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José P. Mimoso1 and Diego Pavón2

Dept. Fı́sica, Fac. Ciências, Universidade de Lisboa & CAAUL
Campo Grande, Edifcio C8 - P-1749-016 Lisbon, Portugal

email: jpmimoso@fc.ul.pt
2Dept. Fı́sica, Universidad Autónoma de Barcelona, 08193 Bellaterra (Barcelona), Spain

email: Diego.Pavon@uab.es

Abstract. This work studies the behavior of entropy in recent cosmological models that start
with an initial de Sitter expansion phase, go through the conventional radiation and matter
dominated eras to be followed by a final de Sitter epoch. In spite of their seemingly similarities
(observationally they are close to the Λ-CDM model), different models deeply differ in their
physics. The second law of thermodynamics encapsulates the underlying microscopic, statistical
description, and hence we investigate it in the present work. Our study reveals that the entropy
of the apparent horizon plus that of matter and radiation inside it, increases and is a concave
function of the scale factor. Thus thermodynamic equilibrium is approached in the last de Sitter
era, and this class of models is thermodynamically correct. Cosmological models that do not
approach equilibrium appear in conflict with the second law of thermodynamics. (Based on
Mimoso & Pavon 2013)
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1. Introduction
Macroscopic systems tend spontaneously to thermodynamic equilibrium. This consti-

tutes the empirical basis of the second law of thermodynamics: The entropy, S, of isolated
systems never decreases, S′ � 0, and it is concave, S′′ < 0, at least in the last leg of
approaching of the equilibrium (see, e.g. Callen 1960). The second law of thermodynam-
ics encapsulates the underlying microscopic, and statistical description, and hence is an
important tool to investigate the consistency of cosmological models.

We have compelling reasons to believe that there was a primordial stage of inflation,
and observations revealed another late stage of accelerated expansion. Models interpo-
lating between two end stages dominated by a cosmological constant are therefore of
manifest interest. The idea that the universe may have started from an instability of a
de Sitter stage can be traced back to Barrow (1986)’s deflationary universe, to Prigogine
et al. (1989), as well as to Carvalho et al. (1992) and Lima & Maia (1994) phenomeno-
logical models of irreversible particle production, or equivalently of dissipative effects as
discussed by Lima & Germano (1992). The initial de Sitter space exists for the decay time
of its constituents. Subsequently, the universe transits its normal radiation and matter
dominated eras, to become finally attracted to a new, late de Sitter stage. The details
of these Λ decaying models and transitions have been the endeavor of various proposals,
e.g. Carneiro (2006), Carneiro and Tavakol (2009), Basilakos et al. (2012) and references
therein. Recently two models starting and ending in de Sitter eras were put forward in
Lima et al. (2012) and in Lima et al. (2009). We denote these latter models I and II,
respectively. Both assume a spatially flat Friedmann-Robertson-Walker metric, and from
the observational viewpoint they are very close to the conventional ΛCDM model. The
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physics behind the models is deeply different. While model I rests on the production of
particles induced by the gravitational field (and dispenses altogether with dark energy),
model II assumes dark energy in the form of a cosmological constant that in reality varies
with the Hubble factor in a manner prescribed by quantum field theory.

Here we report on our findings of Mimoso & Pavon (2013), where have addressed the
consistency from the perspective of the second-law of thermodynamics of the latter mod-
els promoting a cosmological transition from de Sitter initial and final stages. The laws
of thermodynamics set macroscopic criteria that should be met by sound cosmological
models.

2. The entropy
The entropy S of the universe is the entropy of the apparent horizon, Sh = kB A/(4 �2

pl),
plus the entropy of the radiation, Sγ , and/or pressureless matter, Sm , inside it, where A
and �pl denote the area of the horizon and Planck’s length, respectively (see Radicella &
Pavon 2012 and references therein). The area of the apparent horizon

A = 4πr̃2
A , (2.1)

where r̃A = (
√

H2 + ka−2)−1 is the radius of the horizon. Accordingly, for a flat model,
the entropy of the apparent horizon is Sh = kB π/(�pl H)2 , as the universe transits from
de Sitter, H = HI , to a radiation dominated expansion. In turn, the evolution of the
entropy of the radiation fluid inside the horizon can be determined with the help of Gibbs
equation (Callen 1960)

Tγ dSγ = d

(
ργ

4π

3
r̃3
A

)
+ pγ d

(
4π

3
r̃3
A

)
, (2.2)

On the other hand, for the entropy of dust matter, it suffices to realize that every single
particle contributes to the entropy inside the horizon by a constant bit, say kB . Then,

Sm = kB
4π

3
r̃3
A n , (2.3)

where the number density of dust particles obeys the conservation equation

n′ = (n/(aH))[Γdm − 3H] < 0 (2.4)

with the decay into matter characterized by the rate Γdm = 3H2
0 Ω̃Λ/H > 0.

In model I the creation rate of massless, radiation particles is given by pc = −(1 +
w)ρΓr /(3H). One derives H = H(a), and subsequently S(a), S′(a), S′′(a), and T (a) from
the above expressions for Sh , Sγ and Sm We find that in the phenomenological model of
Lima et al. (2012) the universe behaves as an ordinary macroscopic system (Radicella &
Pavon 2012); i.e., it eventually tends to thermodynamic equilibrium characterized by a
never ending de Sitter expansion era with H∞ = H0

√
Ω̃Λ < H0 .

In the model II (Lima et al. 2009) it is assumed that in quantum field theory in curved
spacetime the cosmological constant is a parameter that runs with the Hubble rate in a
specified manner (see Parker & Toms 2009 and Solá 2011):

Λ(H) = c0 + 3νH2 + 3α
H4

H2
I

, (2.5)

where c0 , α and ν are are constant parameters of the model. The absolute value of
the latter is constrained by observation as |ν| ∼ 10−3 . At early times the last term
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dominates, and at late times (H � HI ) it becomes negligible whereby (2.5) reduces to
Λ(H) = Λ0 + 3ν(H2 − H2

0 ) with Λ0 = c0 + 3νH2
0 .

Proceeding to equate the relevant quantities in terms of the scale factor, we find that,
as in the previous model, S′

h > 0 and S′′
h < 0. However at variance with it, the matter

entropy, Sm = kB
4π
3 r̃3

A n ∝ H−3 n, decreases with expansion and is convex. This is
so because, in this case, the rate of particle production, Γdm , goes down and cannot
compensate for the rate of dilution caused by cosmic expansion. Nevertheless, S′

h and S′′
h

dominate over S′
m and S′′

m , respectively, as a → ∞. Thus, as in model I, the total entropy
results a growing and concave function of the scale factor, in the far future stage. Hence,
the universe gets asymptotically closer and closer to thermodynamic equilibrium.

3. Conclusions
In both models considered, the entropy, as a function of the scale factor, never decreases

and is concave at least at the last stage of evolution, signaling that the universe is finally
approaching thermodynamic equilibrium. So, we conclude that models I and II show
consistency with thermodynamics, and that their overall behavior can be most easily
understood from the thermodynamic perspective. Further, these results remain valid
also if quantum corrections to Bekenstein-Hawking entropy law are incorporated.
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