TERM BY TERM DYADIC DIFFERENTIATION

CHARLES H. POWELL AND WILLIAM R. WADE

1. Introduction. Let $\psi_{0}, \psi_{1}, \ldots$ denote the Walsh-Paley functions and let $\dot{+}$ denote the group operation which Fine [5] defined on the interval $[0,1)$. Thus, if $k \geqq 0$ is an integer and if u, t are points in the interval $[0,1)$ then

$$
\psi_{k}(u \dot{+} t)=\psi_{k}(u) \psi_{k}(t), \quad t \dot{+} 2^{-k}=t+(-1)^{\alpha_{k}} 2^{-k}
$$

(where $\alpha_{k}=0$ or 1 represents the k th coefficient of the binary expansion of t), and

$$
\psi_{k \cdot 2^{n}}(t) \psi_{j}(t)=\psi_{k \cdot 2^{n}+j}(t) \text { for } n=1,2, \ldots \text { and } 0 \leqq j<2^{n} .
$$

A real-valued function f, is said to be dyadically differentiable at a point $x \in[0,1)$ if f is defined at x and at $x+2^{-n-1}, n=0,1, \ldots$, and if the sequence

$$
\begin{equation*}
d_{N}(f, x)=\sum_{n=0}^{N-1} 2^{n-1}\left(f(x)-f\left(x+2^{-n-1}\right)\right) \tag{1}
\end{equation*}
$$

converges as $N \rightarrow \infty$. In this case, we shall denote the limit of (1) by $\dot{d} f(x)$ and call it the dyadic derivative of f at x. This definition was introduced by Butzer and Wagner [1], who proved that every Walsh function is dyadically differentiable on $[0,1)$ with $d \psi_{k}=k \psi_{k}, k=0,1, \ldots$, and that if N and k are any non-negative integers and if k_{0} satisfies $0 \leqq k_{0}<$ 2^{N} and $k \equiv k_{0}\left(\bmod 2^{N}\right)$ then

$$
\begin{equation*}
\sum_{n=0}^{N-1} 2^{n-1}\left[1-\psi_{k}\left(2^{-n-1}\right)\right]=k_{0} \tag{2}
\end{equation*}
$$

In a later paper, Butzer and Wagner [2] began to study the problem of determining which Walsh series were term by term dyadically differentiable, that is to say, under what conditions would a function

$$
\begin{equation*}
f(x) \equiv \sum_{k=0}^{\infty} a_{k} \psi_{k}(x) \tag{3}
\end{equation*}
$$

Received June 29, 1979 and in revised form October 25, 1979. The work of the second author was partially supported by the National Science Foundation under grant MCS78-00902.
have a dyadic derivative which satisfies

$$
\begin{equation*}
\ddot{d} f(x)=\sum_{k=1}^{\infty} k a_{k} \psi_{k}(x) \tag{4}
\end{equation*}
$$

at a certain point x ?
They proved that (4) holds a.e. if both $\left\{a_{k}\right\}$ and $\left\{k a_{k}\right\}$ are quasi-convex and $k a_{k} \rightarrow 0$ as $k \rightarrow \infty$, that (4) holds everywhere if $\sum_{k=1}^{\infty} k\left|a_{k}\right|<\infty$, and they conjectured that (4) would hold a.e. if $k a_{k} \downarrow 0$ as $k \rightarrow \infty$. This conjecture was verified by Schipp [7], who showed that (4) holds, in this case, for all but countably many $x \in[0,1)$.

In Section 2 we shall derive a condition sufficient to conclude that (4) holds at a particular point x. In Section 3 we shall use this condition to study dyadic derivatives, growth of Walsh-Fourier coefficients, and conditions sufficient to conclude that a continuous function is constant. In the process, we shall show that if $k^{\alpha} a_{k} \downarrow 0$, as $k \rightarrow \infty$, for some $\alpha>1$ then (4) holds everywhere in (0,1). Hence, a tightening of the hypothesis in Schipp's theorem leads to a stronger conclusion.
2. The main theorem. In this section we shall outline a proof of the following result.

Theorem. Let x be a point in the interval $[0,1)$, let a_{0}, a_{1}, \ldots be a sequence of real numbers and suppose that $\alpha>1$. If the series

$$
\begin{equation*}
\sum_{k=0}^{\infty} k^{\alpha} a_{k} \psi_{k}(x) \tag{5}
\end{equation*}
$$

converges then the function

$$
f(t) \equiv \sum_{k=0}^{\infty} a_{k} \psi_{k}(t)
$$

is dyadically differentiable at x and (4) is satisfied.
We begin by observing that convergence of (5) implies that $k^{\alpha} a_{k} \rightarrow 0$ as $k \rightarrow \infty$. It follows that

$$
\sum_{k=0}^{\infty}\left|a_{k}\right|<\infty
$$

Hence, $f(t)$ is absolutely convergent for all $t \in[0,1]$.
Let $N \geqq 1$ be an integer, and observe that

$$
d_{N}(f, x)=\sum_{n=0}^{N-1} 2^{n-1} \sum_{k=1}^{\infty} a_{k}\left[\psi_{k}(x)-\psi_{k}\left(x+2^{-n-1}\right)\right] .
$$

If we apply the identity $\psi_{k}\left(x+2^{-n-1}\right)=\psi_{k}(x) \psi_{k}\left(2^{-n-1}\right)$, we can rewrite the expression displayed above in the following form:

$$
\begin{equation*}
d_{N}(f, x)=\sum_{k=1}^{\infty}\left(\sum_{n=0}^{N-1} 2^{n-1}\left[1-\psi_{k}\left(2^{-n-1}\right)\right]\right) a_{k} \psi_{k}(x) \tag{6}
\end{equation*}
$$

Multiplying the $k^{\text {th }}$ term of (6) by $1=k^{\alpha} \cdot k^{-\alpha}$, we have that

$$
\begin{equation*}
d_{N}(f, x)=\sum_{k=1}^{\infty} k^{-\alpha}\left(\sum_{n=0}^{N-1} 2^{n-1}\left[1-\psi_{k}\left(2^{-n-1}\right)\right]\right) k^{\alpha} a_{k} \psi_{k}(x) . \tag{7}
\end{equation*}
$$

In $\S 4$ we shall verify that if (5) converges then the sequence (7) has a limit, as $N \rightarrow \infty$, and that this limit can be obtained by replacing N by ∞ on the right-hand-side of (7) (see Lemma 5). In view of (2), this means that

$$
\lim _{N \rightarrow \infty} d_{N}(f, x)=\sum_{k=1}^{\infty} k a_{k} \psi_{k}(x)
$$

which completes the proof of our theorem.
3. Applications. Throughout this section, let $f(t)$ represent the Walsh series $\sum_{k=0}^{\infty} a_{k} \psi_{k}(t)$. Since any Walsh series whose coefficients are bounded variation converges everywhere on the interval $(0,1)$, our main theorem contains the following result.

Corollary 1. If the sequence $\left\{k^{\alpha} a_{k}\right\}$ is of bounded variation for some $\alpha>1$, then $f(x)$ has a dyadic derivative which satisfies (4) everywhere on $(0,1)$.

The hypothesis of Corollary 2 is surely satisfied if $k^{\alpha} a_{k} \downarrow 0$ as $k \rightarrow \infty$. Thus Coury's example [3] $g(x)=\sum_{k=0}^{\infty} 2^{-k} \psi_{k}(x)$ is both classically differentiable a.e. and dyadically differentiable everywhere on $(0,1)$, with

$$
d g(x)=\sum_{k=1}^{\infty} k 2^{-k} \psi_{k}(x)
$$

Our main theorem, together with the convergence theorems of [6], [9], and [8], yield the following sufficient conditions for global dyadic differentiability.

Corollary 2. Suppose that $\left\{n_{j}\right\}$ is a lacunary sequence of integers and that $\left\{a_{k}\right\}$ is a sequence of real numbers satisfying $a_{k}=0$ unless $k=n_{j}$ for some j. If for every point x in some non-degenerate interval I there exists an $\alpha>1$ such that

$$
\limsup _{n \rightarrow \infty}\left|\sum_{k=1}^{n} k^{\alpha} a_{k} \psi_{k}(x)\right|<\infty
$$

then $f(x)$ has a dyadic derivative which satisfies (4) everywhere on $[0,1)$.
Corollary 3. If for every point x in some set E of positive measure there
exists an $\alpha>1$ such that

$$
\sum_{k=1}^{\infty} 2^{\alpha k} a_{k} \psi_{2^{k}}(x)
$$

converges, then $g(x) \equiv \sum_{k=0}^{\infty} a_{k} \psi_{2^{k}}(x)$ is dyadically differentiable a.e. on $[0,1)$ and

$$
d g(x)=\sum_{k=0}^{\infty} a_{k} 2^{k} \psi_{2^{k}}(x) \quad \text { a.e. } x \in[0,1)
$$

Corollary 4. Suppose that g is a function which belongs to $L \log ^{+}$ $L \log ^{+} \log ^{+} L$ and that $a_{k}=k^{-\alpha} \hat{g}(k)$ for some $\alpha>1$, where $\hat{g}(k)$ represents the Walsh-Fourier coefficients of $g, k=0,1, \ldots$ Then $f(x)$ has a dyadic derivative which satisfies (4) a.e.

In particular, if the function $\sum_{k=1}^{\infty} k^{\epsilon} a_{k} \psi_{k}(x), \epsilon>0$, has a strong L^{p} dyadic derivative for some $p>1$ (see [1]), then $f(x)$ has dyadic derivative which satisfies (4) a.e.

For any integer $N \geqq 1$ and any point $x \in[0,1)$, consider the series

$$
\begin{equation*}
R_{N}(x) \equiv \sum_{j=1}^{\infty} \sum_{k=j 2^{N}}^{(j+1) 2^{N}-1} j 2^{N} a_{k} \psi_{k}(x) . \tag{8}
\end{equation*}
$$

There is a strong connection between the convergence of (8) and the formal dyadic derivative of $f(x)$.

Proposition. Suppose that $f(t)$ exists for $t=x$ and $t=x \dot{+} 2^{-n-1}$, $n=0,1, \ldots$, and suppose that N is any positive integer. Then $R_{N}(x)$ exists and is finite if and only if

$$
g(x) \equiv \lim _{\tau \rightarrow \infty} \sum_{k=1}^{\tau 2^{N}-1} k a_{k} \psi_{k}(x) \quad \text { exists }
$$

in which case,
(9) $\quad d_{N}(f, x)=g(x)-R_{N}(x)$.

In particular, if $\sum_{k=1}^{\infty} k a_{k} \psi_{k}(x)$ converges then $d f(x)$ exists if and only if

$$
R(x)=\lim _{N \rightarrow \infty} R_{N}(x) \text { exists }
$$

in which case,

$$
\begin{equation*}
\ddot{d} f(x)=\sum_{k=1}^{\infty} k a_{k} \psi_{k}(x)-R(x) \tag{10}
\end{equation*}
$$

In other words, (4) holds if and only if $R(x)=0$.

To establish this proposition, we need only verify (9). To accomplish this, return to (6) and apply (2) to obtain

$$
d_{N}(f, x)=\sum_{k=0}^{2^{N}-1} k a_{k} \psi_{k}(x)+\sum_{j=1}^{\infty} \sum_{k=j 2^{N}}^{(j+1) 2^{N}-1}\left(k-j 2^{N}\right) a_{k} \psi_{k}(x) .
$$

Replace " $\sum_{j=1}^{\infty}$ " by " $\lim _{\tau \rightarrow \infty} \sum_{j=1}^{\tau-1, "}$ and conclude that

$$
d_{N}(f, x)=\lim _{\tau \rightarrow \infty}\left\{\sum_{k=0}^{\tau 2^{N}-1} k a_{k} \psi_{k}(x)+\sum_{j=1}^{\tau-1} \sum_{k=j 2^{N}}^{(j+1) 2^{N}-1}\left(-j 2^{N}\right) a_{k} \psi_{k}(x)\right\} .
$$

Since this limit exists, we have proved that $g(x)$ exists if and only if $R_{N}(x)$ exists. Taking the limit, as $\tau \rightarrow \infty$, we have also established (9).

Corollary 5. If $a_{k} \downarrow 0$ as $k \rightarrow \infty$ and if $\sum_{k=1}^{\infty}\left|a_{k}\right|<\infty$, then f has a dyadic derivative which satisfies (4) everywhere on $(0,1)$.

To establish this corollary, we begin by proving that the sequence $\left\{k a_{k}\right\}$ is of bounded variation. Indeed, since the sequence $\left\{a_{k}\right\}$ is monotone decreasing, it must be the case that

$$
\left|k a_{k}-(k+1) a_{k+1}\right| \leqq k\left(a_{k}-a_{k+1}\right)+a_{k+1}
$$

for any integer $k \geqq 1$. Consequently,

$$
\sum_{k=1}^{N}\left|k a_{k}-(k+1) a_{k+1}\right| \leqq 2 \cdot \sum_{k=1}^{\infty}\left|a_{k}\right|+N a_{N}
$$

But absolute convergence of the series $\sum_{k=1}^{\infty} a_{k}$ implies that $N a_{N} \rightarrow 0$ as $N \rightarrow \infty$. Thus the sequence $\left\{k a_{k}\right\}$ is of bounded variation.

It follows, therefore, that the Walsh series $\sum_{k=0}^{\infty} k a_{k} \psi_{k}(x)$ converges for all $x \in(0,1)$. A similar argument establishes the fact that $R_{N}(x) \rightarrow 0$ as $N \rightarrow \infty$ for all $x \in(0,1)$. By the proposition above, then, $d f(x)$ exists for all $x \in(0,1)$ and satisfies (4).

We conjecture that Corollary 5 holds if the condition " $a_{k} \downarrow 0$ as $k \rightarrow \infty$ " is replaced by " $\left|a_{k}\right| \leqq b_{k}$ and $b_{k} \downarrow 0$ as $k \rightarrow \infty$ ".

When the proposition above is applied, in conjunction with Corollaries 1-4, we obtain some rather delicate growth conditions for certain types of Walsh series. For example,

Corollary 6. If for every x (respectively, for a.e. x) in some interval I there exists an $\alpha>1$ such that (5) converges then $R_{N}(x) \rightarrow 0$, as $N \rightarrow \infty$, for all x (respectively, for a.e. x) in I.

Coury [4, Theorem 6] has shown that if f is continuous and if
(11) $\sum_{k=1}^{\infty} k\left|a_{k}\right|<\infty$,
then f is constant. Our last corollary generalizes this result.

Corollary 7. Suppose that f is continuous on $(0,1)$, and that for each $x \in(0,1)$ there exists an $\alpha>1$ such that (5) converges, or that $\sum_{k=1}^{\infty} k a_{k} \psi_{k}$ converges on $(0,1)$ and that $\lim _{N \rightarrow \infty} R_{N}(t)$ exists for each $t \in(0,1)$. Then f is constant.

To prove this result, apply Corollary 1 or the proposition above to conclude that $d f(x)$ exists for each $x \in(0,1)$. Thus the sequence (1) converges. It follows that the terms of the series on the right-hand-side of (1) must tend to zero:

$$
\begin{equation*}
2^{n-1}\left(f(x)-f\left(x+2^{-n-1}\right)\right) \rightarrow 0 \text { as } n \rightarrow \infty . \tag{12}
\end{equation*}
$$

Recall that $f\left(x+2^{-n-1}\right)=f\left(x \pm 2^{-n-1}\right)$. Thus (12) implies that the upper Dini derivate of f is non-negative and that the lower Dini derivate of f is non-positive. Since f is continuous, it now follows that f is constant.

It is clear that this technique can be combined with other corollaries above to obtain sufficient conditions that a continuous function f be constant on $(0,1)$, or on some non-degenerate interval I.
4. Unavoidable technicalities. Throughout this section $b_{n, k}, b_{k}$, and x_{k} will denote real numbers for $k=0,1, \ldots, n=0,1, \ldots$, which satisfy

$$
\begin{align*}
& \text { (13) } \sum_{k=0}^{\infty}\left|b_{n, k}-b_{n \cdot k+1}\right| \leqq M \quad n=0,1, \ldots, \tag{13}\\
& \text { (14) } \lim _{n \rightarrow \infty} b_{n, k}=b_{k} \quad k=0,1, \ldots
\end{align*}
$$

and
(15) $\sum_{k=0}^{\infty} x_{k}$ converges.

We begin with two elementary observations. First, since

$$
b_{n, j}=\sum_{k=0}^{j-1}\left(b_{n, k}-b_{n, k+1}\right)+b_{n, 0},
$$

conditions (13) and (14) prove that the sequences $\left\{b_{n, k}\right\}$ and $\left\{b_{k}\right\}$ are bounded:

Lemma 1. There exists an $A<\infty$ such that $\left|b_{n, k}\right| \leqq A$ and $\left|b_{k}\right| \leqq A$ for all integers $n \geqq 0$ and $k \geqq 0$.

Secondly, since $b_{k}-b_{k+1}$ can be written in the form

$$
\left(-b_{n, k}+b_{k}\right)-\left(-b_{n, k}+b_{n, k+1}\right)-\left(b_{k+1}-b_{n, k+1}\right)
$$

we can apply (13) and (14) to show that $\left\{b_{k}\right\}$ is also of bounded variation:

Lemma 2. For each integer $N>0$,

$$
\sum_{k=0}^{N}\left|b_{k}-b_{k+1}\right| \leqq M
$$

This leads to the following convergence result.
Lemma 3. Both $\sum_{k=0}^{\infty} b_{n, k} x_{k}$ and
(16) $\sum_{k=0}^{\infty} b_{k} x_{k}$
are convergent series.
Comparing Lemma 2 with (13), it suffices to show that (16) converges. By Abel's transformation, however,

$$
\sum_{k=n}^{m} b_{k} x_{k}=b_{n} \cdot \sum_{j=n}^{m} x_{j}-b_{m} \cdot \sum_{j=n}^{m-1} x_{j}+\sum_{k=n}^{m-1} \sum_{j=n}^{k} x_{j}\left(b_{k}-b_{k+1}\right) .
$$

Hence by Lemmas 1 and 2, we conclude that

$$
\left|\sum_{k=n}^{m} b_{k} x_{k}\right| \leqq(2 A+M) \sup _{k \geqq n}\left|\sum_{j=n}^{k} x_{j}\right| .
$$

This inequality, together with (15) establishes the convergence of (16).
Lemma 4. If conditions (13), (14) and (15) are satisfied, then

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} b_{n, k} x_{k}=\sum_{k=0}^{\infty} b_{k} x_{k}
$$

To prove this result let $\epsilon>0$ and fix an integer $N \geqq 1$ so that

$$
\begin{equation*}
\left|\sum_{l=n}^{m} x_{l}\right|<\epsilon \quad \text { when } n, m>N . \tag{17}
\end{equation*}
$$

Next, observe by Lemma 3 that

$$
\sum_{k=0}^{\infty} b_{n, k} x_{k}-\sum_{k=0}^{\infty} b_{k} x_{k}=\sum_{k=0}^{\Gamma_{N}}\left(b_{n, k}-b_{k}\right) x_{k}+\sum_{k=N+1}^{\infty}\left(b_{n, k}-b_{k}\right) x_{k}
$$

Since N is fixed, (14) implies that the first term above is negligible as $n \rightarrow \infty$. It suffices, therefore, to show that

$$
\Sigma_{n} \equiv \sum_{k=N+1}^{\infty}\left(b_{n, k}-b_{k}\right) x_{k}
$$

converges to zero, as $n \rightarrow \infty$.
Toward this, apply Abel's transformation to Σ_{n}, obtaining the following identity:

$$
\Sigma_{n}=\sum_{k=N+1}^{\infty}\left(b_{n, k}-b_{n, k+1}-b_{k}+b_{k+1}\right) \cdot \sum_{l=k}^{\infty} x_{l}+\left(b_{n, N}-b_{N}\right) \cdot \sum_{l=N+1}^{\infty} x_{l} .
$$

In particular, it follows from (15), Lemma 2, (17), and Lemma 1 that

$$
\left|\Sigma_{n}\right| \leqq \epsilon(2 M+2 A) .
$$

Since $\epsilon>0$ was arbitrary, this inequality completes the proof of Lemma 4.

This lemma can be used to justify the interchange of limit and sum sign used in $\S 2$. Indeed, if we let $k^{\alpha} a_{k} \psi_{k}(x)$ play the role of x_{k}, and observe by Lemma 3 that if (5) converges for $\alpha=\alpha_{0}$ then (5) converges for all $\alpha \leqq \alpha_{0}$, then we need verify only the following result.

Lemma 5. If for some $\alpha, 1<\alpha<3 / 2$,

$$
b_{N, k}=k^{-\alpha}\left(\sum_{n=0}^{N-1} 2^{n-1}\left[1-\psi_{k}\left(2^{-n-1}\right)\right]\right),
$$

$N=1,2, \ldots$ and $k=0,1, \ldots$ and $b_{0, k} \equiv 1$ for $k=0,1, \ldots$, then (15) is satisfied.

In order to prove this lemma, we begin by establishing that if $j>0$ and $0 \leqq k<2^{N+1}-1$, then
(18) $\frac{k}{\left(j 2^{N+1}+k\right)^{\alpha}} \leqq-\overline{\left(j 2^{N+1}+k+1\right)^{\alpha}}$.

Indeed, for any positive real number B, it is the case that

$$
\left(1+\frac{1}{B}\right)^{\alpha} \leqq\left(1+\frac{1}{B}\right)^{3 / 2} .
$$

Furthermore, if $B \geqq 1$ then $1 / B^{3} \leqq 1 / B^{2}$, so the following inequality holds:

$$
\left(1+\frac{1}{B}\right)^{3} \leqq\left(1+\frac{2}{B}\right)^{2} .
$$

It follows, therefore, that if $B \geqq 1$ and $C \geqq 0$ satisfies $2 C \leqq B$, then

$$
\left(1+\frac{1}{B}\right)^{\alpha} \leqq 1+\frac{1}{C} .
$$

Hence (18) is obtained by setting $B=j 2^{N+1}+k$ and $C=k$.
We shall establish Lemma 5 by showing that the sequence

$$
\begin{aligned}
& S_{N} \equiv \sum_{j=0}^{\infty} \sum_{k=0}^{2^{N+1}-1} \mid\left(j 2^{N+1}+k\right)^{-\alpha} \cdot \sum_{n-0}^{N-1} 2^{n-1}\left[1-\psi_{j 2^{N+1}+k}\left(2^{-n-1}\right)\right] \\
& \quad-\left(j 2^{N+1}+k+1\right)^{-\alpha} \cdot \sum_{n=0}^{N-1} 2^{n-1}\left[1-\psi_{j 2^{N+1}+k+1}\left(2^{-n-1}\right)\right] \mid
\end{aligned}
$$

is uniformly bounded in N. To evaluate the terms inside the square
brackets, recall that for such j, k, and n,

$$
\psi_{j 2^{N+1}+k}\left(2^{-n-1}\right)=\psi_{j 2^{N+1}}\left(2^{-n-1}\right) \cdot \psi_{k}\left(2^{-n-1}\right) \equiv 1 \cdot \psi_{k}\left(2^{-n-1}\right) .
$$

Hence, by equation (2),

$$
\sum_{n=0}^{N-1} 2^{-n-1}\left[1-\psi_{2^{N+1}+k}\left(2^{-n-1}\right)\right]=k
$$

for $0 \leqq k<2^{N+1}$ and $j=0,1, \ldots$ If $k=2^{N+1}$, then

$$
\psi_{j 2^{N+1}+k}\left(2^{-n-1}\right) \equiv 1
$$

so in this case the term inside the square brackets is exactly zero. It follows that S_{N} is dominated by T_{N}, where

$$
\begin{array}{r}
T_{N} \equiv \sum_{j=0}^{\infty}\left\{\sum_{k=0}^{2^{N+1}-2}\left|\left(j 2^{N+1}+k\right)^{-\alpha} k-\left(j 2^{N+1}+k+1\right)^{-\alpha}(k+1)\right|\right. \\
\left.-\left|j 2^{N+1}+2^{N+1}-1\right|^{-\alpha}\left(2^{N+1}-1\right)\right\}
\end{array}
$$

The $j=0$ term of T_{N} has the form

$$
\left(2^{N+1}-1\right)^{1-\alpha}+\sum_{k=0}^{2^{N+1-2}}\left|k^{1-\alpha}-(k+1)^{1-\alpha}\right|
$$

and thus telescopes to a sequence dominated by 3 . According to inequality (18), each term of T_{N} corresponding to $j>0$ also telescopes, leaving us with

$$
\left\{2\left(j 2^{N+1}+2^{N+1}-1\right)^{-\alpha}\left(2^{N+1}-1\right)\right\}
$$

In particular,

$$
S_{N} \leqq 3+2 \sum_{j=1}^{\infty}\left(j 2^{N+1}+2^{N+1}-1\right)^{-\alpha} 2^{N+1} \leqq 3+2 \cdot \sum_{j=1}^{\infty} j^{-\alpha}
$$

Since $\alpha>1$, we have obtained the uniform bound for S_{N} and have completed the proof of Lemma 5 .

References

1. P. L. Butzer and H. J. Wagner, Walsh-Fourier series and the concept of a derivative, Applicable Anal. 3 (1973), 29-46.
2. P. L. Butzer and H. J. Wagner, On dyadic analysis based on the pointwise dyadic derivative, Analysis Math. 1 (1975), 171-196.
3. J. E. Coury, Walsh series with coefficients tending monotonically to zero, Pacific J. Math. 54 (1974), 1-16.
4. - On the Walsh-Fourier coefficients of certain classes of functions, to appear.
5. N. J. Fine, On the Walsh Functions, Trans. Amer. Math. Soc. 65 (1949), 372-414.
6. G. W. Morgenthaler, On Walsh-Fourier series, Trans. Amer. Math. Soc. 84 (1957), 472-507.
7. F. Schipp, On term by term dyadic differentiation of Walsh series, Analysis Math. 2 (1976), 149-154.
8. P. Sjölin, An inequality of Paley and convergence a.e. of Walsh-Fourier series, Ark. fur Mat. 7 (1969), 551-570.
9. S. Stečkin and P. L. Ul'janov, On sets of uniqueness, Izv. Akad. Nauk SSSR, Ser. Mat. 26 (1962), 211-222.

The University of Tennessee, Knoxville, Tennessee

