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High-frequency observation data, including all three components of instantaneous
fluctuating velocity, temperature, as well as particulate matter 10 (PM10), collected from
the unstable atmospheric surface layer at z/L = −0.11 and −0.12, L being the Obukhov
length, during sand and dust storms (SDS), were used to explore the scaling of vertical
coherence and the logarithmic energy profile for wall-attached eddies. The present results
demonstrate good agreement with the self-similar range of the wall-attached features for
velocity and temperature components, as well as for PM10 at lower heights (z < 15 m)
during SDS. Following the idea depicted by Davenport (Q. J. R. Meteorol., vol. 372,
1961, pp. 194–211), an empirically derived transfer kernel comprises implicit filtering via
a scale-dependent gain and phase, parametrically defined as |H2

L( f )| = exp(c1 − c2δ/λx),
where c1 and c2 are parameters, δ is the boundary layer thickness and λx is the streamwise
wavelength. Linear coherence spectrum analysis is applied as a filter to separate the
coherent and incoherent portions. After this separation procedure, the turbulence intensity
decay for wall-attached eddies is described in a log–linear manner, which also identifies
how the scaling parameter differs between the measured components. These findings
present abundant features of wall-attached eddies during SDS which further are used to
improve/enrich existing near-wall models.
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1. Introduction

Wind transport of sand and dust is a potent erosional force that generates sand dunes and
ripples while also filling the sky with suspended dust aerosols. These phenomena can
inflict damage to infrastructures, telecommunications and crops, impacting transportation
due to reduced visibility and resulting in significant economic losses (Sivakumar 2005;
Middleton & Kang 2017; Song et al. 2022; Liu et al. 2023). Therefore, acquiring a
comprehensive understanding of the mechanisms behind sand and dust storms (SDS) is
essential, where turbulent structures play a dominant role in the transportation of sand
and dust. The SDS interact intricately with other non-turbulent motions including gravity
waves, solitary waves and low-level jets (Terradellas et al. 2005; Banta, Pichugina &
Brewer 2006; Sun et al. 2015). As such, gaining insights into these turbulent features
becomes paramount in delving further into the intricate dynamics of SDS. The effect
of particles on the coherent structure evolution depends on various factors, including
both particle and flow parameters. Due to the complexity of the multiphase flow rather
than the single-phase flow, it remains to reach a consensus on the particle effects if
only the streamwise vortices are investigated. For example, different influences on the
turbulence size and inclination angle are observed under different scenarios (Dritselis &
Vlachos 2008, 2011; Zhao, Andersson & Gillissen 2010; Li et al. 2012). However, the
scarcity of multiheight and high-frequency wind and dust data presents a challenge in
comprehensively studying the dynamic properties of SDS (Akhlaq, Sheltami & Mouftah
2012; Albarakat & Lakshmi 2019; Li et al. 2021a). The challenge particularly applies to
understanding interactions between flow and dust fields, along with the characteristics of
coherent structures. This study aims to address these challenges regarding the turbulent
models and multiheight interactions in detail, building upon unique observations from the
atmospheric surface layer (ASL).

Flow structures with a hierarchical ordering of scales in the wall-normal direction,
considerable lifetimes in the streamwise direction and arrangements in both the spanwise
and streamwise directions have been employed to demonstrate large-scale coherence
in high Reynolds number wall turbulence (Favre, Gaviglio & Dumas 1967; Wark &
Nagib 1991; Ganapathisubramani, Longmire & Marusic 2003; Tomkins & Adrian 2003;
Hutchins & Marusic 2007; Baars, Hutchins & Marusic 2017). This large-scale flow
structure is most visible in the logarithmic region of the turbulent boundary layer (TBL),
where turbulent kinetic energy (TKE) is mostly composed of large-scale energy (Hutchins
& Marusic 2007). These coherent structures range in scale from the extent of the very
large-scale motions (extending up to 10δ in the streamwise direction, where δ is the
boundary layer thickness (Salesky & Anderson 2020)) down to the viscosity scale (ν/uτ ,
where ν is the kinetic viscosity, and uτ is the friction velocity), which represents the
smallest scale of turbulence. A thorough reading on coherent structures in laboratory
flows can be found in the reviews of Robinson (1991) and Jiménez (2018). The attached
eddy hypothesis (AEH) is a theoretical framework for wall-bounded flow that idealizes
wall-bounded flow as a set of inertia-driven coherent structures, which are self-similar
and randomly scattered in the plane of the wall (Townsend 1976). A recent description
by Marusic & Monty (2019) explains the basic assumptions and constraints of AEH.
According to Perry & Chong (1982), these coherent formations, or eddies, scale with
the distance from the wall, and the height of the eddies follows a geometric evolution
based on AEH. Evidence in favour of self-similarity and wall-scaling has been published
by the boundary layer community (e.g. Jiménez 2012; Hwang 2015; Baars et al. 2017;
Marusic, Baars & Hutchins 2017). Results from Del Alamo et al. (2006) characterize
for the first time the structural organization of the self-similar range of the turbulent
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logarithmic region. The extraction of instantaneous structures, analysis of their self-similar
characteristics and scaling laws of statistics are also well-presented. Lozano-Durán &
Jiménez (2014) discovered that these eddies grow large, attach to the wall, extend across
the logarithmic layer and exhibit geometric and temporal self-similarity, with lifetimes
proportional to their size (or distance from the wall). These structures also explain the
previously observed symmetry between sweeps and ejections (Lozano-Durán, Flores &
Jiménez 2012). Hwang & Sung (2018) characterized the AEH as offering a ‘unified
theory for the asymptotic behaviours of wall turbulence’. Further research by Hwang &
Sung (2019) revealed that the identified coherent structures are directly connected to the
logarithmic velocity law and serve as the structural basis for the inertial layer. In addition
to the basis of AEH, Marusic et al. (2010) developed a mathematical model to forecast
near-wall turbulence given just large-scale knowledge from the outer boundary layer area.
This model has been extended to a refined inner–outer interaction model based on spectral
stochastic estimation of turbulence by Baars, Hutchins & Marusic (2016). Further, Baars
et al. (2016) proposed an empirically derived transfer kernel comprising implicit filtering
via a scale-dependent gain and phase to capture the coherent portion in the prediction.
Inspired by the interactions between near-wall and outer boundary layer regions, we aim
to extend the AEH model to describe vertical coherence, thereby exploring coherence
features during SDS.

Baars et al. (2017) investigated two-point measurements in the wall-normal direction in
smooth terrain with well-controlled flow circumstances, where the novel set-up allowed
researchers to explore the relationship between outer-region turbulence and the near-wall
footprint in the fluctuating velocity spanning a friction Reynolds number range Reτ ∼
O(103)–O(106). They further showed that the self-similarity in the neutral laboratory
zero-pressure gradient TBL is characterized by a streamwise/wall-normal aspect ratio
of AR = λx/�z ≈ 14, which was also investigated by Duan et al. (2020) in channel
flows. Baidya et al. (2019) reported that the self-similar wall-attached structures follow
a three-dimensional aspect ratio of 14 : 1 : 1 in the streamwise, spanwise and wall-normal
directions in high Reynolds number pipe and boundary layer flows. In addition, both Krug
et al. (2019) and Li et al. (2022a) explored the coherence for both velocity and temperature
signals in the ASL. They found that the streamwise/wall-normal aspect ratio decays with
a logarithmic trend with increasing unstable thermal stratification. More recently, Basley,
Perret & Mathis (2019) and Li, Wang & Zheng (2022b) explored the wall similarity under
roughness surface in laboratory and atmospheric observations, giving that the aspect ratio
of coherent structures increases with increasing surface roughness. Previous studies by
Zhang, Hu & Zheng (2018) and Wang, Gu & Zheng (2020) have shown that the dust field
possesses similar coherent structures to the fluid field. Given that dust particles adhere to
the flow field and share similar structures, the remaining unknown similarity features of
aspect ratio for dust field during SDS are identified specifically in the current study.

One of the goals of analysing AEH flow data is to look for scaling laws in the energy
spectra (Nickels et al. 2005; Baidya et al. 2017) and wall-normal profiles of turbulent
stresses (Marusic et al. 2013). The population density of linked eddies is inversely
proportional to their height (H), which fluctuates in the range O(zmin) ≤ H ≤ O(δ),
where zmin marks the start of the inertial region. The cumulative contribution from
the spectrum of linked eddies causes the streamwise turbulence intensities to differ
logarithmically as a function of z at any z ≥ zmin. This structure is also illustrated
by the semilogarithmic wall-normal decay of the variance of the streamwise velocity.
This scaling has already been observed by simulations, experimental investigations and
other theoretical arguments (Perry & Abell 1977; Perry, Henbest & Chong 1986; Nikora
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1999; Katul, Porporato & Nikora 2012; Li, Wang & Zheng 2021b). In addition to low
Reynolds number simulations (Jiménez & Hoyas 2008; Lee & Moser 2015), experimental
datasets (Hultmark et al. 2012; Marusic et al. 2013) and atmospheric observations (Kunkel
& Marusic 2006; Krug et al. 2019; Li et al. 2022a) at high Reynolds numbers have
indicated that self-similar contributions at the same scale are veiled by non-self-similar
contributions, implying that a logarithmic law for u2+

(the symbol ()+ indicates wall
units) is more persuasive (Rosenberg et al. 2013; Baars & Marusic 2020b). Notably, Baars
& Marusic (2020b) separated these two contributions (self-similar and non-self-similar),
exposing the near-wall logarithmic growth (of u2+

) down to z+ ∼ 80, where the lower
bound was reported by Duan et al. (2020) at z+ ∼ 100 with a slope of 0.98 (= A1). The
slope of the logarithmic variation of the streamwise variance in wall turbulence is the
Townsend–Perry constant (Marusic et al. 2013; Baars & Marusic 2020b). Considering
the hierarchy of geometrically self-similar eddy motions that expand through wall-normal
separation featuring a logarithmic energy contribution, and a reference point that has been
fixed at a near-wall region previously to obtain the wall-attached eddies along all three
axis directions, we postulate that self-similar eddies also feature a logarithmic energy
distribution during the SDS for components of velocity, temperature and PM10. The above
review readily demonstrates that the energy profile of wall-attached motions during the
SDS in the logarithmic region of turbulent flows has not yet been explicitly quantified.

2. Methodology and experiment

The coherence statistic in signal processing is a tool for analysing the relationship between
two signals. It is frequently employed to calculate the power transfer between the input and
output of a linear system. If the signals are ergodic and the system function is linear, the
causality between the input and output can be estimated using coherence. The coherence
between two signals x(t) and y(t) is defined as

γ 2
L ( f ) ≡ |〈X̃( f )Ỹ∗( f )〉|2

〈|X̃( f )|2〉〈|Ỹ( f )|2〉 = |φ ′
xy( f )|2

φxx( f )φyy( f )
. (2.1)

Here, X̃( f ) = F [x(t)] represents the Fourier transform of signal x in time, and x can
be replaced by y. The asterisk ∗ indicates the complex conjugate, 〈〉 denotes ensemble
averaging, and || designates the modulus. Specifically, 0 ≤ γ 2

L ≤ 1 is defined using
the linear coherence spectrum (LCS), where γ 2

L is a function of the frequency f ; φ
′
xy

is the cross-spectrum; φxx and φyy are the autospectral densities of signals x and y,
respectively. A similar analysis between different signals using LCS can be found in
Baars et al. (2016). Consider a linear system with an impulse response hl(t) defined as
y(t) = hl(t)x(t). In the Fourier domain, this equation becomes Ỹ( f ) = HL( f )X̃( f ), where
HL( f ) is the complex-valued linear system transfer function, generally known as spectral
linear stochastic estimation (LSE) (also introduced in Adrian (1979), Ewing & Citriniti
(1999), Tinney et al. (2006) and Baars et al. (2016)). Hence, for a linear system,

HL( f ) = φ
′
xy( f )

φxx( f )
. (2.2)
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The system’s gain is intuitively connected to the LCS, scaled by the ratio of
input-to-output energies, and can be expressed as follows (Bendat & Piersol 2000):

|H2
L( f )| = γ 2

L ( f )
φyy( f )
φxx( f )

. (2.3)

A self-similar hierarchy of wall-attached structures inside the logarithmic zone of a TBL
(Baidya et al. 2019; Deshpande, Monty & Marusic 2019; Marusic & Monty 2019; Hu,
Yang & Zheng 2020; Li et al. 2022a) is idealized in figure 1(a). Here, we investigate three
hierarchy levels of zones of coherent velocity fluctuations that are randomly positioned,
with each hierarchy being represented by a distinct hue. For the sake of simplicity, we
define each level’s eddy effect volume as having a lx ∼ λx and lz ∼ z in the x and
z directions, respectively, resulting in the aspect ratio of the streamwise/wall-normal
direction as AR = λx/�z. To obtain the coherence between two turbulent signals, the
position of zR should be close enough to the wall. In ASL, zR was selected at the lowest
height and the travel signal zT is the upper position located in the logarithmic regions of
TBL as indicated in figure 1(a) by zR and zT to obtain the coherence.

Baars et al. (2017) applied the coherence spectrum to streamwise fluctuating velocity
signals at a wall-normal position zR and a travel signal in the logarithmic region zT to
explore the wall-attached features of turbulent flow. Similar investigations can be found in
Krug et al. (2019), Baars & Marusic (2020b), Duan et al. (2020) and Li et al. (2022a). They
imply that, as a consequence of the AEH, the coherence magnitude within the self-similar
region adheres to

γ 2
L = C1ln

(
λx

�z

)
+ C2. (2.4)

Here, C1 and C2 are fit constants, with C1 = 0.302 being a fixed value, and C2 being
affected by the stability/roughness/dust conditions. The statistical aspect ratio (in this case
streamwise/wall-normal) then follows:

AR = λx

�z

∣∣∣∣
γ 2

L =0
= exp

(−C2

C1

)
. (2.5)

In neutral turbulent flow at Reτ ≈ 14 000 (laboratory data (Baars et al. 2017)),
Reτ ≈ 2000 (numerical data, Sillero, Jiménez & Moser 2013) and Reτ ≈ 1.4 × 106 (ASL
data, Marusic & Heuer 2007), Baars et al. (2017) gave C2 = −0.796 which results in
AR ≈ 14. In addition, Krug et al. (2019) found that the self-similar scaling applies also to
fluctuations of the spanwise velocity v and the static temperature θ , which will be further
extended to PM10 in the current work.

Using findings from typical tower micrometeorological data, Davenport (1961)
established a trend in the wall-normal coherence of streamwise velocity fluctuation u. The
study revealed that turbulent quantities were less coherent as both the vertical separation
(�z) and the wavelength (λx = U/f , where U is the local mean velocity, f = 50 Hz is the
sampling frequency) decreased. Based on this assumption, the coherence should primarily
be affected by the ratio of �z to λx for a certain stability. Davenport (1961) further
provided the following empirical formula, noting that the decline in coherence with rising
�z/λx mimics an exponential decay:

γ 2
L = exp

(
−2a

�z
λx

)
, (2.6)

where a is a decay parameter. For the vertical coherence γ 2
L of the u component under

neutral conditions, Davenport (1961) first stated a = 7.7 with regard to the fitting constant
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Figure 1. (a) The schematic shows isometric x–z plane views of a hierarchy of self-similar wall-attached eddies
representing the logarithmic region, presented as simplified parallelograms (not scaled). Three hierarchical
levels are considered, each represented by different colours. Vertical arrays are installed with 11 sonic
anemometers (squares) and 11 dust monitors (circles) ranging from 0.9 m to 30 m. The heights, referred
to as zR and zT , respectively, are set as the fixed near-wall location at z = 0.9 m and the travelled heights.
Here, lx ∼ λx and lz ∼ z denote the streamwise and wall-normal extents of the hierarchical level, respectively,
with AR = λx/�z indicating the aspect ratio in the streamwise wall-normal plane. Panels (b–e) indicate the
example signals obtained at zR = 0.9 m and zT = 5 m for the velocity of streamwise component u, the spanwise
component v, the temperature θ and the PM10 concentration pc, respectively.

in (2.6). Subsequent literature (Pielke & Panofsky 1970; Davison 1976; Berman & Stearns
1977) have reported somewhat revised results and expansions of the concept to spanwise
velocity components (v) and the temperature field (θ ). It is well acknowledged that a
changes with surface-layer stability, being small in intense convection and large in neutral
or stable air. Krug et al. (2019) provided a depiction of (2.6) with a = 23 (e.g. Naito &
Kondo 1974), which was observed to closely agree with (2.4) and the data under neutral
conditions.

The field measurements of the ASL were taken at the Qingtu Lake Observation
Array (QLOA) site in western China during the SDS, and detailed information about
the field and data collection can be found in Li et al. (2021a). The QLOA is
located between two of the largest deserts in China: the Badain Jaran Desert and
the Tengger Desert, lying within a dusty belt in the Hexi Corridor. Dust weather
in the Hexi Corridor is often caused by intense frontal systems, and the flow
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Sampling
No. Date and time Duration frequency uτ (m s−1) z/L Ū (m s−1) pc (mg m−3)

D1 28 March 2016, 12:00 2 h 50 Hz 0.33 −0.12 5.74 0.45
D2 28 March 2016, 13:30 2 h 50 Hz 0.35 −0.11 6.13 0.73

Table 1. The key information relating to the datasets during the SDS. Here Ū and pc were obtained at z =
0.9 m, indicating the mean velocity and mean PM10 concentration. A detailed description of SDS can be seen
in Li et al. (2021a). Note that the sampling frequency for PM10 is f = 1 Hz.

field and dust field were measured by the current observation site. The data used
in this work included wall-normal arrays of sonic anemometers, which performed
synchronous measurements of the three-dimensional turbulent flow field. Campbell
CSAT3B instruments installed at heights from z1 to z11 were spaced logarithmically from
z = 0.9 to 30 m (z = 0.9, 1.71, 2.5, 3.49, 5, 7.15, 8.5, 10.24, 14.65, 20.96, 30 m) and were
employed to acquire time series data of the three components of velocity, as well as the air
temperature, at a sampling frequency of 50 Hz. Additionally, dust monitors were installed
at corresponding heights to measure the PM10 concentration with a frequency of 1 Hz,
as illustrated in figure 1(a). Figure 1(b–e) show an example of data obtained from the
ASL to illustrate the streamwise velocity component u, spanwise velocity component
v, temperature θ and PM10 concentration pc at zR = 0.9 m and zT = 5 m. Throughout
this study, we only employ the fluctuating components of the turbulence quantities; the
streamwise (or longitudinal), spanwise and wall-normal velocity fluctuations are denoted
by u, v and w, respectively, with associated coordinates x, y and z. Temperature fluctuations
are denoted by θ , and PM10 concentrations are denoted by pc.

Table 1 provides the details of key information for two selected SDS data, where uτ =
(−uw)1/2 is used to determine the friction velocity at z = 2.5 m. The duration extends to
2 h, in comparison with previous ASL literature (e.g. Hutchins et al. 2012; Wang & Zheng
2016; Krug et al. 2019; Li et al. 2022a), to ensure a larger number of ensemble runs while
performing spectrum analysis on PM10 due to the relatively low sampling frequency. The
thermal stability of the ASL is generally characterized by the Monin–Obukhov stability
parameter z/L (Obukhov 1946; Monin & Obukhov 1954), where L = −u3

τ θ̄/(κgwθ) is the
Obukhov length, κ = 0.41 the von Kármán constant, g the gravitational acceleration, wθ

the surface heat flux with w and θ the fluctuating wall-normal velocity and temperature
components, θ̄ the mean temperature and z = 2.5 m is the reference height for evaluating
this parameter. In this work, two durations of the dataset were selected to obtain the
features of vertical coherence. For the lack of direct measurement of the surface-layer
thickness, we assume an estimate for δ = 60 m, following Hutchins et al. (2012). Prior
to further analysis, the data are adjusted for wind direction and a detrending process is
used (see Hutchins et al. (2012), Wang & Zheng (2016), for details). While detrending
is required to eliminate slow temporal patterns in the data, it also affects coherence at
extremely long scales, which must be considered when investigating the data. Thus, raw
data were used to apply for coherence, but the detrending process ensures the exploration
of the scaling of the logarithmic energy profile for wall-attached eddies.

The spatiotemporal transformation uses Taylor’s hypothesis (Taylor 1938), where the
local mean velocity is taken as the convection velocity. Taylor’s idea is frequently contested
in the literature; however, applying it to the current coherence spectrum research should
be successful and may not significantly impact the key findings. The findings of Baars
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et al. (2017) support this claim, as they demonstrate that both temporal and spatial data
produce comparable coherence spectra, except for the near-wall area where the predicted
convection velocity is no longer valid (Del Álamo & Jiménez 2009). Since the primary
focus of the current investigation is the outer region, the near-wall inaccuracy associated
with the application of Taylor’s theory is not considered significant in this context.

3. Results

3.1. Scaling of vertical coherence
Previous studies (Krug et al. 2019; Li et al. 2022a,b) have examined the aspect ratio of
AR in u, v and θ under stratified and rough-wall ASL. However, a lack of self-similarity
investigation on PM10 and u, v and θ under dust-carrying flows will be explored in this
work. Figure 2 shows the coherence spectrum γ 2

L for the two velocity components, the
temperature, and PM10 concentration in the unstable case with z/L = −0.12. It should be
noted that, in this case, we choose normalization with �z since it offers a larger scaling
zone. Plotting the findings as shown in figure 2(a–c) examines the self-similarity feature
as, in this situation, a collapse of curves at various �z is anticipated, which is also evident
in previous ASL results by Krug et al. (2019) and Li et al. (2022a,b). We can fit the formula
(2.4) to the data and extract the statistical aspect ratio by locating the scaling region by the
area of this collapse (highlighted in red in figure 2). For the coherent spectrum of the pc in
figure 2(d), we take the dashed grey line to fit the spectrum based on (2.6) since the lower
sampling frequency of the pc can not ensure to obtain the smaller scales of structures. The
fit in figure 2(d) matches well with the raw coherent spectrum at zT = 5 m, further used
to fit the other γ 2

L of the pc. Figure 2(e) gives a gradual feature of decay on coherence.
Generally, the fitting to the lower heights (�z � 15 m) can also be considered that the
transportation of PM10 indicates wall-attached features with similarity. And the aspect
ratio of pc is significantly larger than the value of ARu ≈ 6.2.

These results are also concluded in table 2, which is also compared with the previous
ASL work by Krug et al. (2019) and Li et al. (2022a) at the corresponding stability
conditions. Evidently, the results in datasets D1 and D2 are significantly larger than the
value of AR obtained under unstable conditions from Li et al. (2022a) but without the
influence of dust. In this study, we conducted the first investigation on the self-similarity
of pm and further explored the aspect ratio of pc. We observed that the value of AR
differs between Li et al. (2022a) and Krug et al. (2019), despite both papers describing
the self-similarity under a stratified ASL. Since they share the same field observation
site, it demonstrates that sand and dust movement dramatically increases the aspect ratio
of coherent structures in the flow. It is worth noting that dust monitors continuously
measure particle concentration, and data can only be collected when SDS pass through
the measurement site. Additionally, we first present the aspect ratio of the PM10, which
depicts the similarity features of the dust field.

Previous studies (Wang et al. 2020; Liu, Feng & Zheng 2022) suggest that the statistics
of turbulent flow undergo changes in sand- or particle-laden two-phase flow. Wang et al.
(2020) reveal that the inclination angles of large-scale structures tend to increase with
sand concentration in atmospheric flow. Moreover, Liu et al. (2022) discuss the impacts
of particle near-wall movements on turbulence statistics in wind tunnel experiments. Both
studies imply that the length scales of turbulent coherent structures are somewhat reduced
in sand-laden flows. Consequently, the aspect ratio of u, v and θ is bound to exhibit
certain differences. One possible reason is that particulate matters follow the flow field,
relying on turbulent motions. Simultaneously, the flow field structures are affected to
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Temperature: θVelocity: u Velocity: v

pm concentration: pcpm concentration: pc

ARpc ≈ 9.8

ARθ ≈ 6.1ARv ≈ 4.7ARu ≈ 6.2

Figure 2. Here γ 2
L is shown in the range 1.6 m ≤ �z ≤ 29.1 m (with decreasing �z indicated by lighter shades

of grey) for the following variables: (a) streamwise component u; (b) spanwise component v; (c) temperature
θ ; (e) PM10 concentration pc, respectively, in the unstable case with z/L = −0.11 (D1). In (d), an example of
the coherence spectrum γ 2

L for PM10 concentration pc at zT = 5 m is represented by the solid line, and a fitting
line with (2.6) is depicted by the dashed line. The red line is a fit according to (2.4) with C1 = 0.302 fixed; the
fitting region used is bounded by γ 2

L > 0.1 and λx < 200 m and is indicated in blue lines.

z/L = −0.12 z/L = −0.11

D1 Li et al. (2022a) Krug et al. (2019) D2 Li et al. (2022a) Krug et al. (2019)

ARu 6.5 4.7 5.9 6.2 4.7 6.0
ARv 4.9 3.9 4.8 4.7 4.0 4.9
ARθ 5.8 4.0 5.7 6.1 4.0 5.8
ARpc 8.4 — — 9.8 — —

Table 2. The values of AR for u, v, θ and pc are provided at two stability parameters, z/L = −0.12 and z =
−0.11, for datasets D1 and D2. These corresponding values under the stability conditions are also obtained by
fitting AR = a1 log(z/L) + a2, where a1 and a2 are parameters for the velocity and temperature components,
as described in Li et al. (2022a) and Krug et al. (2019).

varying degrees in the streamwise and spanwise directions, resulting in an overall increase
in AR.

In order to obtain the vertical coherence between two wall-normal signals, an
empirically derived transfer kernel comprises implicit filtering to capture the coherent
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Figure 3. The linear gain |H2
L( f )| is presented for the zR and zT signals of u, v, θ and pc, respectively, in

(a) �z/δ = (z2 − z1)/δ and (b) �z/δ = (z5 − z1)/δ by solid coloured lines. The corresponding dashed lines
represent fitting lines for |H2

L( f )| as per (3.1a). The stability parameter is z/L = −0.11 (D2).

portion in the prediction. Taking the idea from Davenport (1961) to capture the transfer
kernel |H2

L( f )| between the signals in the near-wall and logarithmic regions, the empirical
expression follows:

|H2
L( f )| = exp

(
c1i − c2i

λx/δ

)
; (i = u, v, θ and pc), (3.1a)

c1i = Ai log(�z/δ) + Bi; c2i = Ci log(�z/δ) + Di. (3.1b)

Here, c1i is the extreme parameter, depicting the asymptote value to exp(c1) while
λx/δ → ∞. c2i is a decay parameter, where i = u, v, θ and pc. Meanwhile, the normalized
parameters c1i and c2i are functions of �z/δ, constrained by Ai, Bi, Ci and Di.

Figure 3 shows the linear gain |H2
L( f )| as a function of λx/δ for u, v, θ and pc at

(figure 3a) �z/δ = (z2 − z1)/δ = (1.71 − 0.9)/60 and (figure 3b) �z/δ = (z5 − z1)/δ =
(5 − 0.9)/60. The solid-coloured lines represent the linear gain obtained from (2.3),
and the corresponding dashed-coloured lines are fitted by (3.1a). As can be seen from
the figure, significant matches are indeed observed for all quantities plotted. At lower
wavelengths, the kernel of linear gain |H2

L( f )| reaches zero, indicating that there is no
coherence in this region with no coherent energy between inner and outer signals. For
the larger wavelengths, the formula (3.1a) depicts the trend to asymptote determined
by parameter c1. Notably, the fitting to pc shows the extending estimation at lower
wavelengths due to the lower sampling frequency. It should be noted that the linear gain
|H2

L( f )| varies across u, v, θ and pc due to their distinct coherence levels, intuitively linked
to the LCS (2.3), caused by variations in AR. In the case of pc, the gain is biased towards
larger wavelengths, with a lower maximum gain value compared with the other three
components due to weaker coherence of corresponding scales, which is evident from the
larger value of AR. Since the linear gain |H2

L( f )| of pc and θ are smaller than u and v, it can
be inferred that the dust and temperature do not follow the flow as closely. As �z increases,
the |H2

L( f )| of θ and pc decrease significantly, demonstrating that the followability of these
two parameters in the normal direction is weaker, particularly for pc.
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10–2 10–1 100
–8

–6

–4

–2

c 1
u,

v
,θ

,p
c

c 2
u,

v
,θ

,p
c

0

2

–5

0

5

10

15

20
c2u = 7.8log(�z/δ) + 13.0

c2v = 10.1log(�z/δ) + 15.4

c2θ = 5.6log(�z/δ) + 8.7

c2pc = –0.1log(�z/δ) + 0.51

Figure 4. The parameters c1 in (a) and c2 in (b) for u, v, θ , and pc vary with �z/δ according to (3.1a). The
solid fitting lines are based on (3.1b). The stability parameter is z/L = −0.11 (D2).

z/L = −0.12 z/L = −0.11

Ai Bi Ci Di Ai Bi Ci Di

u 0.23 0.70 5.30 9.10 0.47 1.12 7.80 13.00
v 0.15 0.42 6.30 10.10 0.63 0.29 10.10 15.40
θ −0.92 −1.79 8.90 13.30 −1.00 −1.90 5.60 8.70
pc −2.80 −5.10 −0.23 −0.04 −2.70 −4.80 −0.10 0.51

Table 3. The values of A, B, C and D for u, v, θ and pc in (3.1b) are provided at z/L = −0.12 and
z/L = −0.11.

Once the c1 and c2 values are obtained at a certain wall-normal offset �z, the parameters
for A, B, C and D in (3.1b) are easily determined. Figure 4 shows the parameters c1 and
c2 as a function of �z/δ. An empirical parametric equation is fitted to the log–linear
trend of SDS data to model the variation. Considering the influence of the current flow
from dust-flow interaction and buoyancy-driven effects, the parameters are expected to be
explored for the pure shear flow or stratified flow, and even the effects of the Reynolds
number could be considered in the future.

In summary of the parameters in (3.1b), table 3 gives a comparison of A, B, C and D
at z/L = −0.12 and z/L = −0.11. Generally, the variation of c1 and c2 shows the same
trends in both datasets. Meanwhile, the parameters c1 of the velocity components u and
v share the same increasing trend, contrary to the temperature θ and pc. Additionally, the
parameters are expected to be compared under neutral conditions to reveal the influence
of dust and buoyancy on the features of input–output interactions of the flow.

To exhibit the kernel of linear gain |H2
L( f )| on different wavelengths λx/δ and

wall-normal offsets �z/δ, figure 5 indicates the contour plot of |H2
L( f )| for (figure 5a)

u, (figure 5b) v, (figure 5c) θ and (figure 5d) pc, respectively. The red dashed lines
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Figure 5. Contour plots of |H2
L( f )| based on (3.1a), (3.1b) are shown for (a) u, (b) v, (c) θ and (d) pc,

respectively, with decreasing values represented by lighter shades of dashed grey lines. The parameters are
provided in table 3 at z/L = −0.12 (D1). Contour line levels range from 0.1 to 1 with an increment of 0.1, and
the red lines correspond to |H2

L( f )| = 0.1.

correspond to |H2
L( f )| = 0.1, and the decreasing values are represented by lighter shades

of dashed grey lines. As can be seen, larger wavelengths and lower wall-normal offsets
present higher values of |H2

L( f )| for all components. Generally, the velocity components
u, v and temperature θ show great similarity in the variation trend with respect to λx/δ and
�z/δ. The magnitude of |H2

L( f )| for pc is much lower than for other components, which
may reflect that the ability of dust to follow the flow field determines the energy transfer
in input–output signals.

3.2. Scaling of logarithmic energy profile for wall-attached eddies
The coherence of a linear system, γ 2

L , therefore represents the fractional part of the
output signal power that is produced by the input at that frequency. We can also view
the quantity (1 − γ 2

L ) as an estimate of the fractional power of the output that is not
contributed by the input at a particular frequency. This naturally leads to the definition
of the coherent/incoherent output spectrum,

φuu(zT; λx) = (γ 2
L )φuu(zT; λx)︸ ︷︷ ︸

coherent

+ (1 − γ 2
L )φuu(zT; λx)︸ ︷︷ ︸

incoherent

, (3.2a)
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u2+
(zT)|coherent =

∫ ∞

0
(γ 2

L )φuu(zT; λx) dλx, (3.2b)

u2+
(zT)|incoherent =

∫ ∞

0
(1 − γ 2

L )φuu(zT; λx) dλx. (3.2c)

Here, u2+
(zT)|coherent corresponds to the energy of motions attached to the wall;

otherwise, u2+
(zT)|incoherent reflects the detached portion. Following the separation of the

coherent and incoherent portions of the streamwise turbulence intensities, the LCS can
be used as a wavelength-dependent filter for decomposing φuu into stochastically coherent
and incoherent portions relative to the signal u(t, zR), as demonstrated in the previous work
by Baars & Marusic (2020a).

The input signal is convolved with a first-order transfer kernel, HL( f ), to create the
output. Only the linear mechanism of energy transfer is accounted for by the convolution,
as the output is proportionate to the input. The analysis permits nonlinear energy transfer
when higher-order terms in (3.3a) and (3.3b) are retained. Higher-order estimating
approaches have been the focus of several investigations in wall-bounded turbulence.
One noteworthy example is the formulation by Naguib, Wark & Juckenhöfel (2001) of a
time-domain quadratic scheme that included estimates of the velocity field in a TBL given
surface pressures as an input; their stochastic estimates improved upon the addition of
the quadratic elements. Additionally, the reader is directed to the works mentioned above
as well as the discussion in Baars & Tinney (2014) for information on the specifics of
higher-order approaches. The extraordinary concordance between LSE and conditionally
averaged fields in TBL flow, which has applicability to the current ASL flow, was
highlighted in Adrian, Moin & Moser (1987) and Baars et al. (2016).

While the transfer gain embeds the scaling of each Fourier component in the estimate,
the shift of each Fourier mode is embedded in the phase, which yields the LSE in (3.3a).
For LSE, we use a combination of the filtered gain factor and the original phase to form
a new kernel in (3.3a). Although an inconsistent phase exists at the smaller wavelengths,
it will not impact the estimation due to the zero-valued gain factor at these incoherent
wavelengths. Finally, the time-domain conditional estimate is obtained by the inverse
Fourier transform for both ‘with phase’ and ‘without phase’ in the form of (3.3a) and
(3.3b). Meanwhile, the Fourier spectrum of the predicted signal yLSE(t) by LSE can be
written as (3.3c), further the turbulent intensity for yLSE(t) acquired in (3.3d):

yLSE(t) = F−1(HLF [x(t)]) (with phase), (3.3a)

yLSE(t) = F−1(|HL|F [x(t)]) (without phase), (3.3b)

φuu(zT; λx)|LSE = |F [yLSE(t)]|2, (3.3c)

u2+
(zT)|LSE =

∫ ∞

0
φuu(zT; λx)|LSE dλx. (3.3d)

By connecting to (3.2b), a stochastic estimate of the output’s energy spectrum can be
expressed as (3.3d), which yields to

φuu(zT; λx)|LSE = |H2
L( f )|φuu(zR; λx) = γ 2

L φuu(zT; λx). (3.4)

It is the equivalent form of (2.3). This implies that the amount of energy of zT that can
be reconstructed via an LSE procedure, from input zR, is equal to the measured spectrum
at zT , multiplied by γ 2

L , which is also applied to the TBL in Baars et al. (2017) and Baars &
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Figure 6. The figure displays time series data at z/L = −0.12 (D1), with the measured signals represented in
grey and the corresponding constructed output signals shown in black. The construction employs a first-order
transfer kernel, as defined by (3.3b). The values of u′+, v′+, θ ′+ and pc′+ are normalized by their respective
standard deviations.

Marusic (2020a). It should be noted that (3.4) includes not only wall-attached self-similar
motions but also wall coherent motions scaled by the outer scale (i.e. wall-attached
non-self-similar motion) which is discussed in the previous works (Baars & Marusic
2020a; Deshpande et al. 2020; Hwang, Lee & Sung 2020). Moreover, Davenport (1961)
implies the possibility of self-similar motions among wall-incoherent motions (Krug et al.
2019). The detached self-similar structures in several studies (Marusic & Monty 2019;
Yoon et al. 2020) have also been discussed.

Figure 6 shows the fluctuations of the measured signals in grey and the constructed
output signals by (3.3b) in black. The gain function in figure 3 and (2.2) can be interpreted
as an experimentally calculated scale filter because it shows a steady roll-off. As suggested
by Baars et al. (2016), the LSE eliminates the need for an a priori choice of a separation
scale, which is necessary for large-wavelength pass-filtering of the input and output
signals. Scaling the transfer kernel gain allows for the prediction of a filter that retains
only the coherent scales of the acquired input.

Based on the empirical fitting in (3.1a) and (3.3b), a premultiplied energy spectrum
of the conditional estimate is shown in figure 7, alongside the raw output spectra and
estimated spectrum by LSE procedure. In figure 7, arbitrary input–output pairs of dataset
zR = 0.9 m to zT = 5 m for u, v, w and pc, are chosen to illustrate the LSE of the
premultiplied spectrum, where the process is called LSE-based in the current study. The
smaller wavenumber (corresponding to larger scales) of the spectrum is indicated in
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Figure 7. Premultiplied energy spectra of the output signal at zT = 5 m, with the raw signal depicted in grey
and the corresponding smoothed signal shown in blue at z/L = −0.12 (D1). The signals are decomposed into
coherent contributions represented in green, relative to (3.2a). Panels (a–d) correspond to u, v, θ and pc,
respectively.

figure 7. In other words, the linearly estimated spectrum constitutes less energy due to
the lack of perfect coherence (the visual implication of (2.2)).

Townsend (1976) and Perry & Chong (1982) established the theory that the interior
part of the inertial region requires a logarithmic profile for the streamwise turbulence
intensities, giving a Townsend–Perry constant A1 = 1.26 to depict the slope of the
logarithmic profile, which has been supported by Marusic et al. (2013). According to
Townsend’s AEH, the wall-normal logarithmic decay of turbulence intensity can be
extended to the logarithmic decay of wall-attached turbulence intensity. More recently, Li
et al. (2021b) also support the logarithmic decay of turbulence intensity for wall-attached
eddies in the spanwise direction. For the LSE-based turbulence intensities for u, v, θ and
pc, we postulate that coherent and incoherent portions also feature a logarithmic energy
distribution as follows:

u2+
(�z) = B1 − A1 ln(�z/δ), (3.5a)

u2+
(�z)|coh = Pc − Qc ln(�z/δ), (3.5b)

u2+
(�z)|incoh = Pi − Qi ln(�z/δ), (3.5c)

where A1 = 1.26 represents the Townsend–Perry constant under neutral conditions for the
streamwise velocity component, and Qc and Pc denote the fitting parameters governing
the self-similar logarithmic behaviour of LSE-based turbulence intensities (corresponding
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Figure 8. Turbulence intensity profiles along the wall-normal offset, with the raw, coherent (Coh) and
incoherent (Incoh) depicted in grey, green and blue, respectively, at z/L = −0.12 (D1). The dashed lines
represent fitting lines based on (3.5a), (3.5b) and (3.5c), respectively. Panels (a–d) correspond to u, v, θ and
pc, respectively.

to the coherent portions). Here Qi and Pi are fitting parameters used to characterize the
logarithmic behaviour of the incoherent portions.

Significantly, the value assigned to A1 has undergone significant alterations over time.
A key aspect contributing to this discrepancy is that (3.5a) is confined to attached-eddy
turbulence exclusively, while measures of the total streamwise TKE encompass additional
contributions. Thus far, our understanding of turbulent intensity scaling within the
logarithmic region, as articulated by the AEH, has been well-established. We firmly
believe that the coherent component in the current signal decomposition primarily
comprises vortex structures exhibiting self-similarity in scale. Previous investigations
by Marusic & Kunkel (2003), Kunkel & Marusic (2006) and Wang & Zheng (2016)
have highlighted that turbulent energy, particularly at elevated Reynolds numbers in
atmospheric flows, adheres to a logarithmic law. This body of evidence indicates that
turbulent energy in flows governed by attached eddies approximately adheres to the
principles of the AEH within the logarithmic region.

In our current study, we operate under the assumption that attached eddy structures
predominate in u2 within atmospheric observations, thereby leading to the logarithmic
behaviour observed in the coherent component. Contributions from different eddy types
to inner flow-scaled premultiplied u-spectra, with scaling and overlap regions following
Perry et al. (1986), where these contributions are referred to as Type A, B and C energy
contributions (Perry & Marusic 1995; Marusic & Monty 2019). Type-A eddies are attached
and self-similar, and only these are part of the AEH. In the context of low wavenumbers.
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z/L = −0.12 z/L = −0.11 z/L = 0 (Neutral)

u v θ pc u v θ pc u

A1 1.7 1.2 4.8 1.3 1.4 1.7 5.0 2.4 ≈1.3 (Marusic et al. 2013)
Qc 2.8 2.6 3.7 1.2 3.1 3.2 4.0 2.2 ≈0.98 (Baars & Marusic 2020b)
Qi −1.1 −1.4 1.1 0.1 −1.7 −1.4 0.9 0.1

Table 4. The fitting parameters of the slope A1, Qc and Qi for u, v, θ and pc in (3.5a), (3.5b) and (3.5c) are
provided for two stability conditions, z/L = −0.12 and z/L = −0.11, comparing with the neutral conditions
by Marusic et al. (2013) and Baars & Marusic (2020b).

Type-B energy is postulated to originate from detached motions, which encompasses
Type-C energy emanating from Kolmogorov scales and small-scale detached eddies.
Should we postulate that the behaviour of the incoherent component follows a logarithmic
trajectory, it can be expressed as (3.5c). Hence, the incoherent component should also
adhere to a logarithmic pattern: Pi = B1 − Pc and Qi = A1 − Qc, a proposition supported
by the parameters illustrated in figure 8 and table 4. Additionally, analogous findings
regarding the logarithmic distribution for both coherent and incoherent components are
evident in Li et al. (2021b). It should be emphasized that the parameters adhere to a
relationship based on A1 = Qc + Qi.

Figure 8 gives turbulence intensity profiles for u, v, θ and pc along the wall-normal
offset �z/δ. The raw signal and LSE-based turbulence intensities are fitted as grey, green
and blue lines based on (3.5a), qs (3.5b) and (3.5c), respectively. The log–linear manner
is obvious to see for all quantities, being evident as a proper way to depict the scaling law.

The variations in A1, Qc and Qi for u, v, θ and pc based on (3.5a) and (3.5b) for
datasets D1 and D2 are presented in table 4. Obviously, the slope of turbulence intensity
for LSE-based Qc is much bigger than A1 for u and v. On the contrary, the slope of
θ and pc for A1 is somewhat larger. We also give a comparison of A1 and Qc for u
under neutral condition with Marusic et al. (2013) and Baars & Marusic (2020b) to
indicate the difference of parameters obtained during SDS. It is necessary to consider
abundant atmospheric features (e.g. buoyancy, roughness, dust emission) while arguing for
self-similarity in high Reynolds numbers. Consequently, it would be helpful to understand
how the logarithmic decay of turbulence intensity changes under increasing buoyancy
conditions. For the current study, the slope of the logarithmic decay of turbulence intensity
for wall-attached eddies during SDS is also influenced by a varied Townsend–Perry
constant in neutral shear flow, as discussed by Baars & Marusic (2020b), with the
additional consideration of buoyancy and dust field effects.

4. Conclusion

We have demonstrated the implications of Townsend’s AEH for the coherence
trend, which is also supported by turbulence during the SDS. The self-similarity
assumptions/hypotheses do seem to hold for PM10 data at lower heights. The aspect ratio
for PM10 in the streamwise/wall-normal plane (ARpc) is much larger than the aspect ratio
for velocity and temperature components. Following the idea from Davenport (1961),
this work derived an empirical transfer kernel |H2

L( f )| = exp(c1 − c2δ/λx) to depict the
coherence between the near-wall reference position and the travelled signal in higher
heights for u, v, θ and pc. After fitting the transfer kernel as a function of wall-normal
offset (�z) and wavelength (λx), the contour features of |H2

L( f )| for all four components
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indicate that larger wavelengths and lower wall-normal offsets present higher values. The
eddies are distinguished as coherent and incoherent by the LCS. Upon separating, the
energy profile for wall-attached eddies for u, v, θ and pc all obey the log–linear manner,
giving a slope larger than the Townsend–Perry constant (≈0.98 from Baars & Marusic
(2020b)) during the SDS.

The established logarithmic behaviour of second-order statistics proposed by this paper
is beneficial for improving existing wall models in numerical simulations. One direct
application is to assess the simulated results. Due to the fact there is lack of information for
atmospheric boundary layer flow at various Reynolds number, the given logarithmic law
for the second-order moments (i.e. u2+

,θ2+
, etc) can be utilised to appraise the near wall

behaviour of simulated flow, thermal and scalar quantities via either Reynolds-averaged
Navier–Stokes or large-eddy simulation (LES) at different Reynolds number. For instance,
Stevens, Wilczek & Meneveau (2014) assessed the performance of LES for the generalized
logarithmic law of second- and high-order moments via AEH (Marusic et al. 2013;
Meneveau & Marusic 2013). This serves as an extra guide for the accuracy of numerical
simulations, apart from comparing the mean profiles of velocity, temperature and scalar
fields. Moreover, in term of the prediction of the small particle dispersion, it is also
interesting to incorporate the effect of non-uniform TKE along wall-normal direction

(Gorlé et al. 2009), such as approximating the inner scaled TKE  3/2u2+
.

As a final note, while the current study is confined to vertical coherence, particularly
on the lower sampling frequency of PM10 data, expanding the similarity to SDS events
strengthens predictions and applicability to wall-attached features.
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