POINTWISE CONVERGENCE OF ALTERNATING SEQUENCES

M. A. AKCOGLU AND L. SUCHESTON

1. Introduction. Let $1<p<\infty$ and let L_{p} be the usual Banach Space of complex valued functions on a σ-finite measure space. Let $\left(T_{n}\right), n \geqq 1$, be a sequence of positive linear contractions on L_{p}. Hence $T_{n} L_{p}^{+} \subset L_{p}^{+}$and $\left\|T_{n}\right\| \leqq 1$, where L_{p}^{+}is the part of L_{p} that consists of non-negative L_{p} functions. The adjoint of T_{n} is denoted by T_{n}^{*}, which is a positive linear contraction of L_{q} with $q=p /(p-1)$.

Our purpose in this paper is to show that the alternating sequences associated with (T_{n}), as introduced in [2], converge almost everywhere. Complete definitions will be given later. When applied to a non negative function, however, this result is reduced to the following theorem.
(1.1) Theorem. If $\left(T_{n}\right)$ is a sequence of positive contractions of L_{p} then

$$
\begin{equation*}
\lim _{n} T_{1}^{*} \ldots T_{n}^{*}\left(T_{n} \ldots T_{1} f\right)^{p-1} \tag{1.2}
\end{equation*}
$$

exists a.e. for all $f \in L_{p}^{+}$.
This is related to the following theorems due to Stein [9] and Rota [7]; see also [3], [4], [8], and [5] and [10].
(1.3) Theorem (Stein). If T is a self adjoint positive contraction on L_{2} then

$$
\lim _{n} T^{2 n} f
$$

exists a.e. for each $f \in L_{2}$.
(1.4) Theorem (Rota). If each T_{n} is a positive contraction of all L_{p}-Spaces, $1 \leqq p \leqq \infty$, simultaneously, and if $T_{n} 1=T_{n}^{*} 1=1$, then

$$
\begin{equation*}
\lim _{n} T_{1}^{*} \ldots T_{n}^{*} T_{n} \ldots T_{1} f \tag{1.5}
\end{equation*}
$$

exists a.e. for each $f \in L_{p}, \quad 1<p$.
Theorem (1.1) generalizes Stein's Theorem. It also implies a part of Rota's Theorem, namely the existence of (1.5) first for $f \in L_{2}$, then, by an easy argument, for $f \in L_{p}, 2 \leqq p$ (even if the measure is not finite). If $f \in L_{p}, 1<p<2$, then the existence of (1.5) does not seem to follow

[^0]from the existence of (1.2) in a direct way. It may be noticed, however, that, under the additional hypotheses of Rota's theorem, our proof can be modified in a trivial way to obtain (1.4). We omit this as the proof so obtained will not be very different from the existing proofs of (1.4).

The arguments of the present paper depend, beyond the basic Measure Theory, only on Doob's maximal theorems for martingales (as given in, e.g., [10], pp. 89-94) and on a result in [1]. Our main result, in fact, will be obtained by adapting the arguments of [1] to the present case. Also, in Lemma (2.3) we seem to need the uniform convexity of L_{p} (see [2]). If one is interested only in $p=2$ then this becomes, however, very simple.

In Section 2 we list a number of elementary results and observations that we will need later. In this section some of the simple proofs are omitted. In Section 3 we formulate our main result, Theorem (3.2), and reduce its proof to the proof of two maximal inequalities. We also notice that it will be enough to prove these inequalities only in the finite dimensional case. Finally in Section 4, which contains our main arguments, we give the proofs in the finite dimensional case.
2. Preliminaries. In this section we are dealing with a fixed (complex) L_{p} Space, $1<p<\infty$, over a σ-finite measure space (X, \mathscr{F}, μ). The adjoint of L_{p} is identified with $L_{q}, q=p /(p-1)$. The application of the functional $g \in L_{q}$ on $f \in L_{p}$ is given by

$$
(f, g)=\int f \bar{g} d \mu
$$

Any statement made about L_{p} and/or L_{q} is also valid and will be used when the indices p and q are switched. The norm in L_{p} is denoted by $\|\cdot\|_{p}$ or simply by $\|\cdot\|$. Finally, all our statements are correct only up to sets of measure zero, where applicable.

The duality mapping $\psi_{p}: L_{p} \rightarrow L_{q}$ is defined by

$$
\left(\psi_{p} f\right)(x)=\left\{\begin{array}{l}
|f(x)|^{p}(\overline{f(x)})^{-1} \quad \text { if } f(x) \neq 0 \\
0 \text { otherwise. }
\end{array}\right.
$$

We also write f^{*} for $\psi_{p} f$. Note that $f^{*} \in L_{q}$ and

$$
\left(f, f^{*}\right)=\|f\|_{p}^{p}=\|f\|_{p}\left\|f^{*}\right\|_{q}=\left\|f^{*}\right\|_{q}^{q}
$$

In fact, these equations define f^{*} uniquely. Also note that

$$
\psi_{q}: L_{q} \rightarrow L_{p}
$$

is the inverse of ψ_{p}. We also write $\psi_{q} g=g^{*}, g \in L_{q}$, when the distinction between ψ_{p} and ψ_{q} is clear from the context.

By a linear operator we always mean a linear bounded operator. A linear operator $V: L_{p} \rightarrow L_{p}$ is called a contraction if $\|V f\| \leqq\|f\|$ for all $f \in L_{p}$ and is called positive if $V L_{p}^{+} \subset L_{p}^{+}$, i.e., if $V f \geqq 0$ whenever
$f \geqq 0$ and $f \in L_{p}$. If $V: L_{p} \rightarrow L_{p}$ is a linear operator then the adjoint operator $V^{*}: L_{q} \rightarrow L_{q}$ is defined by the requirement that

$$
(V f, g)=\left(f, V^{*} g\right) \quad \text { for all } f \in L_{p}, g \in L_{q}
$$

If V is a positive linear contraction on L_{p} then V^{*} is a positive linear contraction on L_{q}.
(2.1) Lemma. If $V: L_{p} \rightarrow L_{p}$ is a positive linear operator then

$$
|V f| \leqq V|f|, \quad f \in L_{p}
$$

Proof. If $\phi \in L_{p}$ then let $P(\phi)$ be the class of functions $h \in L_{p}^{+}$such that

$$
\left|\int \phi g d \mu\right| \leqq \int h g d \mu \quad \text { for all } g \in L_{q}^{+} .
$$

Then $|\phi| \leqq h$ whenever $h \in P(\phi)$. But if $g \in L_{q}^{+}$then

$$
\begin{aligned}
\left|\int V f \cdot g d \mu\right| & =\left|\int f V^{*} g d \mu\right| \\
& \leqq \int|f| V^{*} g d \mu=\int V|f| \cdot g d \mu
\end{aligned}
$$

which shows that $V|f| \in P(V f)$. Hence $|V f| \leqq V|f|$.
(2.2) Lemma. Let $f_{k} \in L_{p}, 1 \leqq k \leqq n$, and let $V: L_{p} \rightarrow L_{p}$ be a positive linear operator. Then

$$
\max \left|V f_{k}\right| \leqq V\left(\max \left|f_{k}\right|\right)
$$

and, consequently,

$$
\left\|\max \left|V f_{k}\right|\right\| \leqq\|V\| \cdot\left\|\max \left|f_{k}\right|\right\| .
$$

(2.3) Lemma. For each $\epsilon>0$ there is a $\delta>0$ such that if $E: L_{p} \rightarrow L_{p}$ is a conditional expectation operator, $f \in L_{p}$, and if

$$
\|f\|-\|E f\|<\delta\|f\|
$$

then

$$
\|f-E f\|<\epsilon\|f\|
$$

Proof. We will use the uniform convexity of L_{p}, as stated in Lemma (2.2) of [2]: For each $\epsilon>0$ there is an $\eta>0$ such that $\|g-h\|<\epsilon$ whenever $g, h \in L_{p},\|g\| \leqq 1,\|h\| \leqq 1$ and $\|g+h\|>2-\eta$. We choose a $\delta>0$ such that

$$
2(1-\delta)^{p}>2-\eta
$$

Let $f \in L_{p},\|f\|=1$ and let

$$
\|f\|-\|E f\|<\delta
$$

Then $1-\delta<\|E f\| \leqq 1$. Also,

$$
\begin{aligned}
\left(f+E f,(E f)^{*}\right) & =\left(2 E f,(E f)^{*}\right) \\
& =2\|E f\|^{p}>2(1-\delta)^{p}
\end{aligned}
$$

where the first equality follows from a basic property of E. Since $\left\|(E f)^{*}\right\|_{q} \leqq 1$, we see that

$$
\|f+E f\|>2(1-\delta)^{p}>2-\eta
$$

Hence $\|f-E f\|<\epsilon$. If $f \in L_{p}$ and $0<\|f\| \neq 1$ then we apply the above argument to $f^{\prime}=f /\|f\|$.
(2.4) Lemma. Let $f_{k}, k \geqq 0$, be a sequence in L_{p} such that

$$
F=\left(\sup \left|f_{k}\right|\right) \in L_{p}
$$

If λ_{k} is a sequence of complex numbers such that $\left|1-\lambda_{k}\right|<\epsilon$ for each $k \geqq 0$ then

$$
\left\|\left(\sup \left|f_{k}-f_{0}\right|\right)-\left(\sup \left|\lambda_{k} f_{k}-\lambda_{0} f_{0}\right|\right)\right\| \leqq 4 \epsilon\|F\|
$$

(2.5) Lemma. Let $\left(f_{k m}\right), 1 \leqq k \leqq n, 1 \leqq m$, be n sequences in L_{p} such that $\lim _{m}\left\|f_{k m}-f_{k}\right\|=0$ for each k. Then

$$
\lim _{m}\left\|\max _{1 \leqq k \leqq n}\left|f_{k m}\right|-\max _{1 \leqq k \leqq n}\left|f_{k}\right|\right\|=0
$$

Proof. See Lemma (3.2) in [1].
(2.6) Lemma (Uniform continuity of ψ_{p}). Given $\epsilon>0$ and $M>0$ there is a $\delta>0$ such that $\left\|f^{*}-g^{*}\right\|_{q}<\epsilon$ whenever $\|f-g\|_{p}<\delta, f \in L_{p}, g \in L_{p}$, and $\|f\|_{p} \leqq M,\|g\|_{p} \leqq M$.

This lemma has been stated in [2]. As mentioned there, its proof follows directly from a result of Mazur [6]. It should be noted, however, it is also quite routine to give a direct elementary proof.
(2.7) Lemma. Given an $\epsilon>0$ and an $M>0$ there is a $\delta>0$ with the following property. If f_{k} is a sequence in L_{p} such that

$$
\left\|\sup \left|f_{k}\right|\right\|_{p} \leqq M \text { and } \quad\left\|\sup \left|f_{k}-f_{0}\right|\right\|_{p}<\delta
$$

then

$$
\left\|\sup \left|f_{n}^{*}-f_{0}^{*}\right|\right\|_{q}<\epsilon
$$

Proof. Choose δ from the previous lemma corresponding to (1/2) ϵ and M. Given any $n \geqq 1$ there is a partition of X into n sets $A_{l}, 1 \leqq l \leqq n$, such that

$$
\max _{1 \leqq k \leqq n}\left|f_{k}^{*}-f_{0}^{*}\right|=\sum_{l}\left|f_{l}^{*}-f_{0}^{*}\right| \chi_{A_{l}}
$$

where χ denotes the characteristic function of a set. Hence

$$
\max _{1 \leqq k \leqq n}\left|f_{k}^{*}-f_{0}^{*}\right|=\left|f^{*}-f_{0}^{*}\right|
$$

with

$$
\begin{gathered}
f=\sum_{l} f_{l} \chi_{A_{i}} \\
\text { But }\|f\|_{p} \leqq M \text { and }\left\|f_{0}\right\|_{p} \leqq M \text { and } \\
\left\|f-f_{0}\right\|_{p} \leqq\left\|\sup \left|f_{k}-f_{0}\right|\right\| .
\end{gathered}
$$

Hence if this last norm is less than δ then

$$
\left\|f^{*}-f_{0}^{*}\right\|_{q}<\frac{1}{2} \epsilon
$$

which completes the proof.
(2.8) Lemma. Let f_{n} be a sequence of functions in L_{p} such that

$$
\left(\sup \left|f_{n}\right|\right) \in L_{p}
$$

Then f_{n} converges a.e. if and only if

$$
\lim _{n}\left\|\sup _{k \geqq n}\left|f_{k}-f_{n}\right|\right\|=0
$$

Proof. Let

$$
\theta_{n}=\sup _{k \geqq n}\left|f_{k}-f_{n}\right|
$$

First assume that f_{n} 's are real valued. Let

$$
\begin{aligned}
& \phi_{n}=\inf _{k \geqq n} f_{k} \quad \text { and } \psi_{n}=\sup _{k \geqq n} f_{k} \\
& f_{n}-\theta_{n} \leqq \phi_{n} \leqq f_{k} \leqq \psi_{n} \leqq f_{n}+\theta_{n}, \quad k \geqq n
\end{aligned}
$$

shows that

$$
0 \leqq \theta_{n} \leqq \psi_{n}-\phi_{n} \leqq 2 \theta_{n}
$$

Hence $\left\|\theta_{n}\right\| \rightarrow 0$ if and only if $\left\|\psi_{n}-\phi_{n}\right\| \rightarrow 0$. But f_{n} converges a.e. if and only if $\psi_{n}-\phi_{n}$ converges a.e. to zero, which happens if and only if $\left\|\psi_{n}-\phi_{n}\right\|$ converges to zero.

For the complex valued case, let

$$
f_{n}=f_{n}^{\prime}+i f_{n}^{\prime \prime}
$$

where f_{n}^{\prime} and $f_{n}^{\prime \prime}$ are real valued. Let θ_{n} be as before and let $\theta_{n}^{\prime}, \theta_{n}^{\prime \prime}$ be the similar functions associated with the sequences f_{n}^{\prime} and $f_{n}^{\prime \prime}$, respectively. Then we see that $\theta_{n}^{\prime} \leqq \theta_{n}, \theta_{n}^{\prime \prime} \leqq \theta_{n}$, and $\theta_{n} \leqq \theta_{n}^{\prime}+\theta_{n}^{\prime \prime}$. Hence $\left\|\theta_{n}\right\| \rightarrow 0$ if and only if $\left\|\boldsymbol{\theta}_{n}^{\prime}\right\|+\left\|\boldsymbol{\theta}_{n}^{\prime \prime}\right\| \rightarrow 0$, which happens if and only if both f_{n}^{\prime} and $f_{n}^{\prime \prime}$ converge a.e.
(2.9) Corollary. Let f_{n} be a sequence in L_{p} such that $\left(\sup \left|f_{n}\right|\right) \in L_{p}$. Let V be a positive linear operator. If f_{n} converges a.e. then $V f_{n}$ also converges a.e.
(2.10) Definition. A point transformation $\tau: X \rightarrow X$ will be called an automorphism if it is invertible and if both τ and τ^{-1} are measurable and non singular. An automorphism induces two measures $\mu \tau^{-1}$ and $\mu \tau$, both absolutely continuous with respect to μ. If ρ is the Radon-Nikodym derivative of $\mu \tau^{-1}$ with respect to μ then the operator $Q: L_{p} \rightarrow L_{p}$ defined by

$$
Q f=\rho^{1 / p} f_{\tau}^{-1}, \quad f \in L_{p}
$$

(or, more explicitly, by

$$
\left.(Q f)(x)=\rho(x)^{1 / p} f\left(\tau^{-1} x\right), \quad f \in L_{p}\right)
$$

is a positive invertible isometry of L_{p}. We will call Q the L_{p}-isometry induced by τ.
(2.11) Lemma. If Q is the L_{p}-isometry induced by an automorphism τ then Q^{-1} is the L_{p}-isometry induced by τ^{-1} and Q^{*} is the L_{q}-isometry induced by τ^{-1}.

Proof. This follows directly from the definitions, if it is observed that the Radon-Nikodym derivative ρ^{\prime} of $\mu \tau$ with respect to μ is given by

$$
\rho^{\prime}(x)=1 / \rho(\tau x)
$$

(2.12) Lemma. If Q is the L_{p}-isometry induced by an automorphism τ and if $f \in L_{p}$ then

$$
Q^{*} f^{*}=\left(Q^{-1} f\right)^{*}
$$

Proof. This, again, follows directly from the definitions and from Lemma (2.11).
3. The main result. If T is a linear operator in L_{p} then we let, as in [2],
(3.1) $\quad M(T) f=\left[T^{*}(T f)^{*}\right]^{*}$,
where $f \in L_{p}$. Note that $M(T)$ maps L_{p} into L_{p}, but in general it is a non linear operator. The main result of this paper is the following theorem.
(3.2) Theorem. If T_{n} is a sequence of positive linear contractions on L_{p}, $1<p$, then

$$
\lim M\left(T_{n} \ldots T_{1}\right) f
$$

exists a.e. for each $f \in L_{p}$.
(3.3) Remarks. The pointwise convergence of

$$
M\left(T_{n} \ldots T_{1}\right) f=\left[T_{1}^{*} \ldots T_{n}^{*}\left(T_{n} \ldots T_{1} f\right)^{*}\right]^{*}
$$

is equivalent to the pointwise convergence of

$$
T_{1}^{*} \ldots T_{n}^{*}\left(T_{n} \ldots T_{1} f\right)^{*}
$$

If $f \in L_{p}^{+}$then this last sequence simplifies to

$$
T_{1}^{*} \ldots T_{n}^{*}\left(T_{n} \ldots T_{1} f\right)^{p-1}
$$

Hence Theorem (3.2) contains Theorem (1.1) stated in the introduction. Also, if $p=2$ then $M\left(T_{n} \ldots T_{1}\right) f$ becomes $T_{1}^{*} \ldots T_{n}^{*} T_{n} \ldots T_{1} f$. Hence Theorem (3.2) implies that if T_{n} is a sequence of positive linear contractions in L_{2} then

$$
\lim T_{1}^{*} \ldots T_{n}^{*} T_{n} \ldots T_{1} f
$$

exists a.e. for each $f \in L_{2}$.
(3.4) Notation. If $T_{k}, k \geqq 1$, is a sequence of linear operators on L_{p} and if $f \in L_{p}$ then we let $V_{0}=1$ be the identity on L_{p},

$$
V_{n}=T_{n} \ldots T_{1}, \quad n \geqq 1,
$$

and

$$
\begin{aligned}
f_{n} & =M\left(V_{n}\right) f=\left[V_{n}^{*}\left(V_{n} f\right)^{*}\right]^{*} \\
g_{n} & =f_{n}^{*}=V_{n}^{*}\left(V_{n} f\right)^{*}, \quad n \geqq 0 .
\end{aligned}
$$

Note that f_{n} is a sequence in L_{p} and g_{n} is a sequence in L_{q} and that f_{n} converges a.e. if and only if g_{n} converges a.e. Also, $f_{0}=f=g_{0}^{*}$.
(3.5) Definition. Let T_{n} be a sequence of linear operators on L_{p}. We say that Estimate A holds for T_{n} if

$$
\left\|\sup \left|f_{n}\right|\right\| \leqq q\|f\|
$$

for all $f \in L_{p}$, with the notations of (3.4).
(3.6) Definition. Let T_{n} be a sequence of linear contractions on L_{p}. We say that Estimate B holds for T_{n} if for each $\epsilon>0$ there is a $\delta>0$ depending only upon ϵ and p, such that

$$
\left\|\sup \left|f_{n}-f_{0}\right|\right\|<\epsilon
$$

whenever

$$
\|f\|-\lim _{n}\left\|V_{n} f\right\|<\delta\|f\|
$$

and

$$
\|f\| \leqq 1
$$

with the notations of (3.4).
These two estimates can also be given in terms of the sequence g_{n}. We state this in the following two lemmas.
(3.7) Lemma. Estimate A holds for T_{n} if and only if $\left\|\sup \left|g_{n}\right|\right\|_{q} \leqq\left(q\|f\|_{p}\right)^{p-1}, \quad$ for all $f \in L_{p}$.
Proof. We see that

$$
\sup \left|g_{n}\right|=\sup \left|f_{n}^{*}\right|=\left(\sup \left|f_{n}\right|\right)^{*}
$$

Hence

$$
\left\|\sup \left|g_{n}\right|\right\|_{q}^{q}=\left\|\sup \left|f_{n}\right|\right\|_{p}^{p} .
$$

Then the proof follows.
(3.8) Lemma. Estimate B holds for T_{n} if and only if for each $\xi>0$ there exists an $\eta>0$ such that

$$
\left\|\sup \left|g_{n}-g_{0}\right|\right\|_{q}<\xi
$$

whenever

$$
\|f\|_{p}-\lim \left\|V_{n} f\right\|_{p}<\eta\|f\|_{p}
$$

and

$$
\|f\|_{p} \leqq 1
$$

Proof. Assume that Estimate B holds. First find $\delta_{1}>0$ such that

$$
\left\|\sup \left|f_{n}-f_{0}\right|\right\|<1
$$

whenever
(3.9) $\quad\|f\|-\lim \left\|V_{n} f\right\|<\delta_{1}\|f\|$,
and
(3.10) $\|f\| \leqq 1$.

Then
(3.11) $\left\|\sup \left|f_{n}\right|\right\| \leqq\left\|\sup \left|f_{n}-f_{0}\right|\right\|+\left\|f_{0}\right\|$
<2,
whenever (3.9) and (3.10) hold, since $\left\|f_{0}\right\|=\|f\|$. Given $\xi>0$ we use Lemma (2.7) with $\epsilon=\xi$ and $M=2$ to find a $\delta_{0}>0$ such that
(3.12) $\left\|\sup \left|g_{n}-g_{0}\right|\right\|_{q}<\xi$
whenever
(3.13) $\left\|\sup \left|f_{n}-f_{0}\right|\right\|_{p}<\delta_{2}$
and
(3.14) $\left\|\sup \left|f_{n}\right|\right\|_{p} \leqq 2$.

Then find $\eta, 0<\eta<\delta_{1}$, using the Estimate B with $\epsilon=\delta_{2}$. Then we see that (3.12) holds whenever

$$
\|f\|-\lim \left\|V_{n} f\right\|<\eta\|f\| \leqq \eta .
$$

The proof in the other direction is similar.
(3.15) Lemma. Given a sequence of linear operators $T_{k}, k \geqq 1$, a function $f \in L_{p}$ and an integer $n \geqq 1$, define a new sequence $\widetilde{T}_{k}=T_{n+k}$, a new function

$$
\widetilde{f}=V_{n} f=T_{n} \ldots T_{1} f
$$

and then define $\widetilde{V}_{k}, \widetilde{f}_{k}, \widetilde{g}_{k}$ as in (3.4). Then

$$
g_{n+k}=V_{n}^{*} \widetilde{g}_{k}, \quad k \geqq 0 .
$$

Proof.

$$
\begin{aligned}
g_{n+k} & =V_{n+k}^{*}\left(V_{n+k} f\right)^{*} \\
& =V_{n}^{*} \widetilde{V}_{k}^{*}\left(\widetilde{V}_{k} V_{n} f\right)^{*} \\
& =V_{n}^{*} \widetilde{V}_{k}^{*}\left(\widetilde{V}_{k} f\right)=V_{n}^{*} \widetilde{g}_{k} .
\end{aligned}
$$

The following lemma reduces the proof of the main result to the proof of Estimates A and B for a sequence of positive linear contractions.
(3.16) Lemma. Let T_{n} be a sequence of positive linear contractions on L_{p}. If Estimates A and B hold for T_{n} then f_{n} converges a.e. for each $f \in L_{p}$, with the notations of (3.4).

Proof. It is enough to consider $f \in L_{p}$ with $\|f\| \leqq 1$. We will prove the convergence of g_{n}. First, since Estimate A holds,

$$
\sup \left|g_{n}\right| \in L_{q}
$$

Hence we will show

$$
\lim _{n}\left|\left\|\sup _{k \geqq 0}\left|g_{n+k}-g_{n}\right|\right\|=0\right.
$$

to complete the proof.
Let $\beta=\lim \left\|V_{n} f\right\|$. Distinguish two cases.
Case 1. $\beta=0$. Given $\epsilon>0$ find $n_{0} \geqq 1$ such that

$$
\left\|V_{n_{0}} f\right\|<\epsilon
$$

Choose and fix an $n \geqq n_{0}$ and define \widetilde{g}_{k} and \widetilde{f} as in Lemma (3.15). Then

$$
\begin{aligned}
\left\|\sup _{k \geqq 0}\left|g_{n+k}-g_{n}\right|\right\| & =\left\|\sup _{k \geqq 0}\left|V_{n}^{*} \widetilde{g}_{k}-V_{n}^{*} \widetilde{\mathrm{~g}}_{0}\right|\right\| \\
& \leqq\left\|\sup _{k \geqq 0}\left|\widetilde{g}_{k}-\widetilde{g}_{0}\right|\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \leqq 2\left\|\sup _{k \geqq 0}\left|\widetilde{g}_{k}\right|\right\| \\
& \leqq 2(q\|\widetilde{f}\|)^{p-1}<2(q \epsilon)^{p-1}
\end{aligned}
$$

where the first inequality follows from Lemma (2.2) and the second inequality from Estimate A. Note that Estimate B is not needed in this first case.

Case 2. $\beta>0$. Given $\xi>0$ choose $\eta>0$ from Lemma (3.8). Choose $n_{0} \geqq 1$ such that

$$
\left\|V_{n_{0}} f\right\|<(1+\eta) \beta
$$

Then choose and fix an $n \geqq n_{0}$ and define \widetilde{g}_{k} and \widetilde{f} as before. Then we see that, as in the first case,

$$
\left\|\sup _{k \geqq 0}\left|g_{n+k}-g_{n}\right|\right\| \leqq\left\|\sup _{k \geqq 0}\left|\widetilde{g}_{k}-\widetilde{g}_{0}\right|\right\|<\xi,
$$

since

$$
\begin{aligned}
\|\widetilde{f}\|-\lim _{k}\left\|\widetilde{V}_{k} \widetilde{f}\right\| & =\left\|V_{n} f\right\|-\beta \\
& <(1+\eta) \beta-\beta=\eta \beta \leqq \eta\|\widetilde{f}\| \leqq \eta .
\end{aligned}
$$

(3.17) Lemma. If Estimate A holds for any sequence of positive linear contractions on a finite dimensional L_{p} Space then it also holds for a sequence of positive linear contractions on a general L_{p} Space.

Proof. Assume the hypothesis of the theorem. Let T_{n} be a sequence of positive linear contractions on a general L_{p} Space. If Estimate A does not hold for T_{n} then there is an $f \in L_{p}$ such that

$$
\left\|\sup \left|f_{k}\right|\right\|>q\|f\|
$$

Then there is an $n \geqq 1$ such that

$$
\left\|\max _{0 \leqq k \leqq n}\left|f_{k}\right|\right\|>q\|f\|
$$

Then we see that there is a finite partition \mathscr{P} of the measure space X such that if E is the conditional expectation with respect to \mathscr{P} and if $T_{k}^{\prime}=E T_{k} E, f^{\prime}=E f$ and if $f_{k}^{\prime}=M\left(V_{k}^{\prime}\right) f^{\prime}$ with $V_{k}^{\prime}=T_{k}^{\prime} \ldots T_{1}^{\prime}$ then
(3.18) $\left\|\max _{0 \leqq k \leqq n}\left|f_{k}^{\prime}\right|\right\|>q\left\|f^{\prime}\right\|$.

This essentially follows from Lemma (2.5). We recall that the conditional expectation is defined as zero on the atoms of \mathscr{P} with infinite measures.

Now $T_{k}^{\prime}=E T_{k} E$ can be considered as a positive linear contraction on a finite dimensional L_{p} Space. Hence (3.18) contradicts our hypothesis. Therefore Estimate A must be satisfied for T_{k}.
(3.19) Lemma. Assume that for each $\xi>0$ there is an $\eta>0$, depending only on ξ and p, such that

$$
\begin{equation*}
\left\|\max _{0 \leqq k \leqq n}\left|g_{k}^{\prime}-g_{0}^{\prime}\right|\right\|_{q}<\xi \tag{3.20}
\end{equation*}
$$

whenever $n \geqq 1$ is an integer, $T_{1}^{\prime}, \ldots, T_{n}^{\prime}$ are n positive linear contractions of a finite dimensional L_{p} Space l_{p} and $f^{\prime} \in l_{p}$ such that

$$
\begin{equation*}
\left\|f^{\prime}\right\|-\left\|V_{n}^{\prime} f^{\prime}\right\|<\eta\left\|f^{\prime}\right\| \leqq \eta \tag{3.21}
\end{equation*}
$$

where, as before,

$$
\begin{aligned}
& g_{k}^{\prime}=\left(V_{k}^{\prime}\right)^{*}\left(V_{k}^{\prime} f^{\prime}\right)^{*} \\
& V_{k}^{\prime}=T_{k}^{\prime} \ldots T_{1}^{\prime}, V_{0}^{\prime}=1
\end{aligned}
$$

Then Estimate B holds for any sequence of positive linear contractions on a general L_{p} Space.

Proof. Let $\xi>0$ be given. Find $\eta>0$ from the hypothesis. Let T_{k} be any sequence of positive linear contractions on an L_{p} Space. We would like to show that

$$
\left\|\sup _{k}\left|g_{k}-g_{0}\right|\right\|<2 \xi
$$

whenever

$$
\begin{equation*}
\|f\|-\lim \left\|V_{k} f\right\|<\eta\|f\| \leqq \eta \tag{3.22}
\end{equation*}
$$

In fact, otherwise there is an $f \in L_{p}$ satisfying (3.22) for which

$$
\left\|\sup _{k}\left|g_{k}-g_{0}\right|\right\|>\xi
$$

Then there is an $n \geqq 1$ such that

$$
\|f\|-\left\|V_{n} f\right\|<\eta\|f\| \leqq \eta
$$

and

$$
\left\|\max _{0 \leqq k \leqq n}\left|g_{k}-g_{0}\right|\right\|>\xi
$$

Then, as before, we find a conditional expectation E with respect to a finite partition such that if $T_{k}^{\prime}=E T_{k} E, 1 \leqq k \leqq n$ and $f^{\prime}=E f$ then (3.21) is satisfied but (3.20) is violated.

Finally we will show that if the hypotheses of the Lemmas (3.17) and (3.18) are satisfied for a special type of positive linear contractions on a finite dimensional L_{p}-Space then they are also satisfied for all positive linear contractions on finite dimensional L_{p}-Spaces. For convenience, we will call these special contractions the admissible contractions.
(3.23) Definition. Let T be a positive linear contraction on a finite dimensional L_{p}-Space l_{p}. Then T is called an admissible contraction if $\|T\|=1$ and if $T f>0$ at each point whenever $f \in l_{p}^{+}$and $f \neq 0$.
(3.24) Lemma. Let T be any positive linear contraction of l_{p}. Let $1 / \lambda=\|T\|>0$. Then for each $\epsilon>0$ there is an admissible contraction T^{\prime} of l_{p} such that

$$
\left\|\lambda T-T^{\prime}\right\|<\epsilon .
$$

Proof. Let T_{0} be an arbitrary admissible contraction. Find an admissible T^{\prime} of the form

$$
T^{\prime}=r \lambda T+s T_{0}
$$

where $r<1,0<s$, and s and $1-r$ are sufficiently small.
(3.24) Lemma. Assume that Estimate A is satisfied for any sequence of admissible contractions. Then it is also satisfied for any sequence of positive linear contractions on a finite dimensional $L_{p}-$ Space.

Proof. If the conclusion is not correct then there are finitely many positive linear contractions T_{1}, \ldots, T_{n} on l_{p} and $f \in l_{p}$ such that

$$
\begin{aligned}
& \frac{1}{\lambda_{k}}=\left\|T_{k}\right\|>0 \text { and } \\
& \left\|\max _{0 \leqq k \leqq n}\left|f_{n}\right|\right\|>q\|f\| .
\end{aligned}
$$

Let $T_{k}^{\prime}=\lambda_{k} T_{k}$ and $f^{\prime}=f$ and

$$
f_{k}^{\prime}=M\left(V_{k}^{\prime}\right) f^{\prime}
$$

Then we see that

$$
f_{k}^{\prime}=\left(\lambda_{k} \ldots \lambda_{1}\right)^{q} f_{k}
$$

Hence

$$
\left\|\max _{0 \leqq k \leqq n}\left|f_{k}^{\prime}\right|\right\|>q\left\|f^{\prime}\right\|
$$

Then one can replace each T_{k}^{\prime} by an admissible $T_{k}^{\prime \prime}$ such that one would still have

$$
\left\|\max _{0 \leqq k \leqq n}\left|f_{k}^{\prime \prime}\right|\right\|>q\left\|f^{\prime \prime}\right\|
$$

with $f^{\prime \prime}=f, f_{k}^{\prime \prime}=M\left(V_{k}^{\prime \prime}\right) f^{\prime \prime}$.
(3.25) Lemma. Suppose that for each $\xi^{\prime}>0$ there exists an $\eta^{\prime}>0$, depending only on ξ^{\prime} and p such that

$$
\left\|\max _{0 \leqq k \leqq n}\left|g_{k}-g_{0}\right|\right\|<\xi^{\prime}
$$

whenever $n \geqq 1$ is an integer, T_{1}, \ldots, T_{n} are n admissible contractions of l_{p} and $f \in l_{p}$ such that

$$
\|f\|-\left\|V_{n} f\right\|<\eta^{\prime}\|f\| \leqq \eta^{\prime}
$$

Also assume that Estimate A is satisfied for any sequence of admissible contractions on l_{p}. Then the hypothesis of Lemma (3.19) is satisifed.

Proof. Let $\xi>0$. Using the hypothesis choose an $\eta^{\prime}>0$ corresponding to $\xi^{\prime}=(1 / 10) \xi$. Then choose $\eta^{\prime \prime}>0$ such that

$$
(1+2 x)^{q}<1+\frac{1}{10} \xi q^{1-p}
$$

whenever $0 \leqq x<\eta^{\prime \prime}$. Let

$$
\eta=\min \left(\eta^{\prime}, \eta^{\prime \prime}, \frac{1}{4}\right) .
$$

Then let $T_{1}^{\prime}, \ldots, T_{n}^{\prime}$ be linear positive l_{p} contractions. Let $f^{\prime} \in l_{p}$ be such that

$$
\left\|f^{\prime}\right\|-\left\|V_{n}^{\prime} f^{\prime}\right\|<\eta\left\|f^{\prime}\right\| \leqq \eta
$$

Then, since Estimate A holds for T_{k}^{\prime},
(3.26) $\left\|\max \left|g_{k}^{\prime}\right|\right\| \leqq\left(q\left\|f^{\prime}\right\|\right)^{p-1} \leqq q^{p-1}$,
by Lemma (3.7).
We would like to show that
(3.27) $\left\|\max \left|g_{k}^{\prime}-g_{0}^{\prime}\right|\right\|>\frac{1}{2} \xi$
leads to a contradiction.
If $T_{k}^{\prime}=0$ for some $k, 1 \leqq k \leqq n$, then $V_{n}^{\prime} f^{\prime}=0$ and we have

$$
\left\|f^{\prime}\right\|<\eta\left\|f^{\prime}\right\| \leqq \frac{1}{4}\left\|f^{\prime}\right\|
$$

which is impossible. Hence

$$
0<\left\|T_{k}^{\prime}\right\|=\frac{1}{\lambda_{k}} \leqq 1 \quad \text { for all } k
$$

Also, since $\eta \leqq 1 / 4$, and since

$$
\begin{aligned}
(1-\eta)\left\|f^{\prime}\right\| & \leqq\left\|V_{n}^{\prime} f^{\prime}\right\|=\left\|T_{n}^{\prime} \ldots T_{1}^{\prime} f^{\prime}\right\| \\
& \leqq \frac{1}{\lambda_{n} \ldots \lambda_{1}}\|f\|
\end{aligned}
$$

we see that

$$
1 \leqq \lambda_{1} \ldots \lambda_{n} \leqq \frac{1}{1-\eta} \leqq 1+2 \eta
$$

Hence, if $\mu_{k}=\lambda_{1} \ldots \lambda_{k}$ then

$$
1 \leqq \mu_{k} \leqq 1+2 \eta \leqq 1+2 \eta^{\prime \prime} \quad \text { for all } k, \quad 1 \leqq k \leqq n
$$

Now let $T_{k}^{\prime \prime}=\lambda_{k} T_{k}^{\prime}$ and $f^{\prime \prime}=f^{\prime}$ and define $g_{k}^{\prime \prime}$ in terms of $f^{\prime \prime}$ and $T_{k}^{\prime \prime}$ as before. Then

$$
g_{k}^{\prime \prime}=\mu_{k}^{q} g_{k}^{\prime}
$$

and

$$
1 \leqq \mu_{k}^{q} \leqq 1+\frac{1}{10} \xi q^{1-p}
$$

by the choice of $\eta^{\prime \prime}$.
Then, by Lemma (2.4) and by (3.26)

Also

$$
\begin{aligned}
\left\|f^{\prime \prime}\right\|-\left\|V_{n}^{\prime \prime} f^{\prime \prime}\right\| & \leqq\left\|f^{\prime}\right\|-\left\|V_{n}^{\prime} f^{\prime}\right\| \\
& <\eta\left\|f^{\prime}\right\|=\eta\left\|f^{\prime \prime}\right\| \\
& \leqq \eta^{\prime}\left\|f^{\prime \prime}\right\| .
\end{aligned}
$$

Now we can find admissible T_{k} such that if $f=f^{\prime}=f^{\prime \prime}$ then we still have

$$
\left\|\max \left|g_{k}-g_{0}\right|\right\|>\frac{4}{10} \xi>\xi^{\prime}
$$

and

$$
\|f\|-\left\|V_{n} f\right\|<\eta^{\prime}\|f\| \leqq\|f\|
$$

This contradicts the choice of η^{\prime}. Hence we see that

$$
\left\|\max \left|g_{k}^{\prime}-g_{0}^{\prime}\right|\right\|<\xi
$$

whenever

$$
\left\|f^{\prime}\right\|-\left\|V_{n} f^{\prime}\right\|<\eta\left\|f^{\prime}\right\| \leqq\left\|f^{\prime}\right\| .
$$

This completes the proof.
Hence to prove the main theorem, Theorem (3.2), it will be enough to prove the hypotheses of Lemmas (3.24) and (3.25). This will be done in the next section.
4. Admissible contractions of l_{p}. Let l_{p} be a d-dimensional L_{p}-Space. Hence the associated measure space consists of d points with non zero measures $m_{i}>0,1 \leqq i \leqq d$. Let T be an admissible contraction of l_{p}. A result in [1] shows that there is a finite measure space (Z, \mathscr{F}, μ) of a very special type, a partition \mathscr{P} of Z into d atoms of measure m_{i} and an automorphism τ of Z, again of a very special type, such that if Q is the L_{p}-isometry induced by τ and if E is the conditional expectation with respect to the partition \mathscr{P} then T can be represented by (or isomorphic to)

$$
E Q E
$$

in the obvious sense. We will use the properties of Z, τ, Q and E to obtain the estimates on admissible contraction from the corresponding estimates on martingales. We will first describe Z and τ. Again, for convenience, we will call the particular type of automorphisms of Z we are going to define the admissible automorphisms of Z and the induced isometries the admissible isometries of L_{p}. In this section L_{p} will always denote $L_{p}(Z)$ and l_{p} the finite dimensional L_{p}-Space associated with the finite partition \mathscr{P}. (Hence $l_{p}=E L_{p}$.)
(4.1) Definition of Z. Let d be an arbitrary integer, $d \geqq 1$. The indices i and j will range through the integers $\{1, \ldots, d\}$. Let m_{i} be also fixed numbers, $m_{i}>0$. Let I_{i} be disjoint intervals on the x-axis such that the length of I_{i} is m_{i}. Let J_{i} be disjoint intervals on the y-axis, each of unit length. Let $P_{i}=I_{i} \times J_{i}$ and let $Z=U P_{i}$. Hence Z be a subset of the $x y$ plane. The measure μ will be the two dimensional Lebesgue measure on Z. The partition of Z into P_{i} will be denoted by \mathscr{P}. The points of Z are denoted by (x, y), as usual.
(4.2) Admissible automorphisms of Z. An automorphism τ of Z will be called an admissible automorphism if it is of the following type. Each I_{j} is partitioned into d intervals $\left(I_{i j}\right)_{i}$ of non zero length and each J_{i} is partitioned into d intervals $\left(J_{i j}\right)_{j}$ of non zero length. If $R_{i j}=I_{i} \times J_{i j}$ and $S_{i j}=I_{i j} \times J_{j}$ then τ maps each $R_{i j}$ onto $S_{i j}$ and the restriction of τ to each $R_{i j}$ is of the form

$$
\tau(x, y)=(a x+b, c y+d)
$$

where a, b, c, d are four constants depending on $R_{i j}$. The L_{p}-isometry Q induced by an admissible automorphism will be called an admissible isometry of L_{p}.
(4.3) Admissible contractions of L_{p}. A result in [1] shows that if T is an admissible contraction of l_{p} then there is an admissible isometry Q of L_{p} such that $T=E Q E$, where E is the conditional expectation with respect to \mathscr{P}. Here we identified, in an obvious way, the finite dimensional space l_{p} by $E L_{p}$. The converse is not true. If Q is an admissible isometry of L_{p} then
$E Q E$ may not be an admissible contraction of l_{p}, in the sense of the previous section (the reason is that $\|E Q E\|<1$ is possible). This is not important, however, as we are going to prove our estimates for any sequence of operators of the type $E Q E$, with Q being an admissible isometry of L_{p}.
(4.4) Further notations and definitions. We have already denoted the conditional expectation operator with respect to \mathscr{P} by E. In general, if \mathscr{G} is a finite partition then $E(\cdot \mid \mathscr{G})$ will denote the conditional expectation with respect to \mathscr{G}. Hence $E=E(\cdot \mid \mathscr{P})$.

Let G be a set in the $x y$-plane. A subset F of G will be called a vertical subset of G if

$$
F=\left(F^{\prime} \times \mathbf{R}\right) \cap G
$$

for some subset F^{\prime} of the x-axis. Similarly, if

$$
H=\left(\mathbf{R} \times H^{\prime}\right) \cap G
$$

then H will be called a horizontal subset of G. Let ϕ be a function defined on a subset of the $x y$-plane. We will say that ϕ is constant on vertical lines if $\phi(x, y)$ depends only on the x-coordinate. Similarly, if $\phi(x, y)$ depends only on the y-coordinate then we will say that ϕ is constant on horizontal lines.
(4.5) Lemma. Let \mathscr{G} be a finite partition of Z such that each atom of \mathscr{G} is a vertical subset of one of P_{i}. Let f be an L_{p} function which is constant on vertical lines. Let τ be an admissible automorphism and let Q be the induced L_{p} isometry. Then

$$
\begin{equation*}
Q E(f \mid \mathscr{G})=E(Q f \mid \mathscr{P} \vee \tau \mathscr{G}) \tag{4.6}
\end{equation*}
$$

Proof. If G is a subset of Z then let $A(f, G)$ be the average value of f on G; i.e., let

$$
A(f, G)= \begin{cases}(\mu(G))^{-1} \int_{G} f d \mu & \text { if } \mu(G)>0 \tag{4.7}\\ 0 & \text { otherwise }\end{cases}
$$

If G is an atom of \mathscr{G} then it is of the form $G=G^{\prime} \times J_{i}$, for some i, where G^{\prime} is a subset of I_{i}. Let $G_{j}=G \cap R_{i j}$ with this particular i, where $R_{i j}$'s are associated with τ as in (4.2). Then $G_{j}=G^{\prime} \times J_{i j}$. Since f is constant on vertical lines,

$$
A\left(f, G_{j}\right)=A(f, G)
$$

for each j. Hence,

$$
\begin{equation*}
A(f, G) \chi_{G}=\sum A\left(f, G_{j}\right) \chi_{G_{j}} . \tag{4.8}
\end{equation*}
$$

We now notice that τ maps $R_{i j}$ onto $S_{i j}$ and that τ transports the measure μ on $R_{i j}$ to a constant multiple of μ on $S_{i j}$ (i.e.,

$$
\rho=\frac{d \mu \tau^{-1}}{d \mu}
$$

is a constant $\rho_{i j}$ on $S_{i j}$. Hence, if F is a subset of $R_{i j}$, then

$$
A(f, F)=A\left(f^{-1}, \tau F\right)
$$

We then have that, since each G_{j} is contained in a single $R_{i j}$,

$$
\begin{align*}
Q A\left(f, G_{j}\right) \chi_{G_{j}} & =A\left(f, G_{j}\right) Q \chi_{G_{j}} \tag{4.9}\\
& =A\left(f^{-1}, \tau G_{j}\right) \rho_{i j}^{1 / p} \chi_{\tau G_{j}} \\
& =A\left(\rho_{i j}^{1 / p} f^{-1}, \tau G_{j}\right) \chi_{\tau G_{j}} \\
& =A\left(Q f, \tau G_{j}\right) \chi_{\tau G_{j}}
\end{align*}
$$

We now observe that

$$
\tau G_{j}=(\tau G) \cap S_{i j}=(\tau G) \cap P_{i}
$$

which means that τG_{j} 's are exactly the atoms of $\mathscr{P} \vee \tau G$ that are contained in τG. Hence we conclude the proof first by applying Q to the both sides of (4.8), then by transforming the second side by means of (4.9) and finally by summing the resulting equations over the atoms G of the partition \mathscr{G}.
(4.10) Lemma. Let f, f^{\prime} be two functions in L_{p} that are constant on vertical lines. If $E f=E f^{\prime}$ then also $E Q f=E Q f^{\prime}$, where Q is any admissible L_{p} isometry.

Proof. This was already proved in [1]. But it also follows directly from the previous lemma, which shows that

$$
E(Q f \mid \mathscr{P} \vee \tau \mathscr{P})=E\left(Q f^{\prime} \mid \mathscr{P} \vee \tau \mathscr{P}\right)
$$

as these two sides are equal to $Q E f$ and to $Q E f^{\prime}$ respectively.
These results have obvious analogues for the inverse of an admissible isometry. We state only the following result and omit the proof.
(4.11) Lemma. Let f and f^{\prime} be two functions in L_{p} that are constant on horizontal lines. If $E f=E f^{\prime}$ then also

$$
E Q^{-1} f=E Q^{-1} f^{\prime}
$$

where Q is any admissible isometry.
(4.12) Lemma. If $f \in L_{p}$ is constant on vertical lines and if Q is an admissible isometry then $Q f$ is also constant on vertical lines. Similarly, if $g \in L_{p}$ is constant on horizontal lines then $Q^{-1} g$ is also constant on horizontal lines.

Proof. This follows directly from the definitions, if one observes that the image of a vertical line in Z under an admissible τ consists of d vertical lines and that

$$
\rho=\frac{d \mu \tau^{-1}}{d \tau}
$$

is constant on vertical lines.
(4.13) Notation. Let n be a fixed integer, $n \geqq 1$. The index k will range through the integers $\{0,1, \ldots, n\}$. If $1 \leqq k \leqq n$ then let Q_{k} be an admissible L_{p} isometry induced by an admissible automorphism τ_{k}. Let Q_{0} be the identity operator on L_{p} and τ_{0} the identity automorphism on Z. Then let

$$
T_{k}=E Q_{k} E, \quad V_{k}=T_{k} \ldots T_{0}, \quad W_{k}=Q_{k} \ldots Q_{0} .
$$

For a fixed $f \in L_{p}$ we let, as before,

$$
\begin{aligned}
f_{k} & =\left[V_{k}^{*}\left(V_{k} f\right)^{*}\right]^{*} \\
g_{k} & =f_{k}^{*}=V_{k}^{*}\left(V_{k} f\right)^{*}
\end{aligned}
$$

and also

$$
\phi_{k}=W_{k}^{-1} E W_{k} E f, \quad 0 \leqq k \leqq n
$$

Note that

$$
f_{0}=\phi_{0}=E f
$$

(4.14) Lemma. $V_{k} f=E W_{k} E f$.

Proof. First observe that $W_{k} E f$ is constant on vertical lines. Hence,

$$
W_{k+1} E f=Q_{k+1} W_{k} E f=Q_{k+1} E W_{k} E f
$$

where the second equality follows from Lemma (4.10). Then an obvious induction argument completes the proof.
(4.15) Lemma. $V_{k}^{*}\left(V_{k} f\right)^{*}=E\left(W_{k}^{-1} E W_{k} E f\right)^{*}$.

Proof. Let $\left(V_{k} f\right)^{*}=g$, which is equal to

$$
g=\left(E W_{k} E f\right)^{*}
$$

by Lemma (4.14). Hence $E g=g$. Since $T_{k}^{*}=E Q_{k}^{*} E$, and since Q_{k}^{*} is the L_{q} isometry induced by τ_{k}^{-P}, an obvious analogue of Lemma (4.14) shows that

$$
V_{k}^{*} g=E W_{k}^{*} E g=E W_{k}^{*} g .
$$

Then Lemma (2.12) gives that

$$
\begin{aligned}
W_{k}^{*} g & =\left(W_{k}^{-1} g^{*}\right)^{*} \\
& =\left(W_{k}^{-1} E W_{k} E f\right)^{*},
\end{aligned}
$$

which completes the proof.
(4.16) Lemma. There exists a monotone sequence of finite partitions $\mathscr{G}_{n}<\ldots<\mathscr{G}_{0}$, each as in Lemma (4.5), such that, with the notations of (4.13),

$$
\phi_{k}=W_{n}^{-1} E\left(W_{n} E f \mid \mathscr{G}_{k}\right)
$$

Proof. First we can take $\mathscr{G}_{n}=\mathscr{P}$, since

$$
\phi_{n}=W_{n}^{-1} E W_{n} E f=W_{n}^{-1} E\left(W_{n} E f \mid \mathscr{P}\right) .
$$

To obtain \mathscr{G}_{n-1} we use Lemma (3.8).

$$
\begin{aligned}
\phi_{n-1} & =W_{n-1}^{-1} E\left(W_{n-1} E f \mid \mathscr{P}\right) \\
& =W_{n-1}^{-1} Q_{n}^{-1} E\left(Q_{n} W_{n-1} E f \mid \mathscr{P} \vee \tau_{n} \mathscr{P}\right) \\
& =W_{n}^{-1} E\left(W_{n} E f \mid \mathscr{P} \vee \tau_{n} \mathscr{P}\right) .
\end{aligned}
$$

Hence we can take $\mathscr{G}_{n-1}=\mathscr{P} \vee \tau_{n} \mathscr{P}$. Continuing in this way we see that

$$
\mathscr{G}_{n-k}=\mathscr{P} \vee \tau_{n} \mathscr{P} \vee \ldots \vee \tau_{n} \ldots \tau_{n-k+1} \mathscr{P}, \quad 1 \leqq k \leqq n
$$

For a more formal proof one can apply an induction over n. Since \mathscr{G}_{k} depends on n we write, for the purpose of this proof, \mathscr{G}_{k}^{n} to show this dependence. Then an application of Lemma (3.8) shows that

$$
\begin{aligned}
W_{n}^{-1} E\left(W_{n} E f \mid \mathscr{G}_{k}^{n}\right) & =W_{n} Q_{n+1}^{-1} E\left(Q_{n+1} W_{n} E f \mid \mathscr{P} \vee \tau_{n+1} \mathscr{G}_{k}^{n}\right) \\
& =W_{n+1}^{-1} E\left(W_{n+1} E f \mid \mathscr{G}_{k}^{n+1}\right),
\end{aligned}
$$

i.e., that

$$
\mathscr{G}_{k}^{n+1}=\mathscr{P} \vee \tau_{n+1} \mathscr{G}_{k}^{n} .
$$

Since $\mathscr{G}_{k}^{k}=\mathscr{P}$, we obtain \mathscr{G}_{k}^{n} as before. Since n is fixed we will now again write \mathscr{G}_{k} instead of \mathscr{G}_{k}^{n}.
(4.17) Notation. Let

$$
u_{k}=E\left(W_{n} E f \mid \mathscr{G}_{k}\right), \quad 0 \leqq k \leqq n,
$$

where \mathscr{G}_{k} 's are the partitions obtained in Lemma (3.17). Hence

$$
\phi_{k}=W_{n}^{-1} u_{k} .
$$

(4.18) Theorem. The sequence $\left(u_{0}, \ldots, u_{n}\right)$ is a martingale in L_{p} and

$$
\begin{aligned}
& \left\|\max \left|u_{k}\right|\right\| \leqq q\left\|u_{0}\right\| \leqq q\|E f\| \\
& \left\|\max \left|u_{k}-u_{n}\right|\right\| \leqq q\left\|u_{0}-u_{n}\right\| .
\end{aligned}
$$

Proof. Since the partitions \mathscr{G}_{k} form a monotone sequence, the sequence $\left(u_{0}, \ldots, u_{n}\right)$ is a martingale in L_{p} with

$$
u_{k}=E\left(u_{0} \mid \mathscr{G}_{k}\right)
$$

Hence the martingale inequality (see, e.g. [10], p. 91, where we can take $\left.A_{p}=q=p /(p-1)\right)$ shows that

$$
\left\|\max \left|u_{k}\right|\right\| \leqq q\left\|u_{0}\right\| .
$$

For the second inequality, we observe that

$$
h_{k}=u_{k}-u_{n}, \quad 0 \leqq k \leqq n
$$

is also a martingale, since

$$
h_{k}=E\left(u_{0}-u_{n} \mid \mathscr{G}_{k}\right)=E\left(h_{0} \mid \mathscr{G}_{k}\right)
$$

Then we use the same martingale inequality for h_{k}.
(4.19) Lemma.

$$
\begin{aligned}
& \left\|\max \left|\phi_{k}\right|\right\| \leqq q\left\|\phi_{0}\right\| \text { and } \\
& \left\|\max \left|\phi_{k}-\phi_{n}\right|\right\| \leqq q\left\|\phi_{0}-\phi_{n}\right\| .
\end{aligned}
$$

Proof. Note that W_{n}^{-1} is a positive invertible isometry of L_{p} and it is induced by an automorphism of Z. Since $\phi_{k}=W_{n}^{-1} u_{k}$ we see that

$$
\begin{aligned}
& \left|\phi_{k}\right|=W_{n}^{-1}\left|u_{k}\right| \text { and } \\
& \left|\phi_{k}-\phi_{n}\right|=W_{n}^{-1}\left|u_{k}-u_{n}\right|
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \max \left|\phi_{k}\right|=W_{n}^{-1}\left(\max \left|u_{k}\right|\right) \text { and } \\
& \max \left|\phi_{k}-\phi_{n}\right|=W_{n}^{-1}\left(\max \left|u_{k}-u_{n}\right|\right) .
\end{aligned}
$$

Then the proof follows from Theorem (4.18).
(4.20) Corollary. $\left\|\max \left|\phi_{k}-\phi_{0}\right|\right\| \leqq 2 q\left\|\phi_{n}-\phi_{0}\right\|$.
(4.21) Lemma. Given $\epsilon>0$ there is $a \delta>0$, depending only on ϵ and p, such that

$$
\left\|f_{0}\right\|-\left\|V_{n} f_{0}\right\|<\delta\left\|f_{0}\right\|
$$

implies that $\left\|\phi_{n}-\phi_{0}\right\|<\epsilon\left\|\phi_{0}\right\|$.
Proof. Recall that $f_{0}=\phi_{0}=E f$. Given $\epsilon>0$ pick a $\delta>0$ as given by Lemma (2.3). Let

$$
\left\|f_{0}\right\|-\left\|V_{n} f_{0}\right\|<\delta\left\|f_{0}\right\|
$$

Then

$$
\begin{aligned}
\left\|W_{n} f_{0}\right\|-\left\|E W_{n} f_{0}\right\| & =\left\|f_{0}\right\|-\left\|V_{n} f_{0}\right\| \\
& <\delta\left\|f_{0}\right\|=\delta\left\|W_{n} f_{0}\right\|
\end{aligned}
$$

where we have used Lemma (4.14) and the fact that W_{n} is an L_{p} isometry. Hence Lemma (2.3) shows that

$$
\left\|W_{n} f_{0}-E W_{n} f_{0}\right\|<\epsilon\left\|W_{n} f_{0}\right\|
$$

which implies that

$$
\left\|f_{0}-W_{n}^{-1} E W_{n} f_{0}\right\|<\epsilon\left\|f_{0}\right\|,
$$

or that

$$
\left\|\phi_{0}-\phi_{n}\right\|<\epsilon\left\|\phi_{0}\right\|
$$

This completes the proof.
We are now ready to prove the main estimates.
(4.21) Theorem. With the notations of (4.13),

$$
\left\|\max _{0 \leqq k \leqq n}\left|f_{k}\right|\right\| \leqq q\left\|f_{0}\right\| \quad(=\|E f\| \leqq\|f\|)
$$

Proof. By Lemma (4.15) we see that

$$
f_{k}^{*}=g_{k}=E \phi_{k}^{*}
$$

Hence

$$
\begin{aligned}
\left\|\max \left|g_{k}\right|\right\|_{q} & \leqq\left\|\max \left|\phi_{k}^{*}\right|\right\|_{q} \\
& \leqq\left\|\left(\max \left|\phi_{k}\right|\right)^{*}\right\|_{q} \\
& =\left\|\max \left|\phi_{k}\right|\right\|_{p}^{p / q} \\
& \leqq\left(q\left\|\phi_{0}\right\|\right)^{p / q},
\end{aligned}
$$

where the last inequality follows from Lemma (4.19). We then have that

$$
\begin{aligned}
\left\|\max \left|f_{k}\right|\right\|_{p} & =\left\|\max \left|g_{k}^{*}\right|\right\|_{p} \\
& =\left\|\left(\max \left|g_{k}\right|\right)^{*}\right\|_{p} \\
& =\left\|\max \left|g_{k}\right|\right\|_{q}^{q / p} \\
& \leqq q\left\|\phi_{0}\right\|=q\left\|f_{0}\right\| .
\end{aligned}
$$

(4.22) Theorem. Given $\xi>0$ there exists an $\eta>0$, depending only on ξ and p, such that with the notations of (4.13),

$$
\left\|\max \left|g_{k}-g_{0}\right|\right\|<\xi
$$

whenever

$$
\left\|f_{0}\right\|-\left\|V_{n} f_{0}\right\|<\eta\left\|f_{0}\right\| \leqq \eta
$$

Proof. Use Lemma (2.7) with $\epsilon=\xi$ and $M=q$ to find a $\lambda>0$ such that, for any sequence h_{k} in L_{p},

$$
\left\|\sup \left|h_{k}^{*}-h_{0}^{*}\right|\right\|_{q}<\xi
$$

whenever

$$
\left\|\sup \left|h_{k}\right|\right\|_{p} \leqq q
$$

and

$$
\left\|\sup \left|h_{k}-h_{0}\right|\right\|_{p}<\lambda
$$

Then use Lemma (4.21) with $\epsilon=\lambda / 4 q$ to find an $\eta>0$ such that

$$
\left\|\phi_{n}-\phi_{0}\right\|<\frac{\lambda}{4 q}\left\|\phi_{0}\right\|
$$

whenever
(4.23) $\quad\left\|f_{0}\right\|-\left\|V_{n} f_{0}\right\|<\eta\left\|f_{0}\right\|$.

Now assume that (4.23) is satisfied with an $f_{0} \in E L_{p}$ such that $\left\|f_{0}\right\| \leqq 1$. Then

$$
\left\|\phi_{n}-\phi_{0}\right\|<\frac{\lambda}{4 q}
$$

This implies, by Corollary (4.20),

$$
\left\|\max \left|\phi_{k}-\phi_{0}\right|\right\|<\lambda
$$

and also, by Lemma (4.19),

$$
\left\|\max \left|\phi_{k}\right|\right\|<q
$$

Hence the choice of λ implies that

$$
\left\|\max \left|\phi_{k}^{*}-\phi_{0}^{*}\right|\right\|_{q}<\xi .
$$

Then

$$
\begin{aligned}
\left\|\max \left|g_{k}-g_{0}\right|\right\|_{q} & =\left\|\max \left|E \phi_{k}^{*}-E \phi_{0}^{*}\right|\right\|_{q} \\
& \leqq\left\|\max \left|\phi_{k}^{*}-\phi_{0}^{*}\right|\right\|_{q} \\
& <\xi .
\end{aligned}
$$

This completes the proof of the present theorem. Hence the proof of the main theorem, Theorem (3.2), is also completed.

References

1. M. A. Akcoglu, A pointwise ergodic theorem in L_{p}-spaces, Can. J. Math. 26 (1975), 1075-1082.
2. M. A. Akcoglu and L. Sucheston, An alternating procedure for operators on L_{p}-spaces, Proc. AMS, to appear.
3. D. L. Burkholder and Y. S. Chow, Iterates of conditional expectation operators, Proc. AMS 12 (1961), 490-495.
4. J. L. Doob, A ratio operator limit theorem, Z. Wahrsch. 1 (1963), 288-294.
5. U. Krengel, Ergodic theorems, de Gruyter Studies in Math. 6 (1985).
6. S. Mazur, Une remarque sur l'homéomorphie des champs fonctionnels, Studia Math. I (1929), 83-85.
7. G. C. Rota, An "Alternierende Verfahren" for general positive operators, Bull. AMS. 68 (1962), 95-102.
8. N. Starr, Operator limit theorems, Trans. AMS 121 (1966), 90-115.
9. E. Stein, On the maximal ergodic theorem, Proc. Nat. Acad. Sci. USA, 47 (1961), 1894-1897.
10. -Topics in harmonic analysis (Princeton Univ. Press, 1970).

University of Toronto, Toronto, Ontario;
The Ohio State University, Columbus, Ohio

[^0]: Received March 10, 1987. The research of the first author was supported in part by NSERC Grant A3974 while that of the second author was supported in part by NSF Grant DMS 8606387.

