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STEADY-STATE TEMPERATURES AT THE BOTTOM OF
ICE SHEETS AND COMPUTATION OF THE BOTTOM ICE
FLOW LAW FROM THE SURFACE PROFILE

By L. LrusouTry
(Laboratoire de Glaciologic du CNRS, 2, rue Trés Cloitres, Grenoble, France)

Apstracr. A solution for the steady flow of o cold ice sheet is recalled, which takes account of the heat
released by deformation. As this strain heating increases the steain velocity. the bottom temperature may be
unstable. A set of five equations with five unknowns is written, which allows the surface profile and the
bottoni temperature 1o be computed step by step by an iterative process. This has been done by computer
[or three very different models ol ice sheets, and in each case with three distinet values of the constant B in
Glen’s ice flow law, Tt was found in every case that steady-state temperature profiles could not be computed
bevond a moderate distance from the ice divide, The correct value of # for hottom ice may be deduced from
the actual surface profile. At the bottom of Greenland ice sheet, B = 2.8 bar vear ', This is about
thirteen times bigger than for the bulk of the alpine glaciers,

RESUME.  Températures de végime d la base des nappes de glace. ot loi de fluage de la glace profunde déduite di profil de
la supface. On rappelle la solution de I'écoulement permanent d'une nappe de glice [roide. compte tenu de la
chalenr due a la déformation. La chaleur de déformation faisant augmenter la vitesse de déformation. la
température basale peut ¢tre instable. On éerit un systéme de 5 équations A 5 inconnues permettant de
caleuler pas & pas et par approxinations suceessives le profil de la surlice ef la température basale, Cela a été
fait a Pordinateur pour 5 maodéles trés différents de nappes de glace. et dans chacque cas pour g valeurs trés
différenies de la constante B de la loi de Glen de fluage de la glace.  On trouve dans tous les cas que Ia
température basale ne correspond plus & un étar de régime an déla d'une distance modérée de la ligne de
partage des glaces. La valeur correcte de B, pour la glace basale, peut se déduire des profils de la surlace
réellement observés. A la base de Uindlandsis du Groenland B = 2.8 bar *an ', CGlest environ 13 lois plus
que dans le corps des glaciers alpins.

ZUSAMMENFASSUNG. Stationdre “Temperatuven am Untergrundes von Eisschilden und Berechnung des Eisfliessgesetzes
am Untergrund aus dem Oberflachenprofil. Es wird an cine Erklirung li die permanente Bewegung eines kalten
Fisschildes erinnert, welche die bei der Deformation freiwerdende Warne beriicksichitigt, Da diese Delorma-
tionswiirme die Delormationsgeschwindigkeit erhéht, kann dic Temperatur am Untergrund instabil sein.
Es lasst sich ein System von 5 Gleichungen mit 5 Unbekannten angeben, das die sehrittweise und iterative
Berechnung des Oberflachenprofils und der Bodememperatur ermoglicht. Mit einer Rechenanlage wurde
dies fur 3 weitgehend verschiedene Modelle von Eisschilden und jeweils mit g verschiedenen Werten lir die
Ronstante B in Glen's Eislliessgesetz durchgefithrt. In keinem der Falle konnten stationare Temperatur-
profile unterhally einer massiger Entfernung von der Eisscheide berechnet werden. Der richtige Wert von 28
fir Grundeis kann aus dem tatsiachlichen Oberflichenprofil hergeleitet werden. Am Gronde des gronlindi-
schen Inlandeises ist B = 2,08 bar 1 Jahr *: das ist ctwa 13-mal grosser als lir den Grossteil der alpinen
Gletscher,

1. Tue Tnree TueErMAL REGIMES oF A Corp [cE SHEET

The theoretical study of temperatures and strains in a cold ice sheet has been developed by
Lliboutry (1963, 19641965, 1966). with the following assumptions:

(a) The flow lines lie in vertical parallel planes (the plane problem). This assumption is
not absolutely necessary, It is sufficient to assume that transverse strains are small.
The bedrock topography is smooth and receives everywhere the same geothermal heat
flux, say AGy (A is the thermal conductivity of ice — 70.3 MJ/m deg year. and G,
the geothermal gradient in a motionless ice sheet, when the melting point is not
rcached at the bottom).

(b

(¢) The ice flow law, in the restricted temperature range of concern, may be written:
Y = Yol7) exp (k8) (1)
¥ denoting the effective strain-rate, 7 the effective shear stress, ¢ the lemperature
difference from the melting point (this latter reaches —2 deg at the bottom of a 3 000 m
thick ice sheet), and £ a constant (k x 0.25deg 1). The bottom temperature will be
called 7. (It must be noted that in author’s previous publications 8, was used instead
of T, and v, denoted what will be called here yooxp (£7).)
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Glen’s law yo(7) = Brn with n = 3 is generally adopted, and I shall do the same. Never-
theless, as any non-linear and elaborate theory ends in numerical computations, more accurate
numerical values may be used, should we have them at hand.

It has been shown that three temperature regimes may exist in a steady state.

Regime I: The ice sheet is cold throughout, including the ice bedrock interface (7" < 0).
The entire geothermal flux KG, crosses this interface.

Regime I1: The ice sheet is cold throughout, apart from the ice-bedrock interface (T = o).
Only part of the geothermal flux, say KG, enters into the ice, the remainder K(G,—G) (some
centimetres per year) being lost in melting ice.

Regime I11: There exists in the lower part of the ice sheet a temperate ice layer, without
temperature gradient (the very small temperature gradient arising from the pressure-induced
variation of the melting point is neglected). No geothermal flux enters into the ice (G = 0).
It seems that in some regions this temperate bottom layer may be several hundred metres
thick (Lliboutry, 1966), but in many cases the thickness may be only a few metres.

It is only when such a temperate ice layer exists that the ice sheet can slide over its bed
(Lliboutry, 1967).

Thus a temperate bottom layer may exist under every definite outlet of the polar ice
sheets, as well as under all parts of the catchment arca where the velocities increase strongly
and very long arcuate transverse crevasses develop. Ice dynamics, with this third regime, is a
matter of sliding theory and does not differ essentially from temperate glacier dynamics
(Lliboutry, 1968, in press).

2. TEMPERATURE PROFILE AT A GIVEN SITE

Temperatures are computed following the ice in its movement (Lagrange coordinates).
In the steady state, the heat withdrawn to the surface through conduction and solid convection
must balance the heat coming from the geothermal flux and the heat generated by the plastic
deformation of ice. Each of these four processes gives rise to a term in the heat equation.

Another phenomenon, which has been numerically computed by Jenssen and Radok
(1963), occurs when the flow carries the ice to lower altitudes, where the air temperature is
higher. This warming is imperfectly transmitted downwards, and consequently the tempera-
ture profile with depth shows a minimum. The calculations in this paper concern the centre
of ice sheets where the surface warming remains relatively small, and its effect has therefore
been neglected by the artifice of keeping the surface temperature constant at the lowest value,
which it had at the ice divide. With this approximation, the problem at a given site is one of
linear conduction, the only variable being the distance z from the bedrock. Moreover, it will
be assumed that the parameters (thickness Z, superficial slope «, yearly balance 4, etc.)
change sufficiently slowly to allow us to take them as constants in the computation of the
steady state. This will be called a “quasi-permanent regime”. Lulerian variables and
Lagrangian variables can then become indistinguishable.

The problem can be solved if we consider in the ice sheet two superimposed layers (in the
thermal regimes I and I1). Above there is a colder and thus more rigid layer, where the
deviatoric stresses arc lower: in this layer the heat generation is negligible. Below we have a
thin bottom shear layer, where heat generation is important, but where solid convection
becomes negligible.

Let us prove this statement. In the upper layer, the rate of vertical strain is —al’/ ., where
{7 denotes the horizontal velocity. The rate of horizontal strain is about +al7/Z and the
effective shear strain 9 ~ 2al//.Z. The energy dissipated per unit volume and unit time is
yr — 43 B3 With the values given later, this is of the order of 1077 J/m? year. In the
bottom shear layer, the effective shear stress = differs very little from f, the friction per unit
area over the bedrock. The energy dissipated per unit volume and unit time is
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yf = Bf exp (k#). With the values given later, it amounts to about 107 J/md year, a
million times more.
In the bottom shear layer, the heat* equation reduces to
fod=0/dzz | fpyexp (k8) = o, (2)
This equation is wrong by a factor 2 in Lliboutry (1963, 1964-65).
The solution of Equation (2) is

|G —2fyp iz
o T2y GG afoexp ()RR ®
koo Gi+G
where Gy = [Gr+efyiexp (AT) kR e (4)
In the upper part of the bottom shear layer, the curve z(#) may be replaced by its asymp-
tote:
: 2 26, (5)
Gy =T—0+4=In ——. S/
’ E Gi+G
On this asymptote the value # = T is reached for 2z, — 2 where
2 20/, (6)

1

WG GitG

21 is a rough estimate of the thickness of this shear layer where the temperatures are perturbed
by the heat generation. Gz, appears as a function of (G/G,). which reaches a maximum.
1.16/G: when GGy — o.460. In regime 1 (G = Go = 1 deg/qq m), z; remains below 50 m.
In regime 11, 2 may become large, a fact which would make the present theory inaccurate.

Let us examine now the upper part of the ice sheet. Replacing the firn by an ice laver of
the same weight. the thickness of the ice sheet would be .2, and the vertical velocity of the ice
at the surface 4 (positive downwards). When the ice sheet is “stationary” (i.c. £ Is constant
for given geographical coordinates). A cquals the balance (= specific budgett), but this
equality is not necessary for the moment.

Summer melting is assumed o be very small (or the firn layer very thin), so that melt
water does not disturb the temperatures under the laver subjected to seasonal changes.
This constant temperature close to the surface will he referred to as “surface temperature”
and denoted S. When melting is absent. S is more or less equal 1o the mean air temperature.

In order to compute the temperature profile upwards, the profile within the shear layver
will be replaced by its asymptote. As the bottom shear layer is very thin, the computation is
then the same as if all the heat of deformation were generated at the very ice-bedrock inter-
face, the temperature being there 6, — 7 —(2/k) In (26G,/(G, + G)) and the thermal gradient
(7. In this simpler case, the thermal gradient at a distance z rom the bedrock is (Robin.
1955)

—dfid: = Giexp (—Az3/2k) (7)
where & denotes the thermal diffusivity of ice.

Integration of Equation (7] gives

B = S+ Gi(whZf2A) 2 exf (AZ)2h)1 7,

i

As AZ = 2h, erf (AZ]2h)* = 1 and we obtain

T = §+Gilwhl[24) 2 —(2/k) In [26G, (G, —G)). (8)
(In previous papers. the last term was omitted. It amounts to about 1 deg in the computed
examples. )

* In accordance with Sl-units now adopted in the Jouwrnal of Glaciology. heat is considered to be measured in
mechanical units (joules). so the mechanical equivalent of heat no longer enters these equations.

1 Balance is more pleasant than budget to foreign ears. It is the same word as in Spanish. The French word is
bitan, budgel meaning an estimate of expenditure.  Nevertheless, as the balance results from a difference. the
recently suggested term ret balance is a pleonasm. By no means could it signily the yearly balance (for a calendar
vear) or the minimun valve of the balance (for a balance year).
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Equations (4) and (8) hold in both thermal regimes Il (6 =Go) and 11 (T =0,
0 < G < G,). Eliminating G, they allow us to compute the adjustable parameter, T in
regime I or ( in regime 11, from measurable or easily computable quantities. In the metre-
bar-year-degree system:

K = 700 bar m*/deg year, k = o0.25(deg) ', & — 38 m?/year.

For G., the value 1 deg/q4 m may be adopted, at lecast for Greenland and castern Antarctica
which are old stable shields.

‘The friction fis given by the classical cquation, deduced from the stresses opcrating in the

body of the ice sheet as
S = pgRa &)

where pg is the weight of unit volume of icc — 1 bar/ri.5m and a is the mean surface slope
within a length of some ..

Lastly 5. may be deduced from /il the flow law for basal icc were well known guantila-
tively. Unfortunately, this is not the casc. We shall adopt the [orm

7 = yocxp (k6) = Bf* exp (kf). (10)
B remains unknown at present. It will be shown later that it may be estimated {rom the
surface profile near the ice divide.

3. STABILITY OF THE BasaL TEMPERATURE IN REGIME I

The possibility that the bottom temperature may be unstable was suggested by Liiboutry
(1964 65), according to the following heuristic considerations.

The solid convection increases when the ice sheet becomes more active. This is the case
when the temperaturcs increase. Ice flow becomes casier and a slightly smaller thickness is
sufficient for a given discharge. This produces a cooling of the bottom. Thus therc cxists a
negative feed-back. Solid convection is a factor of stability, On the other hand ice deforma-
tion produces heat, and, as the temperature increascs, the deformation is enhanced. 'I'his
means a positive feedback. lce deformation is therefore a factor of instability which can be-
come more important than the stabilizing factor.

For a quantitative study of the phenomenon, let us rewrite Equations i{4) and {8}, using
Equation (ro) as

R = Gi/G = [1}2Bftexp (kT)JkKG] /s — $(T), (11)
T = S+ G(nhZfa ) R—(2/k) In [2R](1+R)] = $(R). (12)
In regime I, G = Go. Numerically, with the assumed values
R = [1422.12Bf+exp (0.25T)]1* = $(T), (13)
T == S+o0.1757R(ZIA) A —BIn [2R)(1 + R)] = $(R). (14)

Equation {11) gives the thermal gradient which, for a given hottom temperature, results
from the heat of deformation. Any change in the bottom (emperature 7 causcs an immecdiate
change in the strain-rate in the vicinity, which extends upwards and rapidly involves all the
bottom shear layer, A change in the heat gencration and in G ensues. Thus any change in
the bottom temperature causes an almost immediate change in R according to Equation (11).

Equation {12} gives thc change of R which follows a change in 7 when a new steady
temperature profile is established throughout the entire ice sheet, that is a long time after.

Thus, any local change in 7 (duc for instance to a trough in the bedrock) affects R first
according to Equation (11}. The physical loop is thercfore

T —(¢(T) = R) - (T = H(R))
described in this direction, and not in the opposite one. "This loop is deseribed slowly, and, if
this physical process diverges, 7" would not rise instantaneously up lo the melting point.
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What can be said is simply that Equation (12) is no longer valid; the thermal regime is now
unsteady and in the heat equation the term Cp df/d¢ must be taken into account.

Now a mathematical procedure for computing 7 and R may be provided by the same
loop (although described at computer velocity) and in the same direction. (The starting
values may be R = 1 and 7, = S+0.1757(/4)":.) We assume here that the existence of a
steady state corresponds to the mathematical stability of the iteration procedure. When
mathematical instability appears, we may restore the stability by reversing the direction in
the loop:

T+ @W(T)=R) — (¢(R) = T).
While this is a purely mathematical artifice for the example quoted it could have physical
significance in cases of dominating surface temperature cffects, of the kind mentioned in
Section 2 but neglected in this paper.*
T'he mathematical convergence condition, for the iterative process here considered, is

@i dp
dRdT
M"m( Th\! I | R [15)

oar
<

RO R TRt

Let us put
(kl2)(wh/2)": = a (16)

la — 0.965 in the metre-bar-year system). Because of the modulus signs, Equation (15) gives
1 R g\ 1 R (17)
_ T {;G‘.,(i) T — 7J
R(1+R) R:—1 4, R(I R) R=—[

In the quitz distinct and realistic examples which have been worked out, R/(R* 1)
> 1/R(1 +R). In this case it is only the inequality on the right which may be violated, and
which limits stability in practice.

We can illuminate the mathematical process in the following way. Let us define the

function
(T) =TT (18)
the roots of which are possible values for 7. Tts derivative is
d7T A R(1+R) R

According to Equation (17). dy/d 7 must be negative in order that the root may be stable.
Now all the possible cases are represented in Figure 1. In both cases ar and as, there exists
one stable solution; in case b two solutions, a stable one and an unstable one: in both cases ¢,
and ¢z no solution.  For regime 1, there may moreover be five limiting cases, shown with sell
explanatory notations in Figure 1.

Now at the ice divide (R = 1), 3(T) reduces to a straight line with negative slope. This
means the case a, (iff we assume a negative bottom temperature). While flowing off from the
ice divide, the curve y(7) deforms in a continuous way, and two solutions are possible:

Evolution 11 a; —a, ¢; —~ ¢, (T is reached in a reversible way).

Evolution T1: a; —a,: »a: —»a: b — b (Then a second and unstable root appears.
Nevertheless, for reasons of continuity, the bottom temperature remains the stable root on
the left.) Next b — be: — ¢, the two roots join together, and, as the double root is
unstahlf‘ to the right, the temperature starts to change.

* I am indebted to an anonymous referee for having pointed out this possibility,
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Fig. 1. Pussible shapes of the curve y(T) (¢f. Equation (18)).

4. SETTING THE PROBLEM

During field traverses, measurcments which can now be easily done are:
the distance from the ice divide X (with tellurometers),
the surface slope a (by precise levelling),
the thickness of the ice sheet 2 (with high-frequency depth sounders),
the mean balance during last decades and the present surface temperature S (by coring

the firn).

In order to deduce the bottom temperature, the following conditions must hold:

(i) The ice sheet must be in a stationary state; specifically its thickness and temperature
may have short-term fluctuations, but no long-term ones. (For polar ice sheets, a
fluctuation extending over several centuries remains a short-term fluctuation. )

(ii) In spite of these short-term fluctuations, the measured mean balance and mean
surface temperature, which are both mean values for the last decades, must equal the
means for the last millennia. In this case, the vertical velocity of ice at the surface 4
of the theory equals the measured balance (in ice height equivalent).

With the assumption of a steady state, Equations (11) and (12) allow us to compute the
bottom temperatures from measurable quantities, provided the constants Go and B are well
known,

Unfortunately B (defined by Equation (10)) remains an unknown quantity. Laboratory
experiments give B x 0.17 bar 3 year~ for temperate ice, and B = 1.0 bar—* year ' for cold
ice (Lliboutry, 196465, p. 87-89). With cold glacier icc the same value B = 1.0 was found
by Landauer (1959), and by Hansen and Landauer (1958). Using Soviet 1.G.Y. data, I
found B ~ 1.0 too for the Kupol Dzhcksona (Jackson ice cap), in Zemlya Frantsa-losifa
(unpublished). Nevertheless at the very bottom of a great ice cap, B may reach bigger values,
owing to a very strong ice fabric, as suggested by Landauer’s data at Red Rock (sce Lliboutry,
196465, p. 86).

Thus B must be inferred, from another independent equation. This equation comes, in the
steady state, from equating the discharge of ice to the nourishment over the distance from the

https://doi.org/10.3189/5002214300002058X Published online by Cambridge University Press


https://doi.org/10.3189/S002214300002058X

STEADY-STATE TEMPERATURES AT THE BOTTOM OF ICE SHEETS 369

ice divide. To do this, the flow lines of the ice sheet must be well known. It is generally
assumed that they follow the direction of the maximum surface slope. but in most cases the
slope of the surface as a whole is poorly known. It is a pity that during most ice cap traverses
the slope of the sirface in every azimuth was not measured at each station.

I shall write first the whole set of equations rom which both the temperature profile at a
givenssite and the surface profile could be computed, if B were thoroughly known. Next I shall
take an approximate ice-sheet model (plane horizontal bedrock, uniform balance, parallel
flow lines in the X7 coordinates) for which the computation is simpler. In this case the
temperature profile becomes a function of the thickness £ independent of the value of B, and
the surface profile allows a very easy estimation of the constant £, It happens that this model
fits pretty well the case of the 1959 E.G.LG. profile in Greenland, and thus a pertinent value
of B can be found.

5. VELOCITY AND DISCHARGE OF AN lcE SHEET

We assume that the bedrock is not too rough at the scale of some kilometres. In this case,
the horizontal shear stress approximately equals the effective shear stress, and the horizontal
velocity U(z) at a distance z from the bedrock is:

Ulz) = | yaexp (£0) dz.

o

(20)

As #(z) is given by Equation (3). a numerical computation of { () would be feasible. As #
and p = B} diminish very much above the bottom shear layer, {7 2) increases only very little
above the top of the shear layer. A quite good approximation of the mean value of {7(z)
through the whole ice sheet is then £7(z1), which will be called I". Now from Equation (2)

-]

fry
U= | yuexp (£8) dz ——[—l’ d(d—U)
S dz

f

[
whence the first integral :
SU = G, —KG, (21)
Equation (21) means that the Newtonian encrgy which is dissipated per unit time and
per unit area in the bottom shear layer, (pg.l)(al’) — fU, equals the increase in the thermal
flux as it crosses the shear layer.
By comparing Equations (4) and (21), we find:
; k3 -
v O 4 e 27 22
G = ((. - L = (% +—'/lf-cxp (kT). (22)
A kh
Whence it [ollows that

D
|

= yoexp (kT) kU —fU[2kK,)
Gi = yaexp (kT) [kU-+fU/2kK. | (23)

These equations may be interpreted in the following way. The heat which appears in the
bottom shear layer produces at its two limits two opposite thermal gradients + f17/24. On
these gradients is superimposed a uniform gradient determined by the ice conductivity and
the solid convection. In the steady state, the total thermal gradient must be directed upwards
everywhere since the bedrock cannot remove heat.

By introducing the ratio # = G/G, already given by Equation (11), Equation (21) may
be written
JUIRG = R—1., (24)
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In the thermal regime I, G = G,. Next, Equations (11) or (22) lead to the following
equation, which may be used to compute U at a given site, whether the balance is stationary

or not:
U [2fyo exp (kT ) jkKGo* +-1]7/2—1. (25)
KGo
With the assumed law for 9, (Equation (10)) and Go = 1 deg/44 m, this may be written
numerically:
SUNsg1 = [22.12B8fvexp (0.25T) +1]">—1. {26)
Let ( be the discharge per unit width, then
Q= QU = fUlpge. (27)

In Equations (24) and (25), fI/ may be substituted by its value given by Equation (27).
Then R and 7 appear as functions of the discharge (. However, assuming thal the ice is in a
stationary state,  may be computed by a quite different way.

Let ¥(X) be the distance between two ncighbouring lines of flow, as drawn on a map
from the maximum surface slopes. Let us define e(X) by:

d¥idX = «(X) ¥. (28)
The mass balance gives

A(QT) = ATdX
or

dg _ (29)
) AR A(X).

If for instance ¢« and A are constants:

{30)

4
= S{1—e€X).
&
If the Aow lines are straight and converge at a distance L from the ice divide, and if 4 is a

constant, e = —1/(L—X) and
Iz
AL | _-x). (31)
2|L—-X
In the general case, € and 4 are known functions of X, and Q may be computed step by
step.

6. SIMULTANEOUS COMPUTATION OF ALL THE VARIABLES OF X
Let £{X) be the known altitude of the actual bedrock under an existing ice sheet (otherwise
isostasy must be taken into account). Then the longitudinal profile Z(X) can be deduced.
This, and Equations (29}, {24}, (12), {11) and {g) give the following set:
e

Z=H [ adX+{{0)—{(X), (32-1)
dQ jdX+e(X) Q= A(X), (32-2)
R = 1+pgaQ [KGo, (32-3)
T = S+ GolmhZj2d)1/2 R—(2/k) In [2R|(1+R)], (32-4)
J4 = (Re—1) kKGo*[2B exp (kT), {32-5)
o = fipel. (32-6)
Lquation (32-5) may be replaced by the following one, deduced from (32-3), (32-5) and
(32-6):
Fi=(R41)kGoQ 2B exp (KT). (32-7)
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This set may be solved numerically step by step, with the following starting values:
(o) = H, Q(a) = o, Rio) — l,-l _
flo) = o, alo) = o, (33)
T(0) = S+ Golmhj2)V2(H[A): < o. J
The procedure stops cither when 7 = o, or when dy/d7 = o which means that the
temperature gets unstable. "Thus at each step the following quantity, given by Equation (19)
must be computed:

dy _ [kGe(whZ\12 1 (Re—1) | (34)
dr 2 ( 24 ROL-R)| R '
In order to watch for the appearance of the unstable root of 3(7) = o, the following
quantity may also be computed:
JThEN R " 2 2(1 L2BflkRG,) 2 c
o = S4+G ”_) (1—2BfAkKGo)1 ' —2 | : .
? ( 24 1+28f ? e (1+2BfkRGa) \35)
The computation has been done for the following model for the ice sheet:
{ = o (a planc horizontal bedrock)
¢ = o (parallel flow lines in the (X, ¥') plane)
In this case, Equations (32-1) and (32-2) reduce to:

X
{=H adX, (36-1)
Q= AX, (36-2)

Next it can be proved (see Appendix) that 7, Jand dy/d 7 become [unctions of & indepen-
dent of the poorly known constant ; the same applies to (B/X%), (Bfi) and .
Numerically, the set (32) becomes:
v

Z=H—[adyx, (37-1)
R — 11 0.00546a1X, (37-2)
T — §+0.1757R(Z/4)"* 81n [2R/(1+R)], (37-3)
J=00416(AX/BZ) 3 (1 +R)iexp (— T/i2), (37-4)
a = 11.5/IZ, (37-5)
d_:r ] . ,\:: 1/2 8 )?: —1 '27_6)
d7 [“J?m(j) R(1 RJ] sk
, - AT R _2(122.128f1)1/ (37-7)
yo) = .S—‘—t:.l?j?(j) (1 Loz 12Bf) 2 —8 1 EE —~22.l‘38f4}'-‘='

At cach step, the 5 variables , R, 7, fand « must be computed by an iterative process.
Now, given fixed values for R and 7, it can casily be seen that the equations giving 2, fand a
would lead to numerical instability. This property persists for the whole set of five equations,
but the computation has shown that a simple procedure allows stability to be restored: each
new approximation of f, R and 7 is averaged with the old value.

Let us write X[N], [N, f[NV]. ..., for the values at the step number N, and J[N, 7]
JIN, J1, ... for their jth approximation. The following quantities must be computed, in a
cyclical way:

LN J+1] = K[N—=1]—AX(a| N1, F]+a[N, 7])/2, (38-1)
RIN, J+1] = HRIN. ] 1 0.00546AX[N] a| N, 7]} (38-2)
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TN, J+1] = HTIN, J14+S+0.757RIN F+ RN T+l = g oy
—81n (2R[N, J4+ 1)/ (1 +-RIN, T+ 1])}, 353

FIN,F 1] = $IN, F1+0.1416(AX[NYBIIN, J+11)H5 o
* (1 RLN, F+ 1)) 3 exp (— TLN, J+11/12}}, (38-4)

of N, F+1] = 115N, F+11/ K[V T+11, (38-5)

R[N, (] = R[N—1],
T[Ns I] - T[N_I]s
As Equation (32-6) {or Equation {37-5)) is only valid for 2 mcan slope, a step AX equal to
H has been taken. In spite of such large steps a more refined formula than {38-1) is un-
necessary, as a varies very slowly with X. The accurate critical values for which y(o) = o
or for which dy/d 7" = o were obtained afterwards by linear interpolation.

with the starting values

7. Numericar. REsULTS anp DiscUssION

The computation has been done with the I.B.M. 7044 computer of the Centre de Mathé-
matiques Appliquées of the Université de Grenoble, for three ice sheet models, which corre-
spond more or less to the Greenland icc sheet, to east Antarctica and to Vatnajikull (lceland).
For each model, the computation has been done with three plausible values of B. The
constancy of the critical values of .2, R, T, Bf4, B/X+ and oX for the different values of BB was
used to check the computation.

With the g models, the cvolution of the temperature was the one referred to as “evolution
II" in the third section. The characteristics of the models, i.e. the assumed values of £/, 4, 5, as
well as the critical values independent of B are given in Table I. The subscript 2 refers to the
first values for which y(0} = o, with 7€ o {casc a: b of Figure 1: a sccond unstable root for T
appears), and the subscript ¢ to the second values for which dy/dT = o, with T <€ o (case
be.: the temperature instability appears). The critical values which depend on B are given
in Table 11,

TabLe 1. CriTICAL VALUES INDEPENDENT OF B FOR A Prane HorizoNTaL BEDROCK AND ParaLLeLl FLow LINES

Assumed model Compmted values
No, H A M T(o) T T, Ro Lo weXe
m m{year °C °C °C °C m m
I 3 GO0 0.07 -58 —21.65 —21.54 —19.11 1.1354 2 728 1.354
¢ d 3 200 0.42 —aof - 10.43 — 9.30 6.50  1.3124 3 051 0.179
HE 800 2.60 — 10 — b.g2 5.30 — %27 3.675 668 0.188
Tante [I. CrITICAL VALUES DEPENDENT ON B
Model
no. B A: X e X 107 S [
bar~3 year ? km km ba m/year
I 5.05 75-33 0.4703 1116 1.9%
1 4 7.1% 100.49 0.8427 v.789 2.7%
w0 10.35 159.21 0.2226 0.528 409
} 1 26.05 74-30 0.2404 0.638 7.80
11 2.18 31.65 gn.30 01930 0.525 9.48
36.84 t05.18 ©.1700 0.451 11.03
&g‘ 55.04 157.27 0.1137 a.302 16.50
e 4.787 6.885 2.734 1.549 26.8
III I 7.152 10.281 1.832 1.064 40.0
¥ 10.117 14.5%0 1.297 0.752 56.6
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In Figure 2, R, T and —dy/d7T (which may be called the “stability index”) are given as
functions of £ for the three models. In Figure 3 the profiles computed with the “Greenland
model” for B = 1 and B = 4 are compared with the profile Station Centrale-Station Jarl-
Joset surveyed in 1959 by the International Glaciological Expedition to Greenland (E.G.1.G.)
(Hofmann, 1964; Malzer, 1964). This profile, which follows approximately the line of
maximum slope, is very symmetrical and fits quite well between the two theoretical profiles,
This would not have been the case with the profile Station Centrale-Terme Neviére ( Joset
and Holtzscherer, 1954; Tschaen, 1959), which does not follow the maximum slope on the
western side, and is perturbed by an underlying mountain 500 m high on the eastern side,
Figure 4 gives the location of these traverses.

A 30
T X8~ R
°C MODEL I MODEL IT
-5 km(borﬂyecr]
754 25
- ,
xg-ve - /
/ I|I
10 i R/
i/4 {
e X // g4 _—
14 e 50120 I [ == I
< 184 / % ke
o / ,f’
/X\‘ / N / )/\%:
15 / \ / fg'/e d
/ 4 L R _dy
.'l; \-\\ o -l r/ III \dT
/ ) N %’% 25415 ﬁ’ dy 05 .'II \ 0s
4 ) S/ \d—f [ '-\
™ o/ N - \
20, S 4 X
1 e T Ty / P [ xere T
- Ry N —
——2 N s LW Sl Y
3000 2900 2800 3200 2100 800 700

Fig. 2. Bottom temperature (T ), reduced thermal gradient at the top of the shear laver (R), stability index for the bottom tempera-
ture ( —dy/d’T'), reduced abscissa (XB /1) and reduced friction ([ fBY'3) as _finctions of .

The curve (. XBv4) s the surface profile of the ice sheel, I being magnified 250 times when B = 1.

Model I:  H — go00m, A — o.07 mjyear, § = — 58°C.
Model I1: H = 3 200m, A — 0,32 m[year, § 28°C.
Model I11: H = 8oom, A = 2.60m]year, § = — 10°C.

The computation with model II and B = 1 gives X, = 74.39 km for H—, = 149 m.
On the E.G.1.G. 1959 profile, the same value of (H—.Z.) is reached at two points 180.6 km
apart. In order to have X, — go.3 km, as B/X* remains constant, it follows that 8 — 2.18
bar—* year *. This value is very credible, as it refers to very old bottom ice.

According to these calculations the steady-state bottom temperature becomes inapplicable
29 km before Station Centrale, the velocity being there about 9.5 m/year. It would take at
least one thousand years [or the ice to travel this distance, and it scems plausible that the
bottom temperature would not have been raised to melting point during this time.
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Fig. 3. Surface profiles for model I, and actual E.G.I.G. profile. Vertical exaggeration 500 times,
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Fig. g. Map of the Greenland traverse area.
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The problem of what happens when the bottom temperature is no longer in a steady state
remains unsolved. I suppose that the warming is not regular over the whole width of the ice
sheet. Even with a horizontal plane bedrock, the ice flow may divide into definite currents of
ice with the bottom at melting point, and stagnant masses with a cold bottom between these
currents. "This “*kinematic” instability will be enhanced by the bedrock topography. In every
valley of the bedrock, the ice is thicker, the bottom warmer, the instability reached earlier,
and this process is a self-increasing one. (The valley may even be deepened by the erosion
which takes place.) The surface temperature effect referred to at the beginning of Section 2
may also become important and counteract the basal warming.

All these processes show how crude were the theories which tried to give a single formula
for the whole profile of an ice sheet, from edge to edge. The present more elaborate theory
must be substituted for these earlier simple models and may serve as a guide for future research
in the field.

MS. recetved 27 November 1907 and in revised form 1 March 1968
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APPENDIX

IFor A Prane Horizontar BEprock, PARALLEL I'Low Lines aND A CoNSTANT A,
THE TEMPERATURE PROFILES ARE INDEPENDENT OF B

Under the assumed circumstances () = AX and Equation (32-3) becomes

pga = KGo(R—1)/4X. (39)
Putting this value into LEquation (32-6), we obtain:
[ = KGo(R—1)Z/AX. (40)
Substituting this value into Equation (32-5), it [ollows that
[AGy(R—1)Z[AX]Y = (R*—1) kK G [2B exp (kT). (41)
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T is given as a function of R by Equation {32-4), in which neither B nor X appear. Conse-
quently

X = BF(R, Z/4), {42)
F being a function independent of B in which only the parameters § and G.. and the constants
k, & and & appcar. ‘T'hus B/X* = F—* is indcpendent of B.
According to Equations (39) and (41), Equation (36-1) may be written
X

z: }I—A(;C,J- (R—‘I)dX,

pgd X
. KG, [ (R—1)(0F . oF
Z=H— f—y (ﬁdmrﬁdz). (42)

This relation links directly J and R, and is independent of B,
Next according to {40) fX and aX are functions of R independent of B. According to
Equation (42) f and a turn to be proportional to B-1/4,

https://doi.org/10.3189/5002214300002058X Published online by Cambridge University Press


https://doi.org/10.3189/S002214300002058X

