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ON RINGS WITH INVARIANT RADICALS

A.V. KELAREV AND A. PLANT

We give necessary and sufficient conditions on the semigroup S for the Jacobson
radical to be S-invariant.

Our main theorem is motivated by earlier results on the radicals of group graded
rings, Morita contexts, and generalised matrix rings. All of these rings can be viewed
as semigroup graded rings.

Let S be a semigroup. A ring R is said to be S-graded if R = ® R, is a direct
»€S

sum of additive subgroups R, and R,Rt C R3t for all s,t 6 S. Let Bn be the
semigroup consisting of zero and all the standard n x n matrix units. Morita contexts
are i^-graded and generalised matrix rings are i?n-graded [1, 12].

Several authors have considered radicals invariant in group graded rings and Morita
contexts [1, 4, 5, 11]. We give a definition which unifies these two cases.

The Jacobson radical of R is denoted by J(R). For any semigroup 5, let

( 5\{0} if S has a zero

5 otherwise.

We say that the Jacobson radical is S-invariant if and only if RxJ{Re)Ry C J{Rj)
for every 5-graded ring R = ^ R,, where e, / are any nonzero idempotents of S and

x,y are any elements of 5 such that xey = f.
It is known that the Jacobson radical is S-invariant if 5 is a group or 5 = Bn [2,

7, 12]. The aim of this paper is to describe all semigroups S such that the concept
of invariant radicals can be used in 5-graded rings. The answer is given in terms of
inverse semigroups and primitive idempotents. Inverse semigroups form an important
class arising in many interesting settings. For the previous results on inverse semigroups
we refer the reader to [10]. A semigroup S is said to be inverse if for every s £ 5 there
exists a unique t 6 S such that sts — s and tst = t. Inverse semigroup algebras
give examples of rings graded by inverese semigroups [9]. Rings graded by inverse
semigroups with finitely many idempotents were considered in [7].
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144 A.V. Kelarev and A. Plant [2]

If e,f are idempotents of a semigroup 5 , we shall write e ^ / if ef = fe = e. It
is easily verified that ^ is a partial order relation on the set E(S) of idempotents of 5.
An idempotent is called primitive if it is nonzero and is minimal in the set of nonzero
idempotents (with respect to the order just described).

THEOREM 1. Let S be a semigroup, L(S) the union of all ideals of S which do

not contain nonzero idempotents, and let P(S) be the ideal generated by all idempo-

tents in S. Then the following conditions are equivalent:

(i) the Jacobson radical is S-invariant;

(ii) the quotient semigroup P(S)/L(S) is an inverse semigroup in which every

nonzero idempotent is primitive.

The following definitions, examples and lemmas are required for the proof. A
semigroup of idempotents is called a band. If a band satisfies the identity xy — x

(xy = t/), then it is called a left zero band (right zero band). A commutative band is
called a semilatiice.

Denote by e^- the s t anda rd mat r ix unit with the identity in the i,j entry and all

o ther entries zero.

LEMMA 2 . Let S be a semigroup and e, / 6 5* be idempotents such that SeS D
SfS. Then there exists an S-graded ring R such that the Jacobson radical is not
S-invariant.

PROOF: Let U = SeS and V = SfS. Since f £ U, then there exist x,y £ S
such that / = xey. We may assume that x and y belong to V because otherwise we
could replace x and y by fx G V and yf £ V using the equality / = f3 — (fx)e(yf).
Let M = R2, the ring of 2 x 2 matrices with entries from the field of reals R, and let
T be the subring given by e12R. Consider the semigroup ring MS. Clearly MV is an
ideal of MS and TU is a subring of MS. Hence the sum R = TU + MV is a subring
of MS. For any a 6 S we put

{
Ms iiaeV

Ts if s £ U\V

0 if s 0 U.

Then Rx= Mz, Ry = My, Rf = Mf and Rc = Tc. Since R\ = T V = 0 it follows
that Re is quasiregular. Thus 0 ^ ei2f = (e1iei2e22)(a:ej/) = (eua;)(ei2e)(e22j/) 6
RxS(Re)Ry. It follows that the Jacobson radical is not invariant, because obviously
J{Rf) = 0 cannot contain e i 2 / . D

LEMMA 3 . Let S be a semigroup. If S contains a subsemigroup isomorphic to
the two-element left zero band Jf2 (or the two-element right zero band Zi), then there
exists an S-graded ring R such that J(R) is not invariant.
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PROOF: We shall consider only the case when 5 contains a subsemigroup isomor-
phic to the two element left zero band, as the case when 5 contains a subsemigroup
isomorphic to the two-element right zero band is similar.

Let M = R2 > the ring of 2 x 2 matrices with entries from the field of reals R , and
consider its right ideals

' 'a

My =

If we consider X2 = {»,j/} as a left zero band, then M = Mx + My is ^ - g r a d e d .
Clearly Ix - {re12 | r € R} is an ideal of Mx. It follows that J(MX) = Ix. Similarly
J(My) = {re2i\r € R}.

Now, suppose that the Jacobson radical is invariant. Then

e22 = e21e12e22 £ MyJ(Mx)My C J(My).

However, e22 $ J(My). This is a contradiction and the Jacobson radical is not invari-
ant. D

PROOF OF THE MAIN THEOREM: (i) => (ii) : Suppose that the Jacobson radical
is •S'-invariant. Denote by E(S) the set of all idempotents in S and let P(S) be the
ideal generated by E(S). If P{S) = 0, the assertion is trivial, and so we may assume
P(S) jt 0. Let L(S) be the union of all ideals of S which do not contain nonzero
idempotents. Clearly P(S) ^ L(S).

We shall use the same letters to denote the elements in 5 and their images in the
quotient semigroup P(S)/L(S).

For any nonzero element a £ P(S)/L(S) denote by id (a) the ideal generated by a,
by I{a) the ideal of non-generating elements, and by Fa the principal factor id (a)/J(o)
containing a.

First, suppose that P(S)/L(S) has a nonzero idempotent e which is not primitive.
Then P(S)/L(S) contains a nonzero idempotent / ^ e such that ef = fe = f.
Therefore id (/) C id(e). This contradicts Lemma 2 and it follows that all nonzero
idempotents of P(S)/L(S) are primitive.

Next, take any nonzero a £ P(S)/L(S). We shall show that a has an inverse
element. To this end, it suffices to verify that the principal factor Fa is inverse.

Since a £ P{S), there exists a nonzero idempotent e £ E(S), with a £ id(e).
Since a ^ L(S), then there exists an idempotent / £ id (a). So id (/) C id (a) C id (e).
Lemma 2 shows that id (/) = id (a) = id (e).

https://doi.org/10.1017/S0004972700016816 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700016816


146 A.V. Kelarev and A. Plant [4]

Consider the principal factor Fa. Since Fa contains a primitive idempotent
(namely e), it follows from [3, Lemma 2.39], that Fa is completely 0-simple. Now,
by Lemma 3, Fa cannot contain a subsemigroup isomorphic to the left or right zero
band. From [3, Lemma 2.14 and Corollary 2.19], it follows that Fa is an inverse semi-
group and so a has an inverse element. Since a was an arbitrary element, it follows that
P(S)/L(S) is an inverse semigroup in which every nonzero idempotent is primitive.

(ii) =>• (i) : Let 5 be a semigroup and let R be an S-graded ring. Suppose that
the quotient semigroup P(S)/L(S) is an inverse semigroup in which every nonzero
idempotent is primitive.

Let G be a group and / a nonempty indexing set. Then the set of triples {{i,g,j)}
forms a semigroup with multiplication defined by

,l) = \
{ 0 if J yt K.

This semigroup is called the Brandt semigroup. From [3, Exercise 6 of Section 6.5], it
follows that P(S)/L(S) is a 0-direct union of Brandt semigroups.

Let e, / £ S be idempotents and take any x,y £ S such that e — xfy. Then the
idempotents e and / must belong to the same 0-direct component of P(S)/L(S).

First, consider the case when x and y are also in the same 0-direct component as
e and / . Pass to the principal factor F of P(S)/L(S) containing e,f,x,y. Again we
shall use the same letters e,f,x,y to denote the images of e,f,x and y in F.

Let 1 £ G denote the identity element of G. Since e,f $ L(S), then clearly e, /
are nonzero idempotents of F. It is easily seen that e = (i,l,i) and / = (j,l,j) for
some i,j £ / . It follows from the equality xfy = e that if x = (i,g,j) for some g £ G°,
then y = (j,g~\i).

Denote by 7Zg the sum of all R(i,g,j) where i,j £ I, g £ G°. For any g,h £ G°

and any i,j,k,l £ I, we get {i,g,j,)(k,h,l) = (i,gh,l) if j - k, and (i,g,j)(k,h,l) = 0
otherwise. In both cases R(i,g,j)R(h,k,i) ^T^-gh- Therefore %= © Hg is G°-graded.

The identity component, TZi = ©^(t,i,;) is a generalised matrix ring. Therefore

J(Tli)r\Re = J(Re) for any idempotent e£ S (see [6, Theorem 5.1], together with [8,
Proposition 6.18]). Since TZ is group graded, J(7l) is G°-invariant (see [12] together
with [1]). Therefore TZgJ(TZi)1lg-i C JCRx). Since Rz C Ug and Ry C Tlg-i we get
RxJ(R/)Ry C ngJ{Tli)ng-i n RxRfRy C JCfti) n Re = J{Re), as required.

Second, consider arbitrary x,y £ S. Put M = RxJ(Rf)Ry and let T = R\MR\

be the ideal generated by M in Re. In order to prove M C J(Re) we shall show that
T is quasiregular.

Let F be the principal factor of 5 containing e and / . Then ex and ye are nonzero
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elements of F, because otherwise we would get e = ex/ye = 0. For such elements we

have proved that J(Re) D RtxJ{Rf)Rye. Consider the ideal T 3 C TR\MR\T C

ReRxJ(Rf)RyRe C RcxJ(Rf)Rye C J(Re). Hence T is quasiregular, as required. D

R E F E R E N C E S

[1] S.A. Amitsur, 'Rings of quotients and Morita contexts', J. Algebra 17 (1971), 273-298.

[2] G.M. Bergman, 'Radicals, tensor products, and algebraicity', in Ring Theory 1989 in

honor of S.A. Amitsur (The Weizmann Science Press of Israel, 1989), pp . 150-192.

[3] A.H. Clifford and G.B. Preston, The algebraic theory of semigroups 1 and 2 (American

Mathematical Society, Rhode Island, 1964).

[4] M. Cohen and S. Montgomery, 'Group-graded rings, smash products, and group actions',

Trans. Amer. Math. Soc. 282 (1984), 237-258.

[5] M. Jaegermann and A.D. Sands, 'On normal radicals, iV-radicals, and A-radicals', J.

Algebra 50 (1978), 337-349.

[6] E. Jespers, 'Radicals of graded rings', in Theory of radicals Szekszdrd, Hungary (Colloquia

Mathematica Societatis Janos Bolyai 61, 1993), pp . 109-130.

[7] E. Jespers and P. Wauters, 'Rings graded by an inverse semigroup with finitely many

idempotents', Houston J. Math. 15 (1989), 291-304.

[8] G. Karpilovsky, The Jacobson radical of classical rings (John Wiley and Sons, New York,

1991).

[10] W.D. Munn, 'Inverse semigroup algebras', in Group and semigroup rings (North-Holland,

New York, 1986), pp . 197-223.

[11] M. Petrich, Inverse semigroups (John Wiley and Sons, New York, 1984).

[12] A.D. Sands, 'On normal radicals', J. London Math. Soc. 11 (1975), 361-365.

[13] A.D. Sands, 'On invariant radicals', Canad. Math. Bull. 32 (1989), 255-256.

Department of Mathematics
University of Tasmania
Hobart, Tas. 7001
Australia
e-mail: kelarev@hilbert.maths.utas.edu.au

plant@hilbert.matha.utas.edu.au

https://doi.org/10.1017/S0004972700016816 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700016816

