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Exact and Approximate Operator
Parallelism

Ali Zamani and Mohammad Sal Moslehian

Abstract. Extending the notion of parallelism we introduce the concept of approximate parallelism
in normed spaces and then substantially restrict ourselves to the setting of Hilbert space operators
endowed with the operator norm. We present several characterizations of the exact and approximate
operator parallelism in the algebra B(H ) of bounded linear operators acting on a Hilbert space H .
Among other things, we investigate the relationship between the approximate parallelism and norm of
inner derivations on B(H ). We also characterize the parallel elements of a C∗-algebra by using states.
Finally we utilize the linking algebra to give some equivalent assertions regarding parallel elements in
a Hilbert C∗-module.

1 Introduction and Preliminaries

Let A be a C∗-algebra. An element a ∈ A is called positive (we write a ≥ 0) if
a = b∗b for some b ∈ A . If a ∈ A is positive, then exists a unique positive element
b ∈ A such that a = b2. Such an element b is called the positive square root of a. A
linear functional ϕ over A of norm one is called state if ϕ(a) ≥ 0 for any positive
element a ∈ A . By S(A ) we denote the set of all states of A .

Throughout the paper, K(H ) and B(H ) denote the C∗-algebra of all compact
operators and the C∗-algebra of all bounded linear operators on a complex Hilbert
space H endowed with an inner product ( · | · ), respectively. We let I stand for the
identity operator on H . Furthermore, for ξ, η ∈ H , the rank one operator ξ ⊗ η
on H is defined by (ξ ⊗ η)(ζ) = (ζ | η)ξ. Note that by the Gelfand–Naimark theo-
rem we can regard A as a C∗-subalgebra of B(H ) for a complex Hilbert space H .
More details can be found, e.g., in [5, 15].

The notion of Hilbert C∗-module is a natural generalization of that of Hilbert
space arising under replacement of the field of scalars C by a C∗-algebra. This concept
plays a significant role in the theory of operator algebras and K-theory; see [12].
Let A be a C∗-algebra. An inner product A -module is a complex linear space X
which is a right A -module with a compatible scalar multiplication (i.e., µ(xa) =
(µx)a = x(µa) for all x ∈X , a ∈ A , µ ∈ C) and equipped with an A -valued inner
product 〈 · , · 〉 : X ×X −→ A satisfying

(i) 〈x, αy + βz〉 = α〈x, y〉 + β〈x, z〉,
(ii) 〈x, ya〉 = 〈x, y〉a,
(iii) 〈x, y〉∗ = 〈y, x〉,
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(iv) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0,

for all x, y, z ∈ X , a ∈ A , α, β ∈ C. For an inner product A -module X the
following Cauchy–Schwarz inequality holds (see [7] and references therein):

‖〈x, y〉‖2 ≤ ‖〈x, x〉‖ ‖〈y, y〉‖ (x, y ∈X ).

Consequently, ‖x‖ = ‖〈x, x〉‖ 1
2 defines a norm on X . If X with respect to this norm

is complete, then it is called a Hilbert A -module, or a Hilbert C∗-module over A .
Complex Hilbert spaces are Hilbert C-modules. Any C∗-algebra A can be regarded
as a Hilbert C∗-module over itself via 〈a, b〉 := a∗b. For every x ∈ X the positive
square root of 〈x, x〉 is denoted by |x|. If ϕ is a state over A , we have the following
useful version of the Cauchy–Schwarz inequality:

ϕ(〈y, x〉)ϕ(〈x, y〉) = |ϕ(〈x, y〉)|2 ≤ ϕ(〈x, x〉)ϕ(〈y, y〉)

for all x, y ∈X .
Let X and Y be two Hilbert A -modules. A mapping T : X → Y is called

adjointable if there exists a mapping S : Y → X such that 〈Tx, y〉 = 〈x, Sy〉 for
all x ∈ X , y ∈ Y . The unique mapping S is denoted by T∗ and is called the
adjoint of T. It is easy to see that T must be a bounded linear A -module mapping.
The space B(X ,Y ) of all adjointable maps between Hilbert A -modules X and Y
is a Banach space, while B(X ) := B(X ,X ) is a C∗-algebra. By K(X ,Y ) we
denote the closed linear subspace of B(X ,Y ) spanned by {θy,x : x ∈ X , y ∈ Y },
where θy,x is defined by θy,x(z) = y〈x, z〉. Elements of K(X ,Y ) are often referred to
as “compact” operators. We write K(X ) for K(X ,X ).

Any Hilbert A -module can be embedded into a certain C∗-algebra. To see this,
let X ⊕A be the direct sum of the Hilbert A -modules X and A equipped with the
A -inner product 〈(x, a), (y, b)〉 = 〈x, y〉 + a∗b, for every x, y ∈ X , a, b ∈ A . Each
x ∈ X induces the maps rx ∈ B(A ,X ) and lx ∈ B(X ,A ) given by rx(a) = xa
and lx(y) = 〈x, y〉, respectively, such that r∗x = lx. The map x 7→ rx is an isometric
linear isomorphism of X to K(A ,X ) and x 7→ lx is an isometric conjugate linear
isomorphism of X to K(X ,A ). Further, every a ∈ A induces the map Ta ∈ K(A )
given by Ta(b) = ab. The map a 7→ Ta defines an isomorphism of C∗-algebras A
and K(A ). Set

L(X ) =

[
K(A ) K(X ,A )

K(A ,X ) K(X )

]
=

{[
Ta ly

rx T

]
: a ∈ A , x, y ∈X , T ∈ K(X )

}
Then L(X ) is a C∗-subalgebra of K(X ⊕ A ), called the linking algebra of X .

Clearly

X '
[

0 0
X 0

]
, A '

[
A 0
0 0

]
, K(X ) '

[
0 0
0 K(X )

]
.

Furthermore, 〈x, y〉 in X becomes the product lxry in L(X ) and the module multi-
plication of X becomes a part of the internal multiplication of L(X ). We refer the
reader to [11,16] for more information on Hilbert C∗-modules and linking algebras.

Following Seddik [19] we introduce a notion of parallelism in normed spaces
in Section 2. Inspired by the approximate Birkhoff–James orthogonality, called
ε-orthogonality, introduced by Dragomir [6] and a variant of ε-orthogonality given

https://doi.org/10.4153/CMB-2014-029-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-029-4


Exact and Approximate Operator Parallelism 209

by Chmieliński [4] which has been investigated by Ilišević and Turnšek [10] in the
setting of Hilbert C∗-modules, we introduce a notion of approximate parallelism (ε-
parallelism).

In the following sections, we substantially restrict ourselves to the setting of
Hilbert space operators equipped with the operator norm. In Section 3, we present
several characterizations of the exact and approximate operator parallelism in the al-
gebra B(H ) of bounded linear operators acting on a Hilbert space H . Among other
things, we investigate the relationship between approximate parallelism and norm of
inner derivations on B(H ). In Section 4, we characterize the parallel elements of
a C∗-algebra by using states and utilize the linking algebra to give some equivalent
assertions regarding parallel elements in a Hilbert C∗-module.

2 Parallelism in Normed Spaces

We start our work with the following definition of parallelism in normed spaces.

Definition 2.1 Let V be a normed space. The vector x ∈ V is exact parallel or
simply parallel to y ∈ V , denoted by x ‖ y (see [19]), if

(2.1) ‖x + λy‖ = ‖x‖ + ‖y‖, for some λ ∈ T = {α ∈ C : |α| = 1}.

Notice that the parallelism is a symmetric relation. It is easy to see that if x, y are
linearly dependent, then x ‖ y. The converse is however not true, in general.

Example 2.2 Let us consider the space (R2,9 ·9), where

9(x1, x2)9 = max{|x1|, |x2|}

for all (x1, x2) ∈ R2. Let x = (1, 0), y = (1, 1) and λ = 1. Then x, y are linearly
independent and 9x + λy9 = 9(2, 1)9 = 2 = 9x 9 + 9 y9, i.e., x ‖ y.

An operator T on a separable complex Hilbert space is said to be in the Schatten
p-class Cp (1 ≤ p < ∞), if tr(|T|p) < ∞, where tr denotes the usual trace. The

Schatten p-norm of T is defined by ‖T‖p =
(

tr(|T|p)
) 1

p . For 1 < p ≤ 2 and
1
p + 1

q = 1, the Clarkson inequality for T, S ∈ Cp asserts that

‖T + S‖q
p + ‖T − S‖q

p ≤ 2(‖T‖p
p + ‖S‖p

p)
q
p ,

which can be found in [13].

Theorem 2.3 Let T, S ∈ Cp with 1 < p ≤ 2 and 1
p + 1

q = 1. The following statements
are equivalent:

(i) T, S are linearly dependent;
(ii) T ‖ S.

Proof Obviously, (i)⇒ (ii).
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Suppose (ii) holds. Therefore ‖T +λS‖p = ‖T‖p +‖S‖p for some λ ∈ T. Without
loss of generality we may assume that ‖T‖p ≤ ‖S‖p. We have

2‖T‖p = ‖T‖p +
∥∥∥ λ‖T‖p

‖S‖p
S
∥∥∥

p
≥
∥∥∥T +

λ‖T‖p

‖S‖p
S
∥∥∥

p

=
∥∥∥T + λS− λ

(
1−
‖T‖p

‖S‖p

)
S
∥∥∥

p
≥ ‖T + λS‖p −

(
1−
‖T‖p

‖S‖p

)
‖S‖p

= ‖T‖p + ‖S‖p −
(

1−
‖T‖p

‖S‖p

)
‖S‖p = 2‖T‖p,

so ‖T + λ‖T‖p

‖S‖p
S‖p = 2‖T‖p. Hence by the Clarkson inequality we get

2q‖T‖q
p +
∥∥∥T −

λ‖T‖p

‖S‖p
B
∥∥∥ q

p
=
∥∥∥T +

λ‖T‖p

‖S‖p
S
∥∥∥ q

p
+
∥∥∥T −

λ‖T‖p

‖S‖p
S
∥∥∥ q

p

≤ 2
(
‖T‖p

p +
∥∥∥ λ‖T‖p

‖S‖p
S
∥∥∥ p

p

) q
p

= 21+ q
p ‖T‖q

p = 2q‖T‖q
p,

wherefrom we get ‖T − λ‖T‖p

‖S‖p
S‖q

p = 0. Hence T =
λ‖T‖p

‖S‖p
S, which gives (i).

The following important example is the motivation for further discussion.

Example 2.4 If τ1, τ2 are positive linear functionals on a C∗-algebra A . Then for
λ = 1 ∈ T, by [15, Corollary 3.3.5] we have ‖τ1 + λτ2‖ = ‖τ1‖ + ‖τ2‖. So τ1 ‖ τ2.

Example 2.5 Suppose that τ is a self-adjoint bounded linear functional on a
C∗-algebra. By the Jordan Decomposition Theorem [15, Theorem 3.3.10], there exist
positive linear functionals τ+, τ− such that τ = τ+ − τ− and ‖τ‖ = ‖τ+‖ + ‖τ−‖.
Thus for λ = −1 ∈ T we have ‖τ+ + λτ−‖ = ‖τ+‖ + ‖τ−‖. Hence τ+ ‖ τ−.

For every ε ∈ [0, 1), the following notion of approximate Birkhoff–James orthog-
onality (ε-orthogonality) was introduced by Dragomir [6] as

x ⊥ε y ⇐⇒ ‖x + λy‖ ≥ (1− ε)‖x‖ (λ ∈ C).

In addition, an alternative definition of ε-orthogonality was given by Chmieliński [4].
These facts motivate us to give the following definition of approximate parallelism
(ε-parallelism) in the setting of normed spaces.

Definition 2.6 Two elements x and y in a normed space are approximate parallel
(ε-parallel), denoted by x ‖ε y, if

(2.2) inf{‖x + µy‖ : µ ∈ C} ≤ ε‖x‖.

It is remarkable that the relation ε-parallelism for ε = 0 is the same as the exact
parallelism.

Proposition 2.7 In a normed space, 0-parallelism is the same as exact parallelism.
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Proof Let us assume that x 6= 0 and choose a sequence {µn} of vectors in C such
that limn→∞ ‖x + µn y‖ = 0. It follows from |µn| ‖y‖ ≤ ‖x + µn y‖ + ‖x‖ that
the sequence {µn} is bounded. Therefore there exists a subsequence {µkn} which is
convergent to a number µ0. Since x 6= 0 and limn→∞ ‖x + µn y‖ = 0, we conclude

that µ0 6= 0 as well as ‖x +µ0 y‖ = 0, or equivalently, x = −µ0 y. Put λ = − |µ0|
µ0
∈ T.

Then

‖x + λy‖ =
∥∥∥−µ0 y − |µ0|

µ0
y
∥∥∥ = (|µ0| + 1)‖y‖ = ‖ − µ0 y‖ + ‖y‖ = ‖x‖ + ‖y‖,

whence ‖x + λy‖ = ‖x‖ + ‖y‖ for some λ ∈ T, i.e., x ‖ y.

From now on we deal merely with the space B(H ) endowed with the operator
norm.

3 Operator Parallelism

In the present section, we discuss exact and approximate operator parallelism. These
notions can be defined by the same formulas as (2.1) and (2.2) in normed spaces.
Thus

T1 ‖ T2 ⇔ ‖T1 + λT2‖ = ‖T1‖ + ‖T2‖

for some λ ∈ T. The following example shows that the concept of operator paral-
lelism is important.

Example 3.1 Suppose that T is a compact self-adjoint operator on a Hilbert space
H . Then either ‖T‖ or−‖T‖ is an eigenvalue of T. We may assume that ‖T‖ = 1 is
an eigenvalue of T. Therefore there exists a nonzero vector x ∈H such that Tx = x.
Hence 2‖x‖ = ‖(T +I)x‖ ≤ ‖T +I‖ ‖x‖ ≤ 2‖x‖. So we get ‖T +I‖ = 2 = ‖T‖+‖I‖.
Thus T ‖ I and T fulfils the Daugavet equation ‖T + I‖ = ‖T‖ + 1; see [20]. This
shows that the Daugavet equation is closely related to the notion of parallelism.

In the following proposition we state some basic properties of operator paral-
lelism.

Proposition 3.2 Let T1,T2 ∈ B(H ). The following statements are equivalent:

(i) T1 ‖ T2;
(ii) T∗1 ‖ T∗2 ;
(iii) αT1 ‖ βT2 (α, β ∈ R r {0});
(iv) γT1 ‖ γT2 (γ ∈ C r {0}).

Proof The equivalences (i)⇔ (ii)⇔ (iv) immediately follow from the definition of
operator parallelism.
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(i) ⇒ (iii): Suppose that α, β ∈ R r {0} and T1 ‖ T2. Hence ‖T1 + λT2‖ =
‖T1‖ + ‖T2‖ for some λ ∈ T. We can assume that α ≥ β > 0. We therefore have

‖αT1‖ + ‖βT2‖ ≥ ‖αT1 + λ(βT2)‖ = ‖α(T1 + λT2)− (α− β)(λT2)‖
≥ ‖α(T1 + λT2)‖ − ‖(α− β)λT2‖
= α‖T1 + λT2‖ − (α− β)‖T2‖
= α(‖T1‖ + ‖T2‖)− (α− β)‖T2‖
= ‖αT1‖ + ‖βT2‖,

whence ‖αT1 + λ(βT2)‖ = ‖αT1‖ + ‖βT2‖ for some λ ∈ T. So αT1 ‖ βT2.
(iii)⇒ (i) is obvious.

In what follows, σ(T) and r(T) stand for the spectrum and spectral radius, re-
spectively, of an arbitrary element T ∈ B(H ). In the following theorem we shall
characterize operator parallelism.

Theorem 3.3 Let T1,T2 ∈ B(H ). Then the following statements are equivalent:

(i) T1 ‖ T2.
(ii) There exist a sequence of unit vectors {ξn} in H and λ ∈ T such that

lim
n→∞

(T1ξn | T2ξn) = λ‖T1‖ ‖T2‖.

(iii) r(T∗2 T1) = ‖T∗2 T1‖ = ‖T1‖ ‖T2‖.
(iv) T∗1 T1 ‖ T∗1 T2 and ‖T∗1 T2‖ = ‖T1‖ ‖T2‖.
(v) ‖T∗1 (T1 + λT2)‖ = ‖T1‖(‖T1‖ + ‖T2‖) for some λ ∈ T.

Proof (i)⇔ (ii): Let T1 ‖ T2. Then ‖T1 + λT2‖ = ‖T1‖ + ‖T2‖ for some λ ∈ T.
Since

sup{‖T1ξ + λT2ξ‖ : ξ ∈H , ‖ξ‖ = 1} = ‖T1 + λT2‖ = ‖T1‖ + ‖T2‖,

there exists a sequence of unit vectors {ξn} in H such that limn→∞ ‖T1ξn+λT2ξn‖ =
‖T1‖ + ‖T2‖. We have

‖T1‖2 + 2‖T1‖ ‖T2‖ + ‖T2‖2

= lim
n→∞

‖T1ξn + λT2ξn‖2

= lim
n→∞

[‖T1ξn‖2 + (T1ξn | λT2ξn) + (λT2ξn | T1ξn) + ‖T2ξn‖2]

≤ ‖T1‖2 + 2 lim
n→∞

|(T1ξn | λT2ξn)| + ‖T2‖2

≤ ‖T1‖2 + 2‖T1‖ ‖T2‖ + ‖T2‖2.

Therefore limn→∞(T1ξn | λT2ξn)| = ‖T1‖ ‖T2‖, or equivalently,

lim
n→∞

(T1ξn | T2ξn) = λ‖T1‖ ‖T2‖.

To prove the converse, suppose that there exist a sequence of unit vectors {ξn} in H
and λ ∈ T such that limn→∞(T1ξn | T2ξn) = λ‖T1‖ ‖T2‖. It follows from

‖T1‖ ‖T2‖ = lim
n→∞

|(T1ξn | T2ξn)| ≤ lim
n→∞

‖T1ξn‖ ‖T2‖ ≤ ‖T1‖ ‖T2‖
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that limn→∞ ‖T1ξn‖ = ‖T1‖, and by using a similar argument, limn→∞ ‖T2ξn‖ =
‖T2‖. So that

lim
n→∞

<(T1ξn | λT2ξn) = lim
n→∞

(T1ξn | λT2ξn) = ‖T1‖ ‖T2‖,

whence we reach

‖T1‖ + ‖T2‖ ≥ ‖T1 + λT2‖ ≥ ( lim
n→∞

‖T1ξn + λT2ξn‖2)
1
2

=
(

lim
n→∞

[‖T1ξn‖2 + 2<(T1ξn | λT2ξn) + ‖T2ξ‖2]
) 1

2

= (‖T1‖2 + 2‖T1‖ ‖T2‖ + ‖T2‖2)
1
2 = ‖T1‖ + ‖T2‖.

Thus ‖T1 + λT2‖ = ‖T1‖ + ‖T2‖, so T1 ‖ T2.
(ii)⇔ (iii): Let {ξn} be a sequence of unit vectors in H satisfying limn→∞(T1ξn |

T2ξn) = λ‖T1‖ ‖T2‖, for some λ ∈ T. By the equivalence (i)⇔ (ii) we have T1 ‖ T2.
Hence

(‖T1‖ + ‖T2‖)2 = ‖T1 + λT2‖2 = ‖(T1 + λT2)∗(T1 + λT2)‖
= ‖T∗1 T1 + λT∗1 T2 + λT∗2 T1 + T∗2 T2‖
≤ ‖T∗1 T1‖ + ‖λT∗1 T2‖ + ‖λT∗2 T1‖ + ‖T∗2 T2‖
= ‖T1‖2 + 2‖T1‖ ‖T2‖ + ‖T2‖2

= (‖T1‖ + ‖T2‖)2,

so ‖T∗1 T2‖ = ‖T1‖ ‖T2‖. Since

‖T1‖ ‖T2‖ = lim
n→∞

|(T1ξn | T2ξn)| = lim
n→∞

|(T∗2 T1ξn | ξn)|

≤ lim
n→∞

‖T∗2 T1ξn‖ ≤ ‖T∗2 ‖ ‖T1‖ = ‖T1‖ ‖T2‖,

we have limn→∞ ‖T∗2 T1ξn‖ = ‖T1‖ ‖T2‖. Next observe that∥∥ (T∗2 T1 − λ‖T1‖ ‖T2‖I)ξn

∥∥ 2
= ‖T∗2 T1ξn‖2 − λ‖T1‖ ‖T2‖(T1ξn | T2ξn)

− λ‖T1‖ ‖T2‖(T2ξn | T1ξn) + ‖T1‖2 ‖T2‖2.

Therefore limn→∞
∥∥ (T∗2 T1 − λ‖T1‖ ‖T2‖I)ξn

∥∥ = 0. Thus r(T∗2 T1) = ‖T1‖ ‖T2‖ =
‖T∗2 T1‖.

The proof of the converse follows from the spectral inclusion theorem [9, Theo-
rem 1.2-1] that σ(T∗2 T1) ⊆ {(T∗2 T1ξ | ξ) : ξ ∈H , ‖ξ‖ = 1}, where the bar denotes
closure.

(ii)⇒ (iv): Let {ξn} be a sequence of unit vectors in H which satisfies

lim
n→∞

(T1ξn | T2ξn) = λ‖T1‖ ‖T2‖,

for some λ ∈ T. As in the proofs of the implications (ii)⇒ (i) and (ii)⇒ (iii), we get
‖T1 + λT2‖ = ‖T1‖ + ‖T2‖ and ‖T∗1 T2‖ = ‖T1‖ ‖T2‖. By [15, Theorem 3.3.6] there
is a state ϕ over B(H ) such that

ϕ
(

(T1 + λT2)∗(T1 + λT2)
)

= ‖(T1 + λT2)∗(T1 + λT2)‖
= ‖T1 + λT2‖2 = (‖T1‖ + ‖T2‖)2.
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Thus

(‖T1‖ + ‖T2‖)2 = ϕ(T∗1 T1 + λT∗1 T2 + λT∗2 T1 + T∗2 T2)

= ϕ(T∗1 T1) + ϕ(λT∗1 T2 + λT∗2 T1) + ϕ(T∗2 T2)

≤ ‖T∗1 T1‖ + ‖λT∗1 T2 + λT∗2 T1‖ + ‖T∗2 T2‖
= ‖T∗1 T1‖ + ‖T∗1 T2‖ + ‖T∗2 T1‖ + ‖T∗2 T2‖
≤ ‖T1‖2 + 2‖T1‖ ‖T2‖ + ‖T2‖2

= (‖T1‖ + ‖T2‖)2.

Therefore ϕ(T∗1 T1) = ‖T∗1 T1‖ and ϕ(λT∗1 T2) = ‖T∗1 T2‖. Hence

‖T∗1 T1‖ + ‖T∗1 T2‖ = ϕ(T∗1 T1 + λT∗1 T2) ≤ ‖T∗1 T1 + λT∗1 T2‖ ≤ ‖T∗1 T1‖ + ‖T∗1 T2‖.

Therefore, ‖T∗1 T1+λT∗1 T2‖ = ‖T∗1 T1‖+‖T∗1 T2‖ for some λ ∈ T. Thus T∗1 T1 ‖ T∗1 T2.
(iv)⇒ (v): This implication is trivial.
(v)⇒ (i): Let ‖T∗1 (T1 + λT2)‖ = ‖T1‖(‖T1‖ + ‖T2‖) for some λ ∈ T. Then we

have

‖T1‖(‖T1‖ + ‖T2‖) ≥ ‖T∗1 ‖ ‖T1 + λT2‖ ≥ ‖T∗1 (T1 + λT2)‖ = ‖T1‖(‖T1‖ + ‖T2‖).

Thus ‖T1 + λT2‖ = ‖T1‖ + ‖T2‖, or equivalently, T1 ‖ T2.

As an immediate consequence of Theorem 3.3, we get a characterization of oper-
ator parallelism.

Corollary 3.4 Let T1,T2 ∈ B(H ). Then the following statements are equivalent:

(i) T1 ‖ T2.
(ii) Ti

∗Ti ‖ T j
∗Ti and ‖T j

∗Ti‖ = ‖T j‖ ‖Ti‖ (1 ≤ i 6= j ≤ 2).
(iii) TiTi

∗ ‖ TiT j
∗ and ‖TiT j

∗‖ = ‖Ti‖ ‖T j‖ (1 ≤ i 6= j ≤ 2).

Corollary 3.5 Let T1,T2 ∈ B(H ). Then the following statements are equivalent:

(i) T1 ‖ T2.
(ii) r(T∗2 T1) = ‖T∗2 T1‖ = ‖T1‖ ‖T2‖.
(iii) r(T1T∗2 ) = ‖T1T∗2 ‖ = ‖T1‖ ‖T2‖.

We need the next lemma for studying approximate parallelism.

Lemma 3.6 ([1, Proposition 2.1]) Let T1,T2 ∈ B(H ). Then

inf{‖T1 + µT2‖2 : µ ∈ C} = sup{MT1,T2 (ξ) : ξ ∈ C, ‖ξ‖ = 1},

where

MT1,T2 (ξ) =

{
‖T1ξ‖2 − |(T1ξ|T2ξ)|2

‖T2ξ‖2 if T2ξ 6= 0,

‖T1ξ‖2 if T2ξ = 0.

In the following proposition we present a characterization of operator ε-paral-
lelism, ‖ε. Recall that for T1,T2 ∈ B(H ) and ε ∈ [0, 1), we have T1 ‖ε T2 if
inf{‖T1 + µT2‖ : µ ∈ C} ≤ ε‖T1‖.
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Theorem 3.7 Let T1,T2 ∈ B(H ) and ε ∈ [0, 1). Then the following statements are
equivalent:

(i) T1 ‖ε T2.
(ii) T∗1 ‖ε T∗2 .
(iii) αT1 ‖ε βT2, (α, β ∈ C r {0}).
(iv) sup{|(T1ξ | η)| : ‖ξ‖ = ‖η‖ = 1, (T2ξ | η) = 0} ≤ ε‖T1‖.
Moreover, each of the above conditions implies

(v) |(T1ξ | T2ξ)|2 ≥ ‖T1ξ‖2 ‖T2ξ‖2 − ε2‖T1‖2 ‖T2‖2, (ξ ∈H , ‖ξ‖ = 1).

Proof (i)⇔ (ii) is obvious.
(i)⇔ (iii): Let T1 ‖ε T2 and α, β ∈ C r {0}. Then

inf{‖αT1 + µ(βT2)‖ : µ ∈ C} = |α| inf
{∥∥∥T1 +

µβ

α
T2

∥∥∥ : µ ∈ C
}

≤ |α| inf{‖T1 + νT2‖ : ν ∈ C}
≤ |α|ε‖T1‖ = ε‖αT1‖.

Therefore, αT1 ‖ε βT2. The converse is obvious.
(i)⇔ (iv): Bhatia and Šemrl [3, Remark 3.1] proved that

inf{‖T1 + µT2‖ : µ ∈ C} = sup{|(T1ξ | η)| : ‖ξ‖ = ‖η‖ = 1, (T2ξ | η) = 0}.

Thus the required equivalence follows from the above equality.
Now suppose that T1 ‖ε T2. Hence inf{‖T1 + µT2‖ : µ ∈ C} ≤ ε‖T1‖. For any

ξ ∈H with ‖ξ‖ = 1, by Lemma 3.6, we therefore get

‖T1ξ‖2 ‖T2ξ‖2 − |(T1ξ | T2ξ)|2 ≤ ‖T2ξ‖2 inf{‖T1 + µT2‖2 : µ ∈ C}
≤ ‖T2ξ‖2ε2‖T1‖2 ≤ ε2‖T1‖2 ‖T2‖2 ‖ξ‖2

= ε2‖T1‖2 ‖T2‖2.

In the following result we establish some equivalent statements to the approximate
parallelism for elements of a Hilbert space. We use some techniques of [14, Corollary
2.7] to prove this corollary.

Corollary 3.8 Let ξ, η ∈ H . Then for any ε ∈ [0, 1) the following statements are
equivalent:

(i) ξ ‖ε η.
(ii) sup{|(ξ | ζ)| : ζ ∈H , ‖ζ‖ = 1, (η | ζ) = 0} ≤ ε‖ξ‖.
(iii) |(ξ | η)| ≥

√
1− ε2‖ξ‖ ‖η‖.

(iv)
∥∥∥‖η‖2ξ − (ξ | η)η

∥∥∥ ≤ ε‖ξ‖ ‖η‖2.

Proof Let ψ be a unit vector of H and set T1 = ξ⊗ψ and T2 = η⊗ψ as rank one
operators. A straightforward computation shows that ξ ‖ε η if and only if T1 ‖ε T2.
It follows from the elementary properties of rank one operators and Lemma 3.6 that

MT1,T2 (ξ) =

{
|(ξ | ψ)|2(‖ξ‖2 − |(ξ|η)|2

‖η‖2 ) if (ξ | ψ)η 6= 0,

|(ξ | ψ)|2 ‖ξ‖2 if (ξ | ψ)η = 0.
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Thus we reach

ξ ‖ε η ⇔ T1 ‖ε T2

⇔ sup{MT1,T2 (ξ) : ξ ∈ C, ‖ξ‖ = 1} ≤ ε2‖T1‖2

⇔ ‖ξ‖2 ‖η‖2 − |(ξ | η)|2 ≤ ε2‖ξ‖2 ‖η‖2

⇔ |(ξ | η)| ≥
√

1− ε2‖ξ‖ ‖η‖

⇔
∥∥‖η‖2ξ − (ξ | η)η

∥∥ ≤ ε‖ξ‖ ‖η‖2.

Further, by the equivalence (i)⇔ (iv) of Theorem 3.7 yields

ξ ‖ε η ⇔ T1 ‖ε T2

⇔ sup{|(T1ω | ζ)| : ‖ω‖ = ‖ζ‖ = 1, (T2ω | ζ) = 0} ≤ ε‖T1‖
⇔ sup{|(ω | ψ)| |(ξ | ζ)| : ‖ω‖ = ‖ζ‖ = 1, (ω | ψ)(η | ζ) = 0} ≤ ε‖ξ‖
⇔ sup{|(ξ | ζ)| : ζ ∈H , ‖ζ‖ = 1, (η | ζ) = 0} ≤ ε‖ξ‖.

Remark 3.9 If we choose ε = 0 in Corollary 3.8, we reach the fact that two vectors
in a Hilbert space are parallel if and only if they are proportional.

Next, we investigate the case when an operator is parallel to the identity operator.

Theorem 3.10 Let T ∈ B(H ). Then the following statements are equivalent:

(i) T ‖ I.
(ii) T ‖ T∗.
(iii) There exists a sequence of unit vectors {ξn} in H and λ ∈ T such that

lim
n→∞

∥∥Tξn − λ‖T‖ξn

∥∥ = 0.

(iv) Tm ‖ I (m ∈ N).
(v) Tm ‖ T∗m (m ∈ N).

Proof (i) ⇔ (ii): Let T ‖ I. Then ‖T + λI‖ = ‖T‖ + 1 for some λ ∈ T. By
[15, Theorem 3.3.6] there is a state ϕ over B(H ) such that

ϕ
(

(T + λI)(T + λI)∗
)

= ‖(T + λI)(T + λI)∗‖ = ‖T + λI‖2 = (‖T‖ + 1)2.

Thus

(‖T‖ + 1)2 = ϕ
(

(T + λI)(T + λI)∗
)

= ϕ(TT∗) + ϕ(λT) + ϕ(λT∗) + 1

≤ ‖TT∗‖ + ‖λT‖ + ‖λT∗‖ + 1 = ‖T‖2 + 2‖T‖ + 1 = (‖T‖ + 1)2.

Therefore ϕ(λT) = ϕ(λT∗) = ‖T‖. This implies that

‖T‖ + ‖T∗‖ = ϕ(λT + λT∗) ≤ ‖λT + λT∗‖ = ‖T + λ2T∗‖ ≤ ‖T‖ + ‖T∗‖.
Therefore ‖T + λ2T∗‖ = ‖T‖ + ‖T∗‖, in which λ2 ∈ T. Thus T ‖ T∗.

To prove the converse, suppose that T ‖ T∗, or equivalently, ‖T + λT∗‖ = 2‖T‖
for some λ ∈ T. By [15, Theorem 3.3.6] there is a state ϕ over B(H ) such that
|ϕ(T + λT∗)| = ‖T + λT∗‖ = 2‖T‖. Thus we get

2‖T‖ = |ϕ(T + λT∗)| ≤ 2|ϕ(T)| ≤ 2‖T‖,
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from which it follows that |ϕ(T)| = ‖T‖. Hence there exists a number µ ∈ T such
that ϕ(T) = µ‖T‖. Therefore

‖T‖ + 1 = ϕ(µT + I) ≤ ‖µT + I‖ = ‖T + µI‖ ≤ ‖T‖ + 1,

whence ‖T + µI‖ = ‖T‖ + 1 for µ ∈ T. Thus T ‖ I.
(i)⇔ (iii): Let T ‖ I. By Theorem 3.3, there exist a sequence of unit vectors {ξn}

in H and λ ∈ T such that limn→∞(Tξn | ξn) = λ‖T‖. Since ‖T‖ = limn→∞ |(Tξn |
ξn)| ≤ limn→∞ ‖Tξn‖ ≤ ‖T‖, hence limn→∞ ‖Tξn‖ = ‖T‖. Thus

lim
n→∞

∥∥Tξn − λ‖T‖ξn

∥∥ 2

= lim
n→∞

[‖Tξn‖2 − λ‖T‖(Tξn | ξn)− λ‖T‖(ξn | Tξn) + ‖T‖2]

= ‖T‖2 − |λ|2 ‖T‖2 − |λ|2 ‖T‖2 + ‖T‖2 = 0.

So that limn→∞
∥∥Tξn − λ‖T‖ξn

∥∥ = 0.
Conversely, suppose that (iii) holds. Then

1 + ‖T‖ ≥ ‖T + λI‖ ≥ ‖Tξn + λξn‖ =
∥∥λξn + λ‖T‖ξn − (−Tξn + λ‖T‖ξn)

∥∥
≥
∥∥λξn + λ‖T‖ξn

∥∥ − ∥∥−Tξn + λ‖T‖ξn

∥∥
= 1 + ‖T‖ −

∥∥Tξn − λ‖T‖ξn

∥∥ .
Taking limits, we get

1 + ‖T‖ ≥ ‖T + λI‖ ≥ 1 + ‖T‖,
so ‖T + λI‖ = 1 + ‖T‖, i.e., T ‖ I.

(iii)⇒ (iv): Let there exist a sequence of unit vectors {ξn} in H and λ ∈ T such
that limn→∞

∥∥Tξn − λ‖T‖ξn

∥∥ = 0. For any k ∈ N we have∥∥ (Tk+1 − λk+1‖T‖k+1I)ξn

∥∥ =
∥∥T(Tk − λk‖T‖kI)ξn + λk‖T‖k(T − λ‖T‖I)ξn

∥∥
≤ ‖T‖

∥∥ (Tk − λk‖T‖kI)ξn

∥∥ + ‖T‖k
∥∥ (T − λ‖T‖I)ξn

∥∥ .
Hence, by induction, we have

lim
n→∞

∥∥ (Tm − λm‖T‖mI)ξn

∥∥ = 0

for all m ∈ N. We get ‖T‖m ≤ r(Tm) ≤ ‖Tm‖ ≤ ‖T‖m. Hence ‖T‖m = ‖Tm‖. Now
for µ = λm ∈ T we have

lim
n→∞

∥∥Tmξn − µ‖Tm‖ξn

∥∥ = lim
n→∞

∥∥ (Tm − λm‖T‖mI)ξn

∥∥ = 0.

So by the equivalence (i)⇔ (iii), we get Tm ‖ I.
The implications (iv)⇒ (v) and (v)⇒ (i), follow from the equivalence (i)⇔ (ii).

For T ∈ B(H ) the operator δT(S) = TS − ST over B(H ) is called an inner
derivation. Clearly 2‖T‖ is a upper bound for ‖δT‖. In the next result, we get a
characterization of operator ε-parallelism.

Corollary 3.11 Let T ∈ B(H ) and ε ∈ [0, 1). The following statements are equiv-
alent:

(i) T ‖ε I.
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(ii) sup{‖Tξ − (Tξ | ξ)ξ‖ : ‖ξ‖ = 1} ≤ ε‖T‖.
(iii) sup{‖Tξ‖2 − |(Tξ | ξ)|2 : ‖ξ‖ = 1} ≤ ε2‖T‖2.
(iv) ‖δT‖ ≤ 2ε‖T‖.

Proof Fujii and Nakamoto [8] proved that(
sup{‖Tξ‖2 − |(Tξ | ξ)|2 : ‖ξ‖ = 1}

) 1
2 = inf{‖T + µI‖ : µ ∈ C}

= sup{‖Tξ − (Tξ | ξ)ξ‖ : ‖ξ‖ = 1}.

Thus the implications (i)⇒ (ii) and (ii)⇒ (iii) follow immediately from the above
identities.

On the other hand by [3, Remark 3.2] we have

sup{‖TS− ST‖ : ‖S‖ = 1} = 2 inf{‖T + µI‖ : µ ∈ C}.

Therefore we get T ‖ε I if and only if ‖δT‖ = sup{‖TS − ST‖ : ‖S‖ = 1} ≤
2ε‖T‖.

Two operators T1,T2 ∈ B(H ) are unitarily equivalent if there exists a unitary
operator S such that S∗T1S = T2. Clearly ‖T1‖ = ‖T2‖.

Proposition 3.12 Let T1,T2 ∈ B(H ) be unitarily equivalent and ε ∈ [0, 1). Then

(i) T1 ‖ I ⇔ T2 ‖ I.
(ii) T1 ‖ε I ⇔ T2 ‖ε I.

Proof (i): Since T1,T2 ∈ B(H ) are unitarily equivalent, there exists a unitary
operator S such that S∗T1S = T2. Then

T1 ‖ I ⇔ ‖T1 + λI‖ = ‖T1‖ + ‖I‖ for some λ ∈ T

⇔ ‖S∗(T1 + λI)S‖ = ‖S∗T1S‖ + ‖S∗IS‖ for some λ ∈ T

⇔ ‖T2 + λI‖ = ‖T2‖ + ‖I‖ for some λ ∈ T

⇔ T2 ‖ I.

(ii): It can be proved by the same reasoning as in the proof of (i).

We finish this section with an application of the concept ε-parallelism to some
special types of elementary operators. We state some prerequisites for the next re-
sult. Let V be a normed space and B(V ) denotes the algebra of the bounded lin-
ear operators on V . A standard operator algebra B is a subalgebra of B(V ) that
contains all finite rank operators on V . For T1,T2 ∈ B we denote MT1,T2 , VT1,T2

and UT1,T2 on B by MT1,T2 (S) = T1ST2 (S ∈ B), VT1,T2 = MT1,T2 − MT2,T1 and
UT1,T2 = MT1,T2 + MT2,T1 , respectively. We denote by d(UT1,T2 ) the supremum of the
norm of UT1,T2 (S) over all rank one operators of norm one on V . Similarly d(MT1,T2 )
and d(VT1,T2 ) are defined. It is easy to see that d(MT1,T2 ) = ‖MT1,T2‖ = ‖T1‖ ‖T2‖
and VT1+µT2,T2 = VT1,T2 for all scalar µ. To establish the following proposition we use
some ideas of [18, Theorem 11].
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Proposition 3.13 Let B be a standard operator algebra and T1,T2 ∈ B. Then
the estimate d(UT1,T2 ) ≥ 2(1 − ε)‖T1‖ ‖T2‖ holds if one of the following properties is
satisfied:

(i) T1 ‖ε T2;
(ii) T2 ‖ε T1.

Proof Let T1 ‖ε T2. Hence inf{‖T1 + µT2‖ : µ ∈ C} ≤ ε‖T1‖. For every µ ∈ C we
have

‖VT1,T2‖ = ‖VT1+µT2,T2‖ = ‖MT1+µT2,T2 −MT2,T1+µT2‖
≤ ‖MT1+µT2,T2‖ + ‖MT2,T1+µT2‖ = 2‖T2‖ ‖T1 + µT2‖.

Hence

‖VT1,T2‖ ≤ 2‖T2‖ inf{‖T1 + µT2‖ : µ ∈ C} ≤ 2ε‖T1‖ ‖T2‖,

from which we get

d(VT1,T2 ) ≤ 2ε‖T1‖ ‖T2‖.

It follows from UT1,T2 = 2MT1,T2 −VT1,T2 that

d(UT1,T2 ) ≥ 2d(MT1,T2 )− d(VT1,T2 )

≥ 2‖T1‖ ‖T2‖ − 2ε‖T1‖ ‖T2‖ = 2(1− ε)‖T1‖ ‖T2‖.

By the same argument, the estimation follows under the condition (ii).

4 Parallelism in C∗-algebras and Inner Product C∗-modules

The relations between parallel elements in Hilbert C∗-modules form the main topic
of this section. We describe the concept of parallelism in Hilbert C∗-modules. The
notion of state plays an important role in this investigation. We begin with the fol-
lowing theorem, which will be useful in other contexts as well. In this theorem we
establish some equivalent assertions about the parallelism of elements of a Hilbert
C∗-module. The proofs of implication (i)⇒ (ii) in Theorem 4.1 and Corollary 4.2
are modification of ones given by Arambašić and Rajić [2, Theorems 2.1, 2.9]. We
present the proof for the sake of completeness.

Theorem 4.1 Let X be a Hilbert C∗-module over a C∗-algebra A . For x, y ∈ X
the following statements are equivalent:

(i) x ‖ y.
(ii) There exist a state ϕ over A and λ ∈ T such that ϕ(〈x, y〉) = λ‖x‖ ‖y‖.
(iii) There exist a norm one linear functional f over X and λ ∈ T such that f (x) =

‖x‖ and f (y) = λ‖y‖.

Proof (i) ⇒ (ii): Let x ‖ y. Hence ‖x + λy‖ = ‖x‖ + ‖y‖ for some λ ∈ T. By
[15, Theorem 3.3.6] there is a state ϕ over A such that

ϕ(〈x + λy, x + λy〉) = ‖〈x + λy, x + λy〉‖ = ‖x + λy‖2.
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We therefore have

‖x + λy‖2 = ϕ(〈x + λy, x + λy〉)
= ϕ(〈x, x〉) + ϕ(〈x, λy〉) + ϕ(〈λy, x〉) + |λ|2ϕ(〈y, y〉)
= ϕ(〈x, x〉) + 2<ϕ(〈x, λy〉) + ϕ(〈y, y〉)
≤ ‖x‖2 + 2‖〈x, λy〉‖ + ‖y‖2

≤ ‖x‖2 + 2‖x‖ ‖y‖ + ‖y‖2

= (‖x‖ + ‖y‖)2 = ‖x + λy‖2.

Thus we get ϕ(〈x, x〉) = ‖x‖2, ϕ(〈y, y〉) = ‖y‖2 and ϕ(〈x, y〉) = λ‖x‖ ‖y‖.
(ii) ⇒ (iii): Suppose that there exist a state ϕ over A and λ ∈ T such that

ϕ(〈x, y〉) = λ‖x‖ ‖y‖. We may assume that x 6= 0. Define a linear functional f
on X by

f (z) =
ϕ(〈x, z〉)
‖x‖

z ∈X .

It follows from

| f (z)| =
∣∣∣ ϕ(〈x, z〉)
‖x‖

∣∣∣ ≤ ‖〈x, z〉‖‖x‖
≤ ‖z‖,

that ‖ f ‖ ≤ 1. We infer from the Cauchy–Schwarz inequality that

‖x‖2 ‖y‖2 = |ϕ(〈x, y〉)|2 ≤ ϕ(〈x, x〉)ϕ(〈y, y〉) ≤ ‖x‖2 ‖y‖2,

so ϕ(〈x, x〉) = ‖x‖2 and hence f (x) = ϕ(〈x,x〉)
‖x‖ = ‖x‖2

‖x‖ = ‖x‖. Thus ‖ f ‖ = 1 and

f (y) = ϕ(〈x,y〉)
‖x‖ = λ‖x‖ ‖y‖

‖x‖ = λ‖y‖.
(iii)⇒ (i): Suppose that there exist a norm one linear functional f over X and

λ ∈ T such that f (x) = ‖x‖ and f (y) = λ‖y‖. Hence

‖x‖ + ‖y‖ = f (x) + f (λy) = f (x + λy) ≤ ‖x + λy‖ ≤ ‖x‖ + ‖λy‖ = ‖x‖ + ‖y‖.

So, we have ‖x + λy‖ = ‖x‖ + ‖y‖ for λ ∈ T. Thus x ‖ y.

Corollary 4.2 Let X be a Hilbert A -module and x, y ∈X r {0}.
(i) If x ‖ y, then there exist a state ϕ over A and λ ∈ T such that

‖y‖
‖x‖

ϕ(|x|2) +
‖x‖
‖y‖

ϕ(|y|2) = 2λϕ(〈x, y〉).

(ii) Let A have an identity e. If either |x|2 = e or |y|2 = e and there exist a state ϕ
over A and λ ∈ T such that

‖y‖
‖x‖

ϕ(|x|2) +
‖x‖
‖y‖

ϕ(|y|2) = 2λϕ(〈x, y〉),

then x ‖ y.

Proof (i): Let x ‖ y. As in the proof of Theorem 4.1, there exist a state ϕ over A
and λ ∈ T such that ϕ(|x|2) = ϕ(〈x, x〉) = ‖x‖2, ϕ(|y|2) = ϕ(〈y, y〉) = ‖y‖2 and
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ϕ(〈x, λy〉) = ‖x‖‖y‖. Thus

‖y‖
‖x‖

ϕ(|x|2) +
‖x‖
‖y‖

ϕ(|y|2) =
‖y‖
‖x‖
· ‖x‖2 +

‖x‖
‖y‖
‖y‖2 = 2‖x‖ ‖y‖ = 2λϕ(〈x, y〉).

(ii): We may assume that |x|2 = e. We have

0 ≤
(√
‖y‖ −

√
ϕ(|y|2)
‖y‖

) 2

=
(√

‖y‖
‖x‖ϕ(|x|2)−

√
‖x‖
‖y‖ϕ(|y|2)

) 2

=
‖y‖
‖x‖

ϕ(|x|2) +
‖x‖
‖y‖

ϕ(|y|2)− 2
√
ϕ(|x|2)ϕ(|y|2)

=
‖y‖
‖x‖

ϕ(|x|2) +
‖x‖
‖y‖

ϕ(|y|2)− 2
√
ϕ(〈x, x〉)ϕ(〈λy, λy〉)

≤ ‖y‖
‖x‖

ϕ(|x|2) +
‖x‖
‖y‖

ϕ(|y|2)− 2
√
|ϕ(〈x, λy〉)|2

(by the Cauchy–Schwarz inequality)

=
‖y‖
‖x‖

ϕ(|x|2) +
‖x‖
‖y‖

ϕ(|y|2)− |2λϕ(〈x, y〉)|

=
‖y‖
‖x‖

ϕ(|x|2) +
‖x‖
‖y‖

ϕ(|y|2)−
∣∣∣ ‖y‖
‖x‖

ϕ(|x|2) +
‖x‖
‖y‖

ϕ(|y|2)
∣∣∣

= 0.

We conclude that ϕ(〈y, y〉) = ‖y‖2 and ϕ(〈x, y〉) = λ
√
ϕ(|x|2)ϕ(|y|2) = λ‖x‖ ‖y‖,

since 2λϕ(〈x, y〉) ≥ 0. Thus, by Theorem 4.1 (ii), we get x ‖ y.

Corollary 4.3 Let X be a Hilbert A -module and x, y ∈ X . Then the following
statements are equivalent:

(i) x ‖ y.
(ii) There exist a state ϕ over K(X ) and λ ∈ T such that ϕ(θx,y) = λ‖x‖ ‖y‖.

Proof Since X can be regarded as a left Hilbert K(X )-module via the inner prod-
uct [x, y] = θx,y , therefore we reach the result by using Theorem 4.1.

The following result characterizes the parallelism for elements of a C∗-algebra.

Corollary 4.4 Let A be a C∗-algebra, and a, b ∈ A . Then the following statements
are equivalent:

(i) a ‖ b.
(ii) There exist a state ϕ over A and λ ∈ T such that ϕ(a∗b) = λ‖a‖ ‖b‖.
(iii) There exist a Hilbert space H , a representation π : A → B(H ), a unit vector

ξ ∈H and λ ∈ T such that ‖π(a)ξ‖ = ‖a‖ and
(
π(a)ξ | π(b)ξ

)
= λ‖a‖ ‖b‖.

Proof If A is regarded as a Hilbert A -module, then the equivalence (i) ⇔ (ii)
follows from Theorem 4.1.
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To show (ii)⇒ (iii), suppose that there are a stateϕ and λ ∈ T such thatϕ(a∗b) =
λ‖a‖ ‖b‖. By the Cauchy–Schwarz inequality we have

‖a‖2 ‖b‖2 = |ϕ(a∗b)|2 ≤ ϕ(a∗a)ϕ(b∗b) ≤ ‖a‖2 ‖b‖2,

so ϕ(a∗a) = ‖a‖2. By [5, Proposition 2.4.4] there exist a Hilbert space H , a repre-
sentation π : A → B(H ) and a unit vector ξ ∈H such that for any c ∈ A we have
ϕ(c) =

(
π(c)ξ | ξ

)
. Hence

‖π(a)ξ‖ =
√(

π(a)ξ | π(a)ξ
)

=
√(

π(a∗a)ξ | ξ
)

=
√
ϕ(a∗a) = ‖a‖,

and (
π(b)ξ | π(a)ξ

)
=
(
π(a∗b)ξ | ξ

)
= ϕ(a∗b) = λ‖a‖ ‖b‖.

Finally, we show (iii)⇒ (ii). Let condition (iii) hold and let ϕ : A → C be the state
associated to π and ξ by ϕ(c) =

(
π(c)ξ | ξ

)
, c ∈ A . Thus

ϕ(a∗b) =
(
π(a∗b)ξ | ξ

)
=
(
π(b)ξ | π(a)ξ

)
= λ‖a‖ ‖b‖.

The proof of the following proposition is a modification of one given by Rieffel
[17, Theorem 3.10].

Proposition 4.5 Let A be a C∗-algebra with identity e and ε ∈ [0, 1). Then for any
a ∈ A the following statements are equivalent:

(i) a ‖ε e.
(ii) max{

√
ϕ(a∗a)− |ϕ(a)|2 : ϕ ∈ S(A )} ≤ ε‖a‖.

Proof (i)⇒ (ii): For every ϕ ∈ S(A ) and µ ∈ C a direct calculation shows that√
ϕ(a∗a)− |ϕ(a)|2 =

√
ϕ
(

(a + µe)∗(a + µe)
)
− |ϕ(a + µe)|2

≤
√
ϕ
(

(a + µe)∗(a + µe)
)
≤ ‖a + µe‖.

So max{
√
ϕ(a∗a)− |ϕ(a)|2 : ϕ ∈ S(A )} ≤ inf{‖a + µe‖ : µ ∈ C}. Since a ‖ε e, we

have inf{‖a + µe‖ : µ ∈ C} ≤ ε‖a‖. Thus

max{
√
ϕ(a∗a)− |ϕ(a)|2 : ϕ ∈ S(A )} ≤ ε‖a‖.

(ii)⇒ (i): Let (ii) hold and let inf{‖a + µe‖ : µ ∈ C} = ‖a + αe‖ for some α ∈ C.
Then for any µ ∈ C we have ‖(a+αe)+µe‖ ≥ ‖a+αe‖, whence by [1, Theorem 2.7],
there exists a state ϕα ∈ S(A ) such that√

ϕα
(

(a + αe)∗(a + αe)
)

= ‖a + αe‖ and ϕα(a) = −α.

Therefore

inf{‖a + µe‖ : µ ∈ C} = ‖a + αe‖ =
√
ϕα
(

(a + αe)∗(a + αe)
)

=
√
ϕα(a∗a) + αϕα(a) + αϕα(a∗) + |α|2

=
√
ϕα(a∗a)− |ϕα(a)|2

≤ max{
√
ϕ(a∗a)− |ϕ(a)|2 : ϕ ∈ S(A )}.

Thus inf{‖a + µe‖ : µ ∈ C} ≤ ε‖a‖, or equivalently, a ‖ε e.
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In the following result, we utilize the linking algebra to give some equivalent as-
sertions regarding parallel elements in a Hilbert C∗-module.

Theorem 4.6 Let X be a Hilbert A -module and x, y ∈ X . Then the following
statements are mutually equivalent:

(i) x ‖ y.
(ii) 〈x, x〉 ‖ 〈x, y〉 and ‖〈x, y〉‖ = ‖x‖ ‖y‖.
(iii) r(〈x, y〉) = ‖〈x, y〉‖ = ‖x‖ ‖y‖.
(iv) ‖〈x, x + λy〉‖ = ‖x‖(‖x‖ + ‖y‖) for some λ ∈ T.

Proof Consider the elements
[

0 0
rx 0

]
and

[ 0 0
ry 0

]
of the C∗-algebra L(X ), the linking

algebra of X . Let π : L(X ) → B(H ) be a non-degenerate faithful representation
of L(X ) on some Hilbert space H [5, Theorem 2.6.1].

(i)⇔ (ii): A straightforward computation shows that

x ‖ y ⇔
[

0 0
rx 0

] ∥∥∥ [ 0 0
ry 0

]
⇔ π

([
0 0
rx 0

])∥∥∥π([ 0 0
ry 0

])
.

Thus by Theorem 3.3, we get

x ‖ y ⇔ π

([
0 0
rx 0

])∥∥∥π([ 0 0
ry 0

])
⇔ π

([
0 0
rx 0

])∗
π

([
0 0
rx 0

])∥∥∥π([0 0
rx 0

])∗
π

([
0 0
ry 0

])
and∥∥∥∥π([0 0

rx 0

])∗
π

([
0 0
ry 0

])∥∥∥∥ =

∥∥∥∥π([0 0
rx 0

])∥∥∥∥ ∥∥∥∥π([ 0 0
ry 0

])∥∥∥∥
⇔ π

([
0 lxrx

0 0

])∥∥∥π([0 lxry

0 0

])
and∥∥∥∥π([0 lxrx

0 0

])∥∥∥∥ =

∥∥∥∥π([0 lx
0 0

])∥∥∥∥ ∥∥∥∥π([ 0 0
ry 0

])∥∥∥∥
⇔
[

0 T〈x,x〉
0 0

] ∥∥∥ [0 T〈x,y〉
0 0

]
and∥∥∥∥[0 T〈x,y〉

0 0

]∥∥∥∥ =

∥∥∥∥[0 lx
0 0

]∥∥∥∥ ∥∥∥∥[ 0 0
ry 0

]∥∥∥∥
⇔ 〈x, x〉 ‖ 〈x, y〉 and ‖〈x, y〉‖ = ‖x‖ ‖y‖.

(ii)⇔ (iii): By the equivalence (iii)⇔ (iv) of Theorem 3.3, the proof is similar to
the proof of the equivalence (i)⇔ (ii), so we omit it.

(ii)⇒ (iv): Since 〈x, x〉 ‖ 〈x, y〉, we have ‖〈x, x〉 + λ〈x, y〉‖ = ‖〈x, x〉‖ + ‖〈x, y〉‖
for some λ ∈ T. It follows from ‖〈x, y〉‖ = ‖x‖ ‖y‖ that

‖〈x, x + λy〉‖ = ‖〈x, x〉 + λ〈x, y〉‖ = ‖〈x, x〉‖ + ‖〈x, y〉‖ = ‖x‖(‖x‖ + ‖y‖).

(iv)⇒ (i): We may assume that x 6= 0. Due to ‖〈x, x + λy〉‖ = ‖x‖(‖x‖ + ‖y‖)
for some λ ∈ T, by the Cauchy–Schwarz inequality, we have

‖x‖(‖x‖ + ‖y‖) = ‖〈x, x + λy〉‖ ≤ ‖x‖ ‖x + λy‖ ≤ ‖x‖(‖x‖ + ‖y‖).
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Thus ‖x + λy‖ = ‖x‖ + ‖y‖. Hence x ‖ y.

Now, by Theorem 3.7 and the same technique used for proving Theorem 4.6 the
final result is obtained.

Corollary 4.7 Let X be a Hilbert A -module, x, y ∈ X and ε ∈ [0, 1). If x ‖ε y,
then

|ϕ(〈x, y〉)|2 ≥ ϕ(〈x, x〉)ϕ(〈y, y〉)− ε2‖〈x, x〉‖ ‖〈y, y〉‖ (ϕ ∈ S(A )).
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