
Proceedings of the Edinburgh Mathematical Society (1988) 31, 127-144 ©

MULTIPARAMETER SPECTRAL THEORY AND TAYLOR'S
JOINT SPECTRUM IN HILBERT SPACE
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1. Introduction

Let n^ 1 be an integer and suppose that for each i= 1 n, we have a Hilbert space
//, and a set of bounded linear operators T^V^.H^Hi, j=\,...,n. We define the
system of operators

i) = T,-i AJKJ.Ht->Ht, i = 1,..., n, (1.1)
J = I

where k=(Xx,...,Xn)eC. Coupled systems of the form (1.1) are called multiparameter
systems and the spectral theory of such systems has been studied in many recent papers.
Most of the literature on multiparameter theory deals with the case where the operators
7] and V{j are self-adjoint (see [14]). The non self-adjoint case, which has received
relatively little attention, is discussed in [12] and [13].

In this paper we discuss the definition of the spectrum of the multiparameter system
(1.1) in the non self-adjoint situation. Two approaches to the definition of the
multiparameter spectrum have been adopted previously. In one approach the spectrum
is defined to be the set of points XeC for which each of the operators Wt{k), i= 1,.. . ,n,
are singular. We will denote the spectrum obtained from this definition by a{W). This
definition is simple and readily applicable to any multiparameter system of the form
(1.1). The basic properties of the spectrum obtained from this definition are discussed in
[12].

In an alternative approach the spectrum of the system (1.1) is defined via the joint
spectrum of an associated set of commuting operators Tx,...,Tn, defined on the tensor
product space H = (x)?=, //,. The spectrum obtained from this definition will be denoted
by a{T). The operators Ff exist when the system satisfies a certain solvability condition
which will be discussed below. This method has been used very successfully for self-
adjoint multiparameter systems satisfying various definiteness conditions. The basic
theory of self-adjoint multiparameter systems is discussed in [14] using this method.

In the self-adjoint case, under appropriate conditions, the two definitions of the
spectrum lead to the same set, i.e. a(W) = a{T) (see Theorem 3.7 in [14]). Our goal in this
paper is to find conditions which ensure that this result holds in the non self-adjoint
situation. The importance of this result lies in the fact that a variety of complementary
information about the spectrum can be derived using the two definitions. For instance,
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128 B. P. RYNNE

in the self-adjoint case, the first definition can be used to obtain geometric information
about the structure and location of the spectrum (see [3]). Conversely the second
definition, together with the theory of joint spectra, provides basic spectral information
such as the compactness of the spectrum and a functional calculus. When the operators
F, are self-adjoint a spectral theorem for the system (1.1) can be obtained from these
operators (see [14]).

In this paper we will adopt the definition of the joint spectrum of a set of commuting
operators given by Taylor in [16] and [17]. An alternative definition of the joint
spectrum using commutative Banach algebras is discussed in [6]. However the Taylor
spectrum has many features which make it superior to the Banach algebra definition
(see [9]). The main advantage of the Taylor joint spectrum, for our purposes, is that,
under certain conditions, we will be able to prove the equality o(W) = o(Y). Since the
Banach algebra definition of the joint spectrum generally leads to a larger spectrum
than the Taylor definition (see [16]) we could not, in general, expect to obtain this
result using the Banach algebra spectrum. There are circumstances in which the Taylor
spectrum and the Banach algebra spectrum coincide, for instance when the operators
are normal (see [5]). Thus in the self-adjoint case this problem does not arise.

We note that McGhee has considered the relationship between the spectra a{W) and
a(T), when a(T) is defined using the Banach algebra joint spectrum. It is shown in [13]
that certain subsets of the two spectra coincide. However, these subsets need not form
the complete spectrum. There is also a partial discussion of this question, using the
Taylor spectrum, in [7].

In Section 2 we describe the Taylor definition of the joint spectrum of a set of
commuting operators on a Banach space. Some other material that will be required
later will also be discussed. In Section 3 we construct the commuting operators F, and
state precisely the two definitions of the spectrum of the multiparameter system (1.1)
that we will use. We then show that if a mapping V associated with the array of
operators [Vtj\ is invertible, then the two definitions lead to the same spectrum. In
Section 4 we discuss the structure of the mapping V and examine some conditions
which ensure the invertibility of V. These conditions are expressed in terms of a
determinantal operator on the tensor product space H, as is standard in multiparameter
theory. Our main result is that if the system satisfies a generalization of the usual right
deflniteness condition then the two types of multiparameter spectrum coincide.

2. The joint spectrum of several commuting operators

In this section we briefly review Taylor's definition of the joint spectrum for n-tuples
of bounded commuting operators as discussed in [17]. In addition we discuss some
related material which will be required below.

Let AT be a complex Banach space and suppose that a = (au...,an) is an n-tuple of
bounded commuting operators on X. If a=(sl,...,sn) is an n-tuple of indeterminates let
A[<T] denote the exterior algebra over C generated by sly...,sa. The set of elements of
A[<T] with degree p will be written as Ap£o~\. Now define the sets A[o,X] = X <g> A[a]
and Ap[t7, X] = X ® AP[CT], where ® denotes the tensor product. The set A[er,Ar] =
{Ap[<7,A-]:p^0} is a graded module (see [11]). An element x®sji A ••• A SJ eAp[cr,X]
will be written as xsJi A • • • A SJ , where A denotes the exterior product.
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MULTIPARAMETER SPECTRAL THEORY 129

For each p satisfying l ^ p g n we let J(p) denote the set of multi-indices of the form
j=(yls...,yp), where the j( are integers satisfying l^jl<---<jp^n. It can be seen that
there are (JJ) multi-indices in the set J(p), where (JJ) denotes the binomial coefficient
n!/p!(n —p)\. For any jeJ(p) we let J denote the unique complementary multi-index in
J(n—p) such that j u j = {l,2,...,n}. If l g p ^ n then any element tj/ of \p\a,X] can be
written in the form

i

where the summation is over all the elements j e J(p). Using this representation it can be
seen that Ap[a, X~\ can be canonically identified with the direct sum of (£) copies of the
space X. Also A°[p,X~\ can be identified with X, while if p>n then A"[cr, X] = 0. In the
following we will use these identifications, where convenient, without further comment.
In particular, if L is a bounded linear operator on X then L can be defined in the
obvious manner on A[CT, X~].

Now define the bounded linear maps d"(a): A"[a,X~\^Ap+1[.o,X], p = 0,1,. . . , by

n

8p(a)(xsJi A ••• A sJp) = £ (akx)sk A s h A ••• A sjp,

and extend this to A"[a, X] by linearity. It can easily be shown, using the commutativity
of the operators at,...,an, that

dp+1(a)oSp{a)=0, p^O. (2.1)

Thus the sequence

0 ^or^xji^Ai^^iH-.-J^AV,*] >0

is a cochain complex with coboundary operators 8p(a), p^O (see [10]). This complex
will be denoted by F(X,a). The cohomology of the complex F(X,a) is the graded
module H(X,a) = {H"(X,a):p^0}, where H"(X,a) is the quotient space
ker<5"(a)/im(5l'-1(fl) for p ^ l and H°(X,a) = ker8°{a). Note that equation (2.1) implies
that im 5"-\a) c ker^p(a) for all p^O.

The complex F(X,a) is said to be exact if ker5°(a) = 0 and im 5p(a) = ker5p+l(a), for
all p^O. It follows from this definition that the complex F(X,a) is exact if and only if

Definition. The M-tuple of operators a on X is said to be non-singular if the complex
F(X, a) is exact, otherwise it is said to be singular. If X e C then X is in the spectrum of
a on X if and only if the tuple a — k = (al— Xlt...,an — AJ is singular. The spectrum of a
on X will be denoted by Sp(a,^).

Various subsets of the spectrum of a on X can also be defined. For instance a point
AeC is said to be in the joint point spectrum of a if there exists a non zero xeX such
that (a, —A,)x = 0 i =!, . . . ,«. The vector x will be called a common eigenvector of the
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tuple a. Using the canonical representation of A[<x, X] it can be seen that

and so a — k is singular. Thus the joint point spectrum is a subset of Sp(a,X). Other
subsets of the spectrum can be defined in a similar manner, however only the joint point
spectrum will be required below.

We now consider certain transformations of A[cr, X~\ and F(X, a). Let X and Y be
Banach spaces and a = (s1,...,sn), z = (t1,...,tm) be tuples of indeterminates. Suppose
that u°:X-*Y is a bounded operator and [uy] is an mxn array of bounded linear
operators on Y with the property

i.e. operators from different rows of the array [wy] commute. A transformation
u: A[O,X] -*A[T , 7] can be defined by

A S y W ^ V X S j , ) A ••• A

where

M(Sj) = Mi/ j + • • • + UmJtm, j =\,...,H,

and
= uijiy) for all ye i:

The transformation u is a graded module homomorphism of degree zero i.e. for each
p^0,u maps A"[o,X] into A"[T, 7]. We let w" denote the restriction of u to A"[<r,X]. A
transformation defined in this way is said to be a "special transformation" determined
by the operators (M°, [uy]). Special transformations of the above type are discussed in
[17] where it is assumed that all the operators in the array [uy] commute, rather than
merely operators from different rows commuting. However the structure of the
transformation is such that two operators from the same row of the array never act on
the same element, thus the above commutativity assumption is sufficient to define the
transformation unambiguously.

Note that if j6 J{p), xeX, and u is as above then

U(XSJI A ••• A S ^ = M ° ( X ) U ( S > 1 ) A ••• A u ( S j )

A • • • A t , .

f, (2.2)

where det u-ti denotes the operator on Y obtained by formally expanding the determinant
of the p x p array of operators [M,y,]f,j = i in the usual manner. The above commutativity
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assumption on the array [M,J] ensures that this definition is unambiguous. We note that
the final equality in (2.2) is a consequence of the properties of the exterior product A .
The relationship between determinants and exterior algebra is discussed, in the scalar
case, in section XVI.7 of [11]. Our commutativity assumptions on the operator arrays
are sufficient to ensure that the discussion in [11] is valid in the present situation.

Now suppose that b=(bl,...,bm) is a tuple of bounded commuting operators on Y
and u: A[<T, X ] - > A [ T , Y] is a graded module homomorphism of degree zero. We say that
u is a cochain map from F(X, a) to F( Y, b) if the diagram

A"[<7,

Ap[i, A P + 1 [ T , Y ]

is commutative for each p^O. If this is so u induces a homomorphism
u*:H(X,a)^H(Y,b) of cohomology (see [10]).

The following lemma is proved in [17] for commutative arrays [uy]. It can easily be
seen that the proof given in [17] is valid with our commutativity assumptions.

Lemma 2.1. Let u: A[c, A"]->A[T, Y] be a special transformation and let a =
(a!,...,an), b = {bl,...,bm) be commuting tuples of operators on X and Y respectively.
Then u is a cochain map from F(X,a) to F(Y,b) if and only if the diagram

u° I I u1

is commutative. •

3. Multiparameter spectral theory

We now return to the multiparameter spectral problem outlined in Section 1. In order
to proceed further we will transform this problem to a tensor product setting. Let
H = (x)?= t Hj denote the Hilbert space tensor product of the spaces H, (see [14]). Given
a bounded linear operator At: //,-•//, we can define an operator Af-.H^H as follows: let

A?{x! ® • • • <g> X; <g> • • • ® xB) = xl ® • • • ® A(Xi ® • • • ® xn

for decomposable elements of H, and extend this definition to all of H by linearity and
continuity. The operator Af is a bounded linear operator on H (see [14]). We note that
if /I,://,-*//,, A/.Hj-yHj, i^j, are operators on different spaces then the operators A?,
Aj on H commute.

Using this construction we can consider the system (1.1) in the space H, i.e. we have

Wt{k) = T t - t WtjiH^H, i=l,...,n. (3.1)
7 = 1
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We now define the determinantal operator

?J.=1:H^//, (3.2)

using the formal expansion of the determinant. Again this definition is unambiguous
since the operators from different rows of the array [K^] commute.

From now on we will assume that the operator A has a bounded inverse on H.
Assumptions on the invertibility of determinantal operators are commonplace in
multiparameter theory. In the self adjoint case stronger definiteness conditions are
usually used in place of invertibility (see [14]).

Now consider the system of equations

tvtjUj = fi, ( = !,. . . ,», (3.3)

where Uj, fi^H. We say that this system is solvable if there exists a unique solution
(u1,...,un) for each set of vectors (/i,...,/n). If it is known that a solution exists we can
use Cramer's rule to solve (3.3) giving

u^A-'EU 7 =!,...,«, (3.4)
;=i

where Afj denotes the cofactor of Vfj in the determinantal expansion of A (see [8]).
Thus the invertibility of A implies that if a solution of (3.3) exists it must be unique.
Sufficient conditions for the solvability of equation (3.3) will be discussed below, for now
we will assume that it is solvable.

If we define the operators

rj=A-l££uT?:H^H, j=l,...,n, (3.5)

and put / ,= Tfu, i= \,...,n, in (3.3) for any ueH, then it follows from the formula (3.4)
for the solution of (3.3) that

Tt=tvZrj, i=l,...,«. (3.6)
j=i

In addition it can be shown that the operators I",, i=\,...,n, commute (see [14]), ([14]
discusses self-adjoint operators however the proof of the commutativity of the F,'s does
not involve the self adjointness). We let F denote the tuple of commuting operators
(rv.-.Tj.

We now consider the definition of a spectrum for the multiparameter system (1.1). To
motivate the definition we first discuss the eigenvalues of the system.

Definition. A point AeC" is said to be an eigenvalue of the system (1.1) if for each i
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there exists a vector xf e Ht, xt =/= 0, such that

W^X)Xi = 0, i = l , . . . , n . (3.7)

It is obvious that if (3.7) holds then we have

W,+(A)x = 0, i = l n, (3.8)

where x = x1®-® xneH. Conversely if (3.8) holds for some xeH it can be shown
that there exists a set of vectors x, e H{ for which (3.7) holds (see [14]). Thus defining the
eigenvalues of (1.1) using (3.7) in the original space or using (3.8) in the tensor product
space leads to the same set of points.

Now suppose that (3.8) holds for some k e C and x e H and rewrite it as

£ i=l , . . . ,n . (3.9)

It follows from the unique solvability of the system (3.3) that (3.9) holds if and only if

r,x = Xtx, i= l , . . . , / i . (3.10)

Thus k is an eigenvalue of (1.1) if and only if k belongs to the joint point spectrum of
the tuple of operators T. The vector x is the corresponding common eigenvector.

The above discussion shows that the eigenvalues of the multiparameter system can be
defined in terms of the original operators Wt or in terms of the joint point spectrum of
the tuple T. Either definition produces the same set of points in C". We now attempt to
define a multiparameter spectrum which has the same property.

Definition. The spectrum a(W) of the system (1.1) is the set of points keC" such that
none of the operators W^k), i = 1,.. . , n, has a bounded inverse.

Definition. The spectrum a(Y) of the system (1.1) is the joint spectrum Sp(F,/f) of
the commuting tuple r = ( r 1 , . . . , r n ) on H.

The definition of the set a{W) is a simple generalization of the above definition of the
eigenvalues of the system. This definition of the spectrum is the one used in [12].
Clearly the set a( W) contains the set of eigenvalues of the system. In addition the above
discussion, together with the results of Section 2, shows that the set o(T) also contains
the set of eigenvalues of the system.

We will now attempt to find conditions which will guarantee that a{W) = a{T). By
considering translations of the spectral parameter k it can easily be shown, using the
relations in Theorem 6.2.2 of [2], that it is sufficient to consider the point k = 0, i.e. we
wish to show that 0 e a ( W ) o 0 e a ( r ) .

L e m m a 3.1. Oeo(W) if and only if the commuting tuple T = (T+,...,T+) is singular.
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Proof. By definition 0 e a{ W) if and only if each of the operators 7] is not boundedly
invertible. It is shown in [4] that the joint spectrum of the tuple T is given by the
Cartesian product

Sp(T,H)= X Sp(T,,Hd,
i= 1

where Sp(7],//,) equals the usual spectrum of 7] as an operator in H^ Hence 0eSp(7;//)
if and only if each operator 7] is not invertible. This proves the lemma. •

Lemma 3.1. shows that to prove the equality of a(W) and a(r) it is sufficient to show
that the tuple T is non-singular if and only if the tuple T is non-singular. In order to do
this we construct a special transformation V: A[<r, //]->A[CT, / / ] , as defined in Section 2,
by choosing u°=V° = I, the identity operator on H, and u{j=V^. Since the operators
from different rows of the array [K,}] are derived from operators on different spaces
they commute, thus the array satisfies the conditions required to define a special
transformation.

Lemma 3.2. The transformation V: A[<r, //]->A[cr, H] is a cochain map from F(H,F)
to F(H, T).

Proof. It follows from Lemma 2.1 that it is sufficient to prove the commutativity of
the diagram

H

I I
H ^X A ' [ J ,H]

We noted in Section 2 that A'[a,//] can be identified with H" and, with this
identification, we have

d°(T)=(TlX,...,Tnx), 5°(r)x=(r1x,... ,rnx), for each xeH.

Also V1 is equivalent to the transformation

{xl,...,xn)JfJVtjxj,..., £ Vtx) (3.11)
\J=1 j=l /

on H". Thus equation (3.6) shows that

Vl3°(r)x = 8°(T)x

for all xeH, and so the above diagram is commutative. •

By considering formula (2.2) describing the structure of a special transformation it can
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be seen that the mapping V on A"[a ,H]~H is equivalent to the mapping A on H. Also
it follows from the representation (3.11) of the mapping V1 that the invertibility of V1 is
equivalent to the solvability of equation (3.3). Thus, if V is invertible, then A is invertible
and the system (3.3) is solvable, which implies that the operators F, exist and the set
<r(F) is defined.

We are now ready to prove our main theorem.

Theorem 3.3. / / the array [VJj] is such that the special transformation
V:A[a,//]->A[<7,H] is invertible then the spectra o(W) and a(T) of the multiparameter
system (1.1) are identical.

Proof. The preceding discussion has reduced the proof of the theorem to proving the
following proposition: the complex F(H, T) is exact if and only if the complex F(H, F) is
exact. To prove this we consider the cochain mapping V:F{H,T)->F(H,T) defined
above. Since V is a cochain mapping it induces a homomorphism V*:H(H,r)->H(H,T)
of cohomology. The invertibility of the mapping V shows that the homomorphism V* is
an isomorphism, i.e. the restrictions V*p:Hp(H,r)->Hp(H,T) are isomorphisms between
the cohomology groups for each p^O. Now, by definition, a complex is exact if and
only if all the cohomology groups of the complex are zero. Since the cohomology
groups of the complexes F(H, T) and F(H, F) are isomorphic it follows that exactness of
either complex implies the exactness of the other. •

We observe that the proof of Theorem 3.3 proves rather more than the equality of the
sets a(W) and <x(F). The structure of the cohomology module associated with a singular
tuple of operators is closely related to the type of singularity of the tuple (see p. 176 of
[16]). For instance the elements of the Oth cohomology module correspond to common
eigenvectors of the tuple of operators. The proof of Theorem 3.3 shows that when V is
invertible the cohomology modules H(H, T) and H(H, F) are isomorphic. Thus, if k
belongs to the spectrum of the system (1.1), then the commuting tuples
(Wf(A),..., W*(Xf) and {Tl — Xl,...,rn — Xn) have the same type of singularity in the
sense that their cohomology modules are isomorphic.

We now consider the case n = l. In thise case we have W(X) = T — XV, XeC (where we
have omitted the subscripts in this case), and, by definition, A = V. Also, if V is
invertible, then T=V~lT. In this case it is obvious that W(k) is not invertible if and
only if k is in the spectrum of F. Thus, in this sense, the invertibility condition in
Theorem 3.3 is a generalization of the condition that the operator V be invertible in the
1-parameter case.

We can now illustrate the usefulness of the equality a(W) = a(T) and the use of the
theory of the joint spectrum to provide information about the multiparameter spectrum.
It is shown in [16] that the joint spectrum of a set of commuting operators is non-
empty and compact. Thus, when V is invertible, Theorem 3.3 shows that a(W) is non-
empty and compact. Now, it is shown in [12], under fairly general hypotheses, that the
set o{W) is closed. However, without further conditions on the system, the set a(W) can
be empty or unbounded. In [13] it is shown that if A is invertible and the system (3.3) is
solvable than a certain subset of o(W) is equal to a non-empty subset of the set a(T).
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Thus in this case the set a{W) is non-empty. However, without the equality a{W) = a(T)
it is not easy to deduce that the set o(W) is compact.

4. Invertibility conditions

In this section we consider the structure of the mapping V in more detail and discuss
some conditions which ensure that V is invertible. We begin by deriving a more
convenient representation of the mapping.

As noted in Section 2 the set Ap[a, //] consists of the direct sum of (£) copies of the
space H, one for each multi-index j e J(p). By the construction of the transformation V it
follows that

A • " A i s ' . A •" A v

see equation (2.2). Thus the invertibility of V is equivalent to the unique solvability of
the system

^ ( d e t ^ j c , ^ , ieJ{p), (4.1)
j

for all sets of vectors {y-,eH:ieJ(p)}, for each p=l, . . . ,n.
In order to establish the invertibility of V we will reformulate this problem using the

ideas of Section 2. For each j=\,...,n, we define the column tuple C,-=(K*,-,..., V*j).
From the construction of the operators Ky on the tensor product space H it follows
that the operators in the tuples Cj are commutative, and so the coboundary operators
^p(CJ):A"[(T,H]^A''+1[a,H] can be defined as in Section 2. These operators have the
following commutativity property:

<5P+1(C><5P(CJ = <5P+1(C^«5P(C,.), 1 £ ; ,*£« . (4.2)

for all p^O. This result can easily be verified using the fact that the operators from
different rows of the array [Ky] commute. In addition we have

Ax = 5n-1(Cn)o-oS°(C1)x, xsH. (4.3)

It can now be seen, using the relationship between determinants and exterior algebra,
that for each p= 1,..., n, the system (4.1) can be rewritten in the equivalent form

^ (4.4)

where x^H and 0eAp[<r,H]. The mapping V is invertible if, for each p=\,...,n, the
system (4.4) is uniquely solvable for all <£eAp|>,H].

We begin the discussion of equation (4.4) by considering the uniqueness of the
solution. Also, if a commutativity condition is satisfied, then the invertibility of V can be
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established easily. We will say that the array [Vy] is commutative if the operators in
each row of the array commute with each other. Obviously this implies that all the
operators in the array [Ky] commute.

Lemma 4.1. / / the operator A is invertible then the mapping V is injective. If, in
addition, the array [Vy] is commutative then V is invertible.

Proof. Suppose that, for some p=\,...,n, equation (4.4) has a solution for some
</>eAp[<T,/T]. Then, for any jeJ(p), we can operate on (4.4) with the operator
5n~i(Cji<)o---o5p(Cji) and, using equations (2.1), (4.2) and (4.3), it can be seen that we
obtain the equations

Ax; = 5«-\ChJ o -o 8"(Ch)4>, ieJ(p). (4.5)

Thus the invertibility of A implies that

jeJ(p) . (4.6)

This shows that, for each p=l,...,n, and <pe Ap[<r,FT], the solution of (4.4) (if it exists)
is unique and is given by (4.6). Thus V is injective. Now suppose that the array [Vy] is
commutative. It can be seen that the commutativity of the operators in the array [Ky]
ensures that the operator A"1 commutes with the coboundary operators dp(Cj).
Substituting (4.6) into (4.4) and using (4.2) and (4.3), together with the commutativity,
shows that (4.6) is in fact a solution of (4.4) in this case. Hence V is invertible. •

We remark that the proof of Theorem 3.3 can be modified to show that if V is
injective and the complex F(H, T) is exact then the complex F(H, T) is exact. This shows
that when V is injective we have <j{T)co(W). Lemma 4.1 now implies the following
corollary.

Corollary 4.2. / / the operator A is invertible then o-(F) <= a( W).

We will now derive an equivalent expression for the solution of the system (4.4) that
does not involve the coboundary operators explicitly. Define the operators

where Sy is the sign factor ( — l)»g»'( — 1)»»>J and sgni denotes the parity of the
transformation

(1 , . . . ,p,p+1,..., n)-+(iu..., ip, f,,..., fn_p).

Using the Laplace expansion of a determinant (see equation (34) on p. 550 of [11]) it
can be shown that

j £ ![. '^ (4.7)
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(we note that the formal properties of operator determinants of the form we are
considering are discussed in Chapter 6 of [2]). Using these relations we can obtain the
following result in a similar manner to the proof of Lemma 4.1.

Lemma 4.3. / / the operator A is invertible then, for each p=l,...,n, the solution of
(4.1) (if it exists) is given by

jeJ(p). (4.8)

This result is a generalization of the Cramer's rule formula (3.4) for the solution of the
system (3.3). The two formulae coincide when p=\.

Combining Theorem 3.3 and Lemma 4.1 proves the following result.

Corollary 4.4. Suppose that the array [Vy] is commutative and the determinant A is
invertible. Then the multiparameter spectra cj( W) and o(T) are identical.

In addition, when the array [Vy] is commutative, the question of the invertibility of
A on the tensor product space H can be reduced to considering the joint spectra of
the rows of the array [Vy] in the original spaces. We define the commuting tuples

Theorem 4.5. / / the array [Py] is commutative then the determinantal operator A is
invertible if and only if

0 $ {a e U: a = det [a,,], where (fl,1,...,afa) e Sp(Kf, tf,), i= l , . . . , n} .

Proof. It is shown in [4] that the joint spectrum of the commuting set of operators
[Ky] on H is given by the cartesian product

Sp([Ky-],//)= X Sp(K,H,)cC"2.

Thus the result follows from the spectral mapping theorem for the analytic functional
calculus for sets of commuting operators (see [17]). •

We now consider the non-commutative situation. In the case where each of the spaces
H, is finite dimensional Atkinson uses the Cramer's rule formula (3.4) together with a
dimensional argument to show that (3.3) is solvable when A is invertible (see [2]). A
similar argument, using the formula (4.8), also shows that V is invertible when A is
invertible in the finite dimensional case. Thus in this case we again have the equality
a(W) = a{T) when A is invertible. Note also that in the finite dimensional case the
Taylor joint spectrum coincides with the joint point spectrum (see [5]).

In the infinite dimensional case the problem is harder. In fact in [1] an example is
constructed for which A is invertible but the system (3.3) is not solvable. Thus the
invertibility of A is not a sufficient condition for the invertibility of V in general.
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However if we let W(A) denote the closure of the numerical range of the operator A the
following theorem is effectively Theorem 1 of [1].

Theorem 4.6. Suppose that 0^ W(A). Then the system (3.3) is solvable.

The condition that 0 ̂  W(A) is a generalization of the usual positivity condition used
to establish solvability of (3.3) in the case of an array of self-adjoint operators (see [8]).
We will now show that this condition also implies that V is invertible. Note that the
condition ensures that A is invertible and hence, by Lemma 4.1, it is sufficient to show
that there exists a solution of (4.4) for each p=l,...,n, and all (£e Ap[<7,//]. We will
prove the result by a sequence of lemmas.

Lemma 4.7 / / A is invertible and the condition

is satisfied for each p—l,...,n, then V is invertible.

Proof. For each p = l,...,n, let p denote the multi-index (1,2, . . . ,p). We can rewrite
(4.4) in the form

)xy (4.9)

It follows from the hypothesis in the lemma that a sufficient condition for this equation
to have a solution x?eH is that the following system of equations in Ap+1[<x,/T| be
satisfied:

,p. (4.10)

Equation (2.1) implies that, for each r=l,...,p, the summation in (4.10) need only be
over those multi-indices j e J(p) for which r̂ = j k , k=l,...,p. For each r the order of the
operators on the left hand side of (4.10) can be rearranged, using (4.2), to bring the equation
to the form (4.4) with summation over a restricted subset of the set of multi-indices
J(p+l). The above procedure can now be repeated, for each equation in the system
(4.10), to obtain a new system of equations in the space Ap+2[cx, H] such that when this
new system is satisfied each equation in the system (4.10) has a solution. Continuing this
procedure we eventually find that a sufficient condition for the existence of the solution
xp of (4.9) is the solvability of a set of equations of the form

(4.11)

where j ranges over a subset of the set J(p). However the solvability of these equations,
for all <j>eAp[o, H], follows from the invertibility of A (using equation (4.3)). Thus we
have shown that (4.2) has a solution for all 0 e A p [ a , / / ] . This shows that V is invertible.

•
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Lemma 4.8. Suppose that A is invertible and the condition

is satisfied for each p = 0,...,n — l. Then, for each p=l,...,n, and all]eJ(p), we have

Proof. The invertibility of A implies that im<5"-1(Cn)°-°(5
0(C1) = A'1[>,#], by (4.3),

and aiso <5"(C,# = 0 for all i/>e A"[CT,H], j=\,...,n, by the definition of the coboundary
operators. This proves the lemma in the case p = n.

The inclusions

are obvious from equations (2.1) and (4.2), so we must prove the reverse inclusions.
Equations (4.2) and (4.3) and the invertibility of A shows that, for each p = l , . . . ,n — 1,

and any jeJ(p) , the operator A"1 5"~1{Cj^p)o---odp(Cjs) is a left inverse of the
operator Sp~1(Ci,)o--o8°(Cji). Thus we have the direct sum decompositions

A"|>, FT\ = ker 5"-\Ch_) ° • • • od'{C-h) @ im Sp~ \Cjp) ° • • • °5°(Ch),

p = l , . . . , n - l , jeJ(p) (4.12)

(this follows from Theorem 12.9 on p. 251 of [15]).
We now consider the case p = n—1. Suppose that there exists <j;e A"~*!>,//] such that

£ # 0 , 5--l(C})t; = 0, j=l,...,n-l, and ^ i m ^ - 2 ( C n - , ) o • • • o 5 ° ( C 1 ) . Then it follows
from the decomposition (4.12) that £, can be represented uniquely in the form
Z = ip + 9, where ^ e k e r ^ " " 1 ^ ) and 0eim<5"-2(Cn_1)°---o<5o(C1). Since
£<£im<5n~2(Cn_1)°---o(50(C1) we must have ij/ ± 0. Also, since
0Eim<5B-2(Cn_1)°---o(5

o(<:1), we have S"-l(Cj)e = 0, j=l,...,n-\, by (2.1), so it follows
from the choice of <J that d"~l(Cj)il/ = 0, j=l,...,n—l. The hypothesis of the lemma
now implies that 1^=0, which is a contradiction. This proves the lemma in the case
p = n— 1 and j = ( l ,2 , . . . ,n — 1). The result can be proved similarly for all jeJ(w— 1).

Now let p = n —2 and j = ( l ,2 , . . . ,n — 2). Using a similar argument to the above, we
suppose that there exists a non-zero ^ek^3"~l{Cn)ob'n~\Cn.l) such that 5"~\CJ)^ = 0,
j=l,...,n-2. If we let 0 = 5"~2(Cn_1)i/'6An-1[<T,/r], then ^ e k e r ^ - ^ C J since
<pekeTdn-1(Cn)od--2{Cn-l). Also ^ - ' ( C , , _,)<£ = () by (2.1), and d"-i(Cj)(t> =
5n-i(Cn-1)°5"-2(Cj)ip = 0, j = l,...,n-2, by (4.2) and the choice of ij/. Hence it
follows from the argument in the case p = n — 1 that <j> = 0. Similarly we can show that
(5""2(Cn)^ = 0. This shows that S"~2(Cj)il/=0, j=l,...,n, and so, by the hypothesis,
î  = 0. This proves the lemma when p = n—2 and j = ( l ,2 , . . . ,n — 2). Again the result for
all jeJ(w — 2) can be proved similarly. This argument can be continued in a similar
manner for p = n — 3, n—4,..., 1, to prove the general result.

•
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Lemma 4.9. Suppose that 0<£W(A). Then

{0 e A 'O, H] : 5"(Cj)iP = 0, j = 1, . . . ,«} = {0},

/or each p = 0,... , n — 1.

Proof. We begin by transforming the array of operators [Fy] into a new array of the
form

V — — V V an-l i/ y
' 1 1 ' I n ••• K l , n - 1 K l n K

F - - i F F g "" 1 F

where the a,, i= l , . . . , n , are complex numbers with an^=0. This new array has the same
determinant A as the original array [F^]. Now let An_t and A^_j denote the
determinants of the sub-arrays formed from the first n — \ rows and columns of the
original and transformed arrays respectively. Using the method of proof of Theorem 2
of [8] it can be shown that the numbers a; can be chosen in such a way that

!). Note that we have assumed that this construction produces a non-zero an.
However this does not entail any loss of generality since at least one of the a,'s must be
non-zero (see [8]) and we may renumber the columns to ensure that an=^0. The
columns of the transformed array are of the form C'j = Cj—(<Xj/an)Cn, jj=n, and it can be
seen that

5>(Ck) = 5"(Ck) - ( S"(Cn)

This result, together with (4.2), shows that the existence of a solution of the system of
the form (4.4), derived from the transformed array, implies the existence of a solution of
the original system. In view of this we will, from now on, assume that the array [Fy] is
such that 0<£W(A) and 0^W(VT) -

We will now prove the result by induction on n. It is clear that the result holds when
H = 1 . Thus we assume that n > l and the result holds for any (n— l)x(n— 1) array of
operators on a Hilbert space H with the property that operators from different rows
commute and whose determinant satisfies the hypothesis of the lemma. Note that in the
proof we will only use these properties of the array, the tensor product structure is not
needed. In particular this means that in the induction process we only use the space H,
we do not need to consider the tensor product spaces of the form (X)J= 1Hi,r=l,...,n.

We let & denote the tuple of indeterminates (su...,sn-1) and construct the set
A[a',H] as in Section 2. For each p = l , . . . , n —1, the set Ap[>',/f] can be canonically
identified with the subset of the set Ap[<r, / / ] consisting of elements of the form

A A SV
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where J\p) <= J(p) is the set of multi-indices j for which jp =fc n. Also, if

'/ '= I XjSj, A ••• A sJ peAp|>' , /r | ,
ieJ'ip)

then we let \j/ A sn denote the element

X XjS,, A ••• A Sj A S n € A p + 1 [ C T , H ] .
Je-Hp)

Using this notation and the above identification it can be seen that, for any p = O,...,n,
any element \ji e Ap[a, H] can be uniquely represented in the form

sn, (4.13)

where <j> e \"[o', / / ] , 0 e A " - 1 [>' , / /] (when p = 0 we put 0 = i/f and 0 A sn = 0).
Now, for any p = 0,...,n — 2, let i/^eAP[<T,//] satisfy the equations

(4.14)

If we define the commuting tuples Cy = (K1
+

/,..., Fn
+_t j), j=l,...,n—l, it follows from

the representation (4.13) that

p) A sn, j = l , . . . , n - l .

Hence equation (4.14) and the properties of the exterior algebra imply that

Sp(Cj)<p = 0, j=\,...,n-l, (4.15)

\ n - l . (4.16)

The induction hypothesis and equation (4.15) now imply that 0 = 0. Thus equation
(4.16) reduces to

and hence, by our induction hypothesis, 0 = 0. Thus 1̂  = 0, which proves the result for
p = 0 , . . . ,«-2 .

To prove the result for p = n — 1 we note that the canonical isomorphism between
A""1^, H] and H" allows us to rewrite equation (4.14) in the form

£ VtXj = 0, i = l w. (4.17)

This system of equations is the transpose of the system (3.3). If we define the mapping
W:Hn-+Hn by
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we see that equation (4.17) is equivalent to the equation x¥(xl,...,xn) = 0. The adjoint of
the mapping *P is given by

= i

Now, since the operator A* is the determinant of the array [Fy *] and 0=/= W(A) implies
that 0$W(A*), it follows from Theorem 4.6 that the mapping *¥* is invertible. Hence
the mapping ¥ is invertible. Thus equation (4.17) implies that (xl,...,xn) = (0,...,0) and
hence if/ = 0. This proves the result for p = n — 1 and completes the proof of the lemma.

•
Collecting together the results of Lemmas 4.7, 4.8 and 4.9 proves the following

theorem.

Theorem 4.10. Suppose that 0^ W(A). Then the multiparameter spectra a(W) and <T(F)
are identical.
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