth formula
whenever they are known for lesser values of n.

For our main preoccupation here, that of understanding the motivic properties of quan-
tum cohomology correspondences, versions of this last suggestion are most promising.
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