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1. Introduction. The spaces §p(co), 1 < p < » , w real are defined to 
consist of those analytic functions f(s), regular for Re s > œ and for which 
HP(f',x) is bounded for x > œ where 

(1.1) /x,Cf Î x) = {-1- J ~ \f(x + iy) |p dyj\ 1 < £ < co 

and 

(1.2) /**(/;*) = sup | / ( * + *y)|. 
—œ<y<œ 

These spaces have been extensively studied—for example, see (2), (4). 
In particular two results connect these spaces with the theory of Laplace 

transforms. These are that if e'^^it) £ Lp(0, oo), 1 < p < 2, and if/ is the 
Laplace transform of <£, that is, 

J»oo 

e~u<j>{t)dt, Res>w 
o 

then / G §ff(<o) where 
(1.3) p-'+q-1^ 1, 

and that conversely if / 6 £>?>(w), 1 < P < 2, then/(^) is the Laplace trans
form of a function <t> such that e~œt<j)(t) Ç Lff(0, oo). For 1 < £ < 2, these 
two results are due to Doetsch (2), and for p = 1 they are trivial. The two 
results concern the same space if and only if p — 2, when they give necessary 
and sufficient conditions that f(s) be the Laplace transform of a function <£ 
such that e-œt<f>(t) £ Z2(0, <»). 

Recently the author (6, 7) has considered the Laplace transformation of 
functions of the form tx<f)(t), <t> 6 A>(0, °°), A > — g_1, and we propose to 
generalize Doetsch's results so as to deal with functions of this type, though 
we shall have to restrict X to be positive. To this end, which is achieved in 
§ 2, we shall first define certain new spaces &\,p((*}), X > 0, 1 < p < oo, which 
in a sense are generalizations of the spaces §p(w). 

In the case p = 2 we shall see that we again obtain necessary and sufficient 
conditions for a representation, and in § 3 we shall relate these results to 
some previous work of ours and by so doing show that in this case the con
ditions for the representation can be slightly relaxed. 

Doetsch (2) has further shown that for p = 2 a certain real inversion 
formula for the Laplace transformation, originally due to Paley and Wiener 
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(5, p. 39), is very useful. In § 4 we shall show how this formula can be general
ized to deal with Laplace transforms of the type mentioned earlier. 

2. Generalized spaces. In this section we first define the spaces §x,P, 
and then prove two theorems generalizing Doetsch's result. 

Definition. §o,p(co) = §p(co). If X > 0, §\,P(co) consists of those functions 
f(s) £ &p(u) for every co' > co and such that /*p

x(/;co) is finite, where 

J"»oo 

{x-0,)*-\,Xv{j-x)ydx, l<P<œ 
CO 

and 

(2.2) n\(f; co) = sup (x - co)Vi(/; x). 

It is clear that §x,p(co) is a linear space. It is easy to show that it is a Banach 
space under the norm 

'{ti&^/TÇKq)}1" X > 0 , £ > 1 

ll/lk,= /*î(/;«) \>o,p = l 
sup Mp(/; #) x = o. 

Also an easy proof shows that if || / \\\tP < M, 0 < X < X0, then | |/ | |o,p < M, 
and | |/ | |x,p —> ||/ | |o,p as X—>0+. Since these properties are not needed in 
what ensues, they will not be elaborated further here. 

THEOREM 1. / / «r"ty(*) G Lp(0, « ) , 1 < p < 2, X > 0 arcd 

/(s) = e-9t£<t>{f)dt, Res> co, 
Jo 

/(*) € $x.,(«). 

Proof. If X = 0, 1 < £ < 2, the theorem follows from (2, Theorem 2), and 
if X = 0, p = 1, the result is trivial. 

If X > 0 and co' > co, then since 

frg— (co'— co) t 

is bounded for / > 0, 

<r°'%H{t) G L,(0, « ) , 

and hence by (2, Theorem 2) f{s) G §ff(<*>'). It remains to show /x2
x(/;co) is 

finite. 
If p = 1, x > co, 

|/(* + *y)| < PVV|<K0l^ 

so that 
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Hence, 
/»oo 

Mœ(/ï «) = J (* - ^ ) X _ 1 Moo(/; *)<& 

J"»oo /*co 

(*-«)x_1d« e~*V|*(0|* 
w v 0 

*X|<K0Î  (*- o>f-le-xtdx 
« / 0 «/co 

J»oo 

<r"'|*(OI<#< », 
0 

and / Ç x̂.ooCco). 
If 1 < £ < 2, X > 0, x > co, 

/(* - iy) = re
iv\ë-xtf<j>(t))dt 

is the Fourier transform of a function in Lp(0, «>), 1 < p < 2. Hence by 
(8, Theorem 74), for x > co, 

( -j /»oo ^ 1/q i -t /»co \ l/Q 

M«tf; *) = \^ J _ l/(* + *y) I* *y/ = \£ J _ l/(* - *0 Is iy) 

^-*x,t*\4>{t)\vdt) , 

so that for x > co, 

Hence, we have 

' Vdt Xoo /»oo 

( x - c o ^ i x j e-^'^I^CO 
= f V | * ( 0 r * r(x - w)*-1 e-pxtdx 

* / 0 «/co 

and / 6 £\>(?(co). 

THEOREM 2. / / / Ç €>x,P(u), 1 < £ < 2, X > 0, then there is a function <j> 
with e~w'<£(£) Ç £ff(0, 00) swc/& £to 

«/o 
J/. 
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Proof. Without loss of generality we may assume œ = 0, for otherwise we 
deal with /(w + s). We shall consider first the cases 1 < p < 2. 

By the definition of $\tP, f Ç ^ ( w ' ) for each a/ > 0, and hence, for each 
fixed x > 0, / (x + fy) € £?(— °°, °°). For x > 0 let 

ZlT J-a 

By (8, Theorem 74), as a -^ <» i?a converges in mean of order qy as a function 
of /, to a function F(t, x) G £ff(— °°, °°). Consider, however, the integral 

x f(s)esds 

taken around the rectangle with vertices at x\ ± ia and #2 ± ia where 
0 < xi < x2. 

The integral along the upper side is 

J»X2 /»X2 

/ ( * + m)e,ix+ia)dx = e4,a / ( * + w)ete<fcc. 
XI v u 

But if we let $(f) = / (a / — if), where 0 < a/ < xi, we have that <£(f) is 
an analytic function regular for 77 = im f > 0, and for 77 > 0, 

/»co /»oo 

«J - c o « / — 00 

|/(c»' + * + *Ç) I" ^ = 2x(Mp(/; «' + i,))', X 
and this is bounded for 77 > 0 since/ Ç §?(«')• Hence, by (8, Lemma, p. 125), 
$(£ + 7̂7) —> 0 as J —» — 00 uniformly for 8 < 77 < R where R > 8 > 0. 
Taking f = — a, 77 = x — a/, i? = x2 — a/, 5 = #1 — a/, we have/(#+ia)—>0 
as a —» 00 uniformly for #1 < ac < x2, and the integral along the upper side 
of the rectangle tends to zero as a —> 00. Similarly the integral along the 
lower side tends to zero as a —» <». Hence, a s a - > » , 

f V i + iy)e«n+iv)dy - f "/(*» + *y)«'(w+*,)^ - 0, 
«/ — a J—a 

that is, 

emFa(t1x1) - etX2Fa(tJx2)-*0. 

Thus the mean limit over any finite ^-interval is also zero, so that for almost 
all* 

etalF(t,xi) = etX2F(t,x2), 

and we may write 

F(t,x) = e-txF(t). 

By (8, Theorem 74) 

JCO 

\F(t)\te-tttdt<W,x)y. 
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Since for any 8 > 0 the right hand side of (2.3) is bounded, say by K($), for 
x > 8j we have 

f \F(t)\q dt < e-q8x r \F(t)\q e'QXt dt 
J—co J-co 

<K(8) e-q8x-+0 as x - ^ o o . 

Thus F(t) = 0 a.e. for t < 0, and (2.3) becomes 

(2.4) • r\F(t)\qe-qxtdt<^P(f\x)Y. 
Jo 

Multiplying (2.4) by xffX_1 and integrating, we obtain 

£$*• rr*\F(t)\*dt < rxtM(Mpif;x))'dx 
Q */o Jo 

= M"( / ;0) < - , 

so that rxF(t) e Lq(0, « ) , or F(i) = H{t), where 0 G 1,(0, » ) . Finally, 
from (8, Theorem 74), for x > 0 and almost all y, 

ay Jo Jo 

t / 0 

the interchange of the order of integrations being justified by Fubini's theorem. 
But since the functions appearing on either side of this equation are con
tinuous, the equation holds for all y and thus, if Re s > 0, 

/(*) = fV,»/x*(*)<». 
Jo 

For p = 1 we proceed as follows. By the definition of §x,i, / € §1 (<*>') for 
any co' > 0, and thus for each x > 0, f(x + iy) Ç £i(— °°, °°). For x > 0 
we let 

F(/,*) = ^ J _ œ / ( x + ^ ) ^ U 2 / ^ 
Then it follows in practically the same manner as previously that for almost 
all* 

F(t,x) = e~tx F{t). 

Hence, 

(2.5) e~tx\F{t)1< ^ f " \f(x + iy) \dy = Mi(/l *) , 
ZT J-œ 
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and since the right hand side of (2.5) is bounded as x —» °°, we must have 
F(t) = 0 for t < 0. 

Multiplying both sides of (2.5) by xx and taking suprema, we obtain 

But 

s u p * V t t | F ( / ) | <Mi( / ;0 ) . 
x>0 

X — tx \ X — X.—X 

sup x e = A e t , 
z>0 

so that 
t~*\F(t)\ <M, t > 0, 

that is F(t) = H(t) with 0 Ç Lœ(0, » ) . 
Finally from (8, Theorem 3), for x > 0 

/(* + iy) = Mm f e-iyte-xf<t>{t)dt= fVu+i î / ) t/x0(O <», 
22_>co ^ 0 * / 0 

so that for i?e 5 > 0 

Jo 

3. The case p = 2. Theorems 1 and 2 together give for p = 2 necessary 
and sufficient conditions that f(s) be represented as the Laplace transform 
of a function of the form tx(p(t) with e-u,'$(2) Ç L2(0, <*>) and X > 0. However, 
these conditions can be somewhat relaxed by using a previous result of ours. 
This is done in the following theorem. For convenience we write here X = \v. 

THEOREM 3. A necessary and sufficient condition that an analytic function 
f(s) » regular for Re s > œ be the Laplace transform of a function of the form 
/*'0(/), with e~œt<t>(t) G L2(0, » ) , o> real, v > 0, is that 

(x — ccY^dx I \f(x + iy)\2dy < oo. 

Proof. We may suppose, without loss of generality, that co = 0. In (7) we 
showed that a necessary and sufficient condition for such a representation 
is that 

<M> g, r ( > +"„ + 1 ) b . l ' < - . 
where 

«•-s(:-:)^"«)-
We shall show here that the two conditions are equivalent. 

Now, if v > 0, 

r („ + « + l ) ~ T(v) T(v)Jo U ' ' 
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and hence (3.1) becomes 

w)£'ii-''y"(t.M'''")d'<-
the interchange of integration and summation being permitted since all 
summands are positive. 

But it was pointed out in (7) that 

QnZ = 7j Zy+J , \Z\ < 1, 
n=0 U ~" Z) 

where F(z) = / ( è ( l + ^) /( l —2)). Hence, from the Parseval theorem for 
power series (3, p. 245), for 0 < r < 1 

éi l5"' ~ 2 ; J„ I (1 - reie)' (1 - rely+1 

and (3.1) becomes 

However, the transformation 

2 

dd < <*>. 

ie s - i x + iy - \ 
re = Z = —:—;- = :—: :—r 

s + § x + ^ + t 
maps the interior of the unit circle in the z-plane conformally and univalently 
onto the half-plane Re s > 0, and making this change of variable in the 
integral, (3.2) becomes 

o " - l 
- I xv~xdx I \f(x + iy)\2dy < <», 

TCT(V)UO 

that is, the condition of the theorem. 
It is worth noting the points in which the conditions are relaxed here. 

Using Theorems 1 and 2 we obtain the condition / Ç <£>x,2(co) as necessary 
and sufficient for such a representation. From the definition of §x,2(w), this 
implies/ £ §2(0/) for every a/ > co, that is, that 

/ : 
\f(x + iy)\2dy 

be bounded for x > œ', for every a/ > <o, and it is this condition that is 
dropped. It may also be noted that Theorems 1 and 3 together imply that 
the condition/ G ^ ( « O for each a/ > co, can be dropped from the definition 
of £x,2(co'). 

It is natural to ask whether the condition / £ &VW) for each œ' > œ can 
be dropped from the definition of &\,p(o>) for other values of p. For p = 1 
and p = 00 this question can be answered affirmatively. In the case p = 1, 
this follows from the fact that for x > a/ > co, 

Mi( / ; * ) < (w' - co)~X /xi( /; co), 
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and for p = oo the affirmative answer can easily be shown to follow from a 
theorem of Doetsch (1) which asserts that log/zœ(/;x) is a convex function 
of x. For the remaining values of p the answer is not yet known. 

4. Inversion for p = 2. The inversion theorem is proved below. We first 
prove a preliminary lemma. 

LEMMA. Suppose </> Ç L2(0, <»), X > 0, and 

/(s) = fV"/x<K0<ft, s> 0. 
Jo 

rAen /or 5 > 0 
•J /»oo /»ao 

Proa/. 

rèôX"(ff " 5)X-1/(<r)rf<r = ri) Jf(,T ~ 5)X_W S"**^*® * 

J»oo 

e~st4>(t) dt, 
o 

the interchange of the orders of integration being justified by Fubini's theorem. 

THEOREM 4. If <£ £ 1/2(0, oo), X > 0, and 

/(s) = e~sttx4>{t)dt, Res> 0, 
*/o 

<K0 = l.i.m.— f(s)Ex(st,a)ds, 

severe /or x > 0, 

,Mr(x+* + «,)/^ 
Proof. For X = 0 the result is given in (2, Theorem 6). We shall deduce 

the result for X > 0 from that for X = 0. For this suppose X > 0. Then by 
the lemma 

i r°° 

if 4>, and hence 

(4.1) 4>(t) = l.i.m. — ~ r f^Eoist, a) ds f ° V - s^fa) da. 

r(x) 
is the Laplace transform of <£, and hence 
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But since the theorem is true for X = 0, it follows that if g(s) is the Laplace 
transform of a function in L2(0, « ) , then for all sufficiently large a 

J»oo 

\E0(st,a)g(s)\ds < oo. 
0 

Also, as in the proof of the lemma, if 5 > 0 

PV - î l/GOIda < fV - sf-'dv PV-̂ |0(O|<ft 
«/ s * / s • / 0 

= re-
st\<t>(t)\dt=g(s), 

t / 0 

and thus since |#(0I € £2(0, <»), we have for all sufficiently large a 

fœ |Eo(^a)|£fa f°°(<r- 5)X_1 |/((r)|Ar< H ^ o t a a)2(*)|<fc < 00. 
• /O «/s «/0 

Hence by Fubini's theorem we may interchange the order of integrations in 
equation (4.1) and obtain 

(4.2) <j>(t) = l . i . m . - - — /(<x)<Z<r («• - s)x-\E„(st, a)ds. 
a-*» 7T-L W «/0 «/0 

However, 

rTx) Jo ^ " 5 ) x _ l £ o ^ a ) ^ 

Hence (4.2) becomes 

0(0 = l.i.m.— I f(s)E\(st,a)ds. 

COROLLARY. 7/ e'at<j>{t) G £2(0, » ) , X > 0, arcd 

/(*) = e~sttx<l>(t)dt, Res>a>, 
t / 0 

0(0 = e" l.i.m.— f7(*)£ \ ( (* - «)*,a)<fc. 

Proof. The result follows on applying the theorem to f(s + w), which is 
the Laplace transform of /V~w'<£(/). 
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