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An Infinite Order Whittaker Function

Mark McKee

Abstract. In this paper we construct a flat smooth section of an induced space I(s, 77) of SL2(R) so that
the attached Whittaker function is not of finite order. An asymptotic method of classical analysis is
used.

1 Introduction

Whittaker functions appear in the generic Fourier coefficients of cuspidally induced
Eisenstein series. This is the early work of F. Shahidi (cf. [14,16]) in connection
with the Langlands—Shahidi method. Their holomorphy (in the complex aspect, for
the K-finite “part” of principal series representations) was first established by Jacquet
[6]. Schiffman [13] later extended holomorphy to smooth vectors for real rank one
groups. Shahidi [15], using intertwining estimates and following ideas of Jacquet [6],
extended this result to real groups. The most general result is due to Wallach (cf.
chapter 15 of [22]).

One is usually interested in the Langlands—Shahidi method for the appearance of
automorphic L-functions (cf. Langlands [9] and Shahidi [18]). Indeed, the func-
tional equation of Eisenstein series (cf. Langlands [10]) led Shahidi to a functional
equation for these L-functions; and a theory of “local coefficients” (cf. Shahidi [14—
19]). Put succinctly, the theory of local coefficients puts Jacquet’s functional equa-
tion of Whittaker functions into a much more encompassing representation theoretic
framework. Involved in this are multiplicity one (cf. Shalika [20]) and intertwining
operators (which naturally fit with Langlands [9, 10]).

The field of automorphic forms has seen some striking new examples of functo-
riality, (cf. Kim and Shahidi [8] and Kim [7]). Central to these proofs is a converse
theorem of Cogdell and Piatetski—Shapiro [2]. To apply this, one has to verify certain
analytic information about specific automorphic L-functions. One requirement is
boundedness in vertical strips. Gelbart and Shahidi [5] prove this. Their paper uses
the theory of Eisenstein series, along with Shahidi’s computation (the appearance of
Whittaker functions in non-constant Fourier coefficients). Their paper also uses the
functional equation of these L-functions, and so the proof of the main result only
required a finite order estimate of Whittaker functions in a half-plane. (Further, the
archimedean functions are the ones in question.) It is here that the question arose as
to whether all smooth Whittaker functions are of finite order globally.

Decades ago, it was expected that the analytic behavior of these functions could
be quite complicated (cf. Shahidi [15, Introduction]). In this paper, we construct
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a Whittaker function (attached to a smooth section of a principal series of SL,(IR))
that is not of finite order. The analytic tool used is Laplace’s method from asymptotic
analysis. For this reason, this paper might best fit into the “classical analysis” category,
but the motivation (and result is for) was from the automorphic realm. This is a result
that differs from the K-finite theory (cf. McKee [11]). It is possible that the analytic
properties of smooth Eisenstein series could be different than those of the K-finite
theory.

Let us describe the smooth Whittaker functions in Shahidi [15]. Assume G is
a real split semisimple algebraic group with (real) Lie algebra g. Let us recall some
definitions. (We refer to Chapter 2 of Wallach [21] for reductive properties.) Suppose
O is a Cartan involution of g. If B denotes the Killing form on g given by B(X,Y) =
tr(XY), we can define an inner product on g by (X,Y) = —B(X,0(Y)). We can
decompose g = f @ p, where f and p are the +1 and —1 eigenspaces, respectively, of
O. Then f is the Lie algebra of a maximal compact subgroup of G, which we will call
K. Further, let a be a maximal abelian subalgebra of p. We can write g = @ a®n for
n a nilpotent Lie subalgebra. Then n decomposes into root-spaces under the action
of a by ad. Let A and N be the connected subgroups of G corresponding to a and
n. For both subgroups, the exponential map is surjective. Then N is unipotent and
clearly A is self-adjoint and abelian. The decomposition G = ANK is known as an
Iwasawa decomposition. Of course, K depends on ©, and A and N depend also on the
particular maximal abelian subspace a of p.

Suppose we have an Iwasawa decomposition ANK with all the properties above.
Let us define M = Zg(a), the centralizer in G of a. Then M is a real reductive group
with split component A. Let us define My = M N K. Then it is known that P = MN
is a (minimal) parabolic subgroup. Further, we have P = MyAN, which is known as
the Langlands decomposition of P. Since P is minimal, N is a full unipotent subgroup.
(In the automorphic literature, this situation frequently uses the notation U instead
of N.) Further, we can write G = PK. We take a function f, in the induced space
I(v,n) (a principal series) and a generic character x on N. Heren € My; i.e, nisa
unitary character of My. The function f, then satisfies f, (m,ank) = n(mqy)a”*’ f, (k)
where v is identified to be in the complex dual of a. Further, p is half the sum of the
roots generating N.

Then the Whittaker function attached to f, and , evaluated at the point g € G is

qu(g):/fu(Wflng)x(n)dn.
N

Here w; is the longest element in the Weyl group. This integral converges absolutely
for v in the positive Weyl chamber (where it is holomorphic in v), and otherwise is
interpreted by holomorphic continuation.

Further, one assumes the function f, above is smooth in ¢ and v. This brings in
the semi-norm topology of I (v, ), the smooth vectors of I(v, 7). (For a descrip-
tion, see Schiffman [13], Shahidi [15], or most thoroughly Chapter 10 of Wallach
[22].) We are interested in the analytic properties of these functions in ¥ when g = e
is fixed. For this situation, when one reads the proofs of holomorphic continua-
tion due to Schiffman [13] and Shahidi [15], one comes to the following conclusion.
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Due to this topology (forced by intertwining estimates), the further “to the left” in
v one wants to holomorphically continue the integral, the more derivatives of f, are
needed. This can be seen even more precisely by the recurrence relation of the Bern-
stein polynomial method of the meromorphic continuation of intertwining integrals
(see Wallach [22, Theorem 10.1.5]).

A finite order estimate for the Whittaker function attached to f, would require
a finite order control of these derivatives of f, depending on v. Since smoothness
of f, really comes down to the restriction of f, to K, it seems this is not necessary
for f,, to be smooth. More precisely, it might be possible for f, to be smooth, but
the derivatives of f, (depending on v/), coming from the proof of holomorphy of the
attached Whittaker function, are infinite order in v. This is even more to the point if
we consider a flat section f,, i.e., where f, |, does not depend on v. The question we
address in this paper is how to construct a counterexample. More specifically, for the
group SL,(R), we construct a flat section of I, (v, 7) so that the attached Whittaker
function is of infinite order. (When referring to an entire function, we take infinite
order to mean not of finite order.)

In Section 2, we set up the SL,(IR) coordinates and variables. As an example, we
let W,,,(s) denote the Whittaker function attached to the flat section f; € I (s,n)
with K-type m, and generic character e of N. A particular integral representation
of W,,,(s) is computed.

In Section 3, we exhibit a very simple Mellin transform. As a function of x € R,
we obtain effective asymptotics, with remainder, as x — oo, by Laplace’s method,
(see 3.1). This asymptotic is of infinite order in x.

In Section 4 we construct a flat section f; € I (s, n) so that the Whittaker function
W (s), attached to f; matches (with x = —(s — 1)/2) the Mellin transform of Section
3 with little error. This gives our main result, Theorem 4.1: a smooth Whittaker
s+l
function of infinite order. Specifically, we have the estimate W(s) ~ +/2me™ Te 7
ass — —oo.

In Section 4.1, we give a couple of remarks about Theorem 4.1. We discuss some
motivation, i.e., the framework of ideas that leads to the construction of f; in Theo-
rem 4.1.

2 SL, Preliminaries

For the rest of this paper, we will only consider the group G = SLy(R). Then of
course the Lie algebra g = sl, consists of real 2 x 2 matrices of trace 0. Let us
take O to be the particular Cartan involution on g defined by ©(X) = —X*, where
X* denotes the transpose of X € g. Relative to O, it is well known that SL,(R)
has an Iwasawa decomposition ANK, where A = { (¢ %) : a > 0} is the split

component, N = { ( ox ) 1X E IR{} is the full unipotent subgroup, and

_ _ cos(d) —sin(0))
K=50@2) = { (sin(@) cos(6) ) € R}

is the maximal compact subgroup. For our representative of the nontrivial Weyl

element, we will take w = ( % ). Clearly, an element k € K corresponds to a
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unique angle § mod 27. Let us write this as k = kj, so we can work with 6 without
having to write the above matrix. Further, we can identify any element a € A with its
first row, first column entry. Let us write U (sl,¢) for the universal enveloping algebra
of the complexification of sl,.

The Lie algebra of A, a consists of the linear span of (§ ). By definition,
My = Zk(a). In our case, SL,(IR) is so small that we can easily see that M, consists of
two elements, 1, where 1 denotes the identity matrix. Let n € 1\710. Since M, is iso-
morphic to /27, so is My. Thus there are only two possibilities for 7. We can identify
each case with either € = 0 or ¢ = 1 as follows. First, let us identify £1 € SL,(R)
with +1 € R. With this identification, each n € ]\710 satisfies n(mgy) = (mg)€. For our
construction, 1 will be trivial.

Let us describe a basic example. Let s € Cand m € 7Z. Let f; ,, be the function on
SL,(R) defined, using the Iwasawa decomposition, by f; n(anky) = a**'e™?. (Here
we have used the identification of A mentioned above; a on the right hand side of
this equation is a positive real number.) With this definition, s is identified to be in
the complex dual of a. Further, the 1 in a**! above corresponds to p, which is half
the positive root. Notice f; ,,(—1) = (—1)". It follows that f;,, € I(s,n) for all m,
so 2 divides m — €. So if 7 is trivial, then I(s, ) contains all even K-types, and if 7 is
not trivial, then I(s,n) contains all odd K-types. Notice the function above is a flat
section of the induced space. In other words, f; .|k does not depend on s.

Continuing this example, let us compute the integral representation of the Whit-
taker function associated with f;,,. This will be mentioned later. We assume s € C
with s > 0. We must take x to be a generic character of N. Since N has only one
variable (x), we just need x to be nontrivial. Then the Whittaker function of f; ,,
corresponding to the character x is, (from above) as a function of g € SL,(R)

W@ = /ﬂ,m(Wﬁlng)x(n)dn.
N

With the assumption Js > 0 this integral converges absolutely. Recall that we are
only interested in the s variable, so we take ¢ = 1, the identity. Throughout this
paper, we will fix x(n) = ¢*™*. The above integral is then

Jo=(( ) o D)

Since g and  are fixed, let us denote this integral by W,,(s). Breaking down w™'n
into Iwasawa coordinates, and using the definition of f; ,,, we have

1) Wm(s):/ ! ( Xt )mez’”xdx.

R (x2+1)% x2+1

3 An Infinite Order Mellin Transform

In what follows, we will be essentially interested in the integral, for x > 0,

(2) /OO yxfloglogy Q
e y
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In this section, we obtain effective asymptotics (with remainder) as x — oo of this
integral by Laplace’s method. A good reference for this classical method is Murray
[12]. Other good classical references are Erdélyi [4] and de Bruijn [1]. We have tried
not to give too many details, since this computation consists essentially of calculus
estimates.

First, let us assume x > 12. Under the change of variables logy = ¢!z this
integral becomes

—1 > &1 (z—zlogz)
e e dz.
e2—x

For convenience, let us call A = ¢~ 1. By our assumption on x, we have 0 < er < %
We will first consider only the integral over the interval [3,2]:

2
(3) / e)\(zleogz)dz'
1/2

Note that the function z—z log z has a maximum of 1 at z = 1 (in the interval (0, c0)),
since its first derivative is — logz, and its second is —1. Thus it is strictly increasing
from 0 to 1, and then strictly decreasing from 1 to co. We can thus implicitly define
a new variable w by setting

(4) A(z—zlogz—l)z—wZ,

for z € (4,2). Easily, this transformation is a diffeomorphism from z € (4,2) to

w € (=diVA, dav/X), fordy = /(1 —log2) and d, = \/2log2 — 1.

We need an accurate estimate of g—fv . Implicitly differentiating (4), we see

(5) -— =

Implicitly differentiating (5) and using (4) we have

ﬁ B Ez(logz)2 +2(z—zlogz —1)
aw? A z(log z)? '

For this section only, let us define 1(z) = z(logz)* + 2(z — zlogz — 1); i.e., the
numerator of the fraction on the right. Notice ¢)(1) = 0 and ¥’'(z) = log2 z. For
z € (%, 2), two applications of the mean value theorem (the first to ¢ (z) and the
second to £-7) give

dz 2 (1ogoz) 20,
dw?  A\logz/ z’
for some 6, and 0, between 1 and z. Note that this is always positive and is uniformly
bounded by 4/ for z € (%, 2). Consequently, using (5) and a calculus estimate in
the w variable, we have
dz 2
— =14/ +0
dw A (
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forw € (=i V), oV N). Consequently, the integral (3) becomes

eA/_d;?e—Wz-(\/g+\o(v—;)|)dw.

With our assumption on x, for the specific numbers d; and d,, one can show the
above expression (and so the integral (3)) is

®) & (yErod)).

This is using the known values [, edt = /7, Ja |tle="dt = 1, and the estimates
(for I = (—o00, —dv/A) U (d2v/A, 00))

o0 o0 2
/ et < 2/ e Cdt < 2/ e~tdt = 2e~ VA < i
I FRVAY FRVAY VA

These estimates come from the specific numbers d; and d,, and our assumption
x> 12 with A = &2 (Obviously [e"dt < [e~'dt on a domain contained in
{r>1}.)

One can trivially show, with our assumption on x, that for I, = [¢**, %] U(2, o],

I [0,1/2]U[2,00]

Using estimates (7) and (6), as well as the specific numbers d; and d,, a crude estimate

gives the integral of (2) is
re (o).

once again with our assumption on x. We have proven:

Lemma 3.1 For x € (12, +00), we have

e d =1 e 1
/ yeloslosy X 55t e (\/27r+ O(T]))
e Y ez

Let us note that the constant in this lemma contained in the ‘O’ term is bounded
in absolute value by 64, and of course is independent of x € (12, +00).

We will use a slightly altered version of this lemma for our construction. Suppose
 is any real function of x € [e°, +00) that satisfies the following properties.

e is smooth on thiszdomain.
e px)=1forx >e°.

2
e 0< p(x) <lforxe [e,e].

Then for x € (12, +00), the integral

p(y)y*loetosr —=
/. y

satisfies the same conclusions as Lemma 3.1. To see this, notice (since x > 12)
[e¥7*,e¥7*] C [0, %]. In calculating an error term for this integral, since 0 < ¢(x) <
1 forx € [¢°, a ], it follows that the error computation in estimate (7) is sufficient.
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4 Main Construction

In this section we construct a smooth flat section f; whose corresponding Whittaker
function is of infinite order. This is our main result, Theorem 4.1. The main tool is
Lemma 3.1.

For the rest of this section, let us take ¢ to be any real valued function defined on
[0, 7] with the following properties.

e 0 < ¢(f) <1forall §in this interval.

1 0<f<a
¢<9)={0 g<o<m,

where o = arctan { (e — )72} and 8 = arctan{ (¢ — 1)_1/2}.
¢ ¢ is smooth in the entire interval.
Notice that 0 < o < 3 < 7.
Let us define
g(e) _ 2Cot(o)(sin2(9))loglog(sinfz((i))efbricot(i

for & € (0,7/2). Let us extend the definition of g to be 0 for 8 € [7/2,7]. For
0 € (0, 7], let us define h(0) = ¢(0) - g(6). Finally, let us put

h(0) 0<O0<nm
fO)=<hQ2r—0) w<6<2m.
0 0=0

Then one can check that, as a function of 6, f is smooth, and of course f is even
by construction. Now 6 = 0 is really the only questionable point for smoothness,
and e~2™ <t i far from smooth at § = 0. (This is similar to the oscillation of the
standard real analysis example, the function sin(1/x) at x = 0.) However, the decay
of the (sin2(9))1°g1°g(5i“72(9)) term in the definition of f kills this oscillation as § — 0.
Using the full definition of f, in particular the form of the decaying term, f can be

shown to be infinitely differentiable at § = 0, with ‘f;{ (0) = 0 forall n € N. (This is
—1/x°

somewhat similar to another standard example, as follows. If we define ((x) = e
for nonzero x € R, and ((0) = 0, then ‘;’Zf (0) =0foralln € N.)

Let us consider the flat section f; € I(s,n) defined by fi(anks) = a*"' f(6). Then
clearly, f; € I (s, n) with trivial 5. The Whittaker function, W (s), associated with f;
is then

_ x TiX _ 1 TiX
(8) w<s>=A{fs(<? ())& dx—A{Wf(e»é dx,

2

where 6, denotes the angle § depending on x in the Iwasawa decomposition of

( (1’ Bl) ( é’l‘) = anky. We see 0 satisfies cos() = ﬁ, sin(f) = ﬁ, and so

cot(f) = x. By all of the properties of the definitions above, this integral becomes

oo
/ (x* + 1)_% {(;5(arctan(1/x))2x(x2 + 1)_1"81°g(x2+1)e_2”""} ™ dx.
e—1
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By the properties of ¢, this integral is

oo
/ (o +1)7 % 2x(a? + 1) loglost D) g

VT

plus an integral over [v/e¢ —1,Ve? — 1] of the same integrand multiplied by
¢(arctan(1/x)). By a trivial change of variable, we finally conclude that the integral
(8) is equal to

[,2
> €
9) / u_%—loglog(u)@ +/ ¢(arcsin(1/\/ﬂ))u—%—logmg(m@'

e u p -

By Lemma 3.1 (or more precisely the comments following the lemma), for x =
—(s —1)/2 > 12 (specifically, for s < —23) we have that the above expression is, for

A=e"l
Ve (vVar vo( 1)),

Thus we have the following.

Theorem 4.1 For f given as above, we have for W (s), the Whittaker function attached
to f; (the integral (8)) satisfies

sl
W(s) ~ V2me T
ass — —oo.

Clearly, this function is not of finite order.

4.1 Remarks and Motivation

We must remark here that no functional equation for W(s) was ever needed. We
see that the integral (9) for W(s) converges absolutely regardless of s € C. In the
general theory, this will not happen too often. Even for the simple example W,,(s),
it is necessary for s > 0 for the integral representation of W,,(s) in (1) to converge
absolutely. Further, the factor e=2™ <’ in the definition of f; is designed to cancel
the additive character in the integral defining the attached Whittaker function. This
greatly simplifies many asymptotic matters.

The motivation for the construction of f; in Theorem 4.1 came from more com-
plicated examples, and rather indirectly. It is perhaps of independent interest to see
what is happening within the proof of holomorphy of smooth Whittaker functions,
if such a function is of infinite order. Ultimately, this specifically, as well as related
ideas, leads to some motivation for the rather easy construction of f; in Theorem 4.1.
Let us briefly explain.

In the case of SL,(R), let f; € I (s,n) be any flat section with trivial n, and
suppose the attached Whittaker function, W (s), is of infinite order. Suppose s € C
with Rs > 0. At the point —s € C, in showing W (—s) is holomorphic, Shahidi’s proof
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[15] needs derivatives (from U(sly¢)) of f; where these derivatives depend on —s.
Using the specific computation of Bernstein polynomials in Cohn [3, Appendix I],
this proof can be made effective. Using this and other computations of Shahidi, such
as the local coefficient C(s) [14—17], it can be shown that the relevant derivatives of
f; that are needed lead naturally to a discrete Mellin transform (as a function in s),
involving the Fourier coefficients of fi|x. The fact that this function is of infinite order
is forced because W (s) is of infinite order, by assumption. Trying to construct an
infinite order discrete Mellin transform with specific estimates (which is connected
to reversing this process) was part of the basis for the construction of f; in Theorem
4.1.
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