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Two graphs G1 and G2 on n vertices are said to pack if there exist injective mappings of their vertex
sets into [n] such that the images of their edge sets are disjoint. A longstanding conjecture due to
Bollobás and Eldridge and, independently, Catlin, asserts that if (Δ(G1)+1)(Δ(G2)+1) � n+1,
then G1 and G2 pack. We consider the validity of this assertion under the additional assumption that
G1 or G2 has bounded codegree. In particular, we prove for all t �2 that if G1 contains no copy of
the complete bipartite graph K2,t and Δ(G1) > 17t ·Δ(G2), then (Δ(G1)+ 1)(Δ(G2)+ 1) � n + 1
implies that G1 and G2 pack. We also provide a mild improvement if moreover G2 contains no
copy of the complete tripartite graph K1,1,s, s � 1.

2010 Mathematics subject classification: Primary 05C70
Secondary 05C35

1. Introduction

Let G1 and G2 be graphs on n vertices. (All graphs are assumed to have neither loops nor multiple
edges.) We say that G1 and G2 pack if there exist injective mappings of their vertex sets into
[n] = {1, . . . ,n} so that their edge sets have disjoint images. Equivalently, G1 and G2 pack if
G1 is a subgraph of the complement of G2. The maximum codegree Δ∧(G) of a graph G is the
maximum over all vertex pairs of their common degree, i.e. Δ∧(G) < t if and only if G contains
no copy of the complete bipartite graph K2,t . The maximum adjacent codegree Δ�(G) of G is the
maximum over all pairs of adjacent vertices of their common degree, i.e. Δ�(G) < s if and only
if G contains no copy of the complete tripartite graph K1,1,s. Clearly, Δ�(G) � Δ∧(G) always.
We let Δ1 and Δ2 denote the maximum degrees of G1 and G2, respectively, and Δ∧

1 and Δ�
2 the

corresponding maximum (adjacent) codegrees. We provide sufficient conditions for G1 and G2

to pack in terms of Δ1, Δ2, Δ∧
1 , Δ�

2 .
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For integers t � 2 and Δ2 � 1, we define

α∗(t,Δ2) :=
1
2
(2+ γ +

√
4γ + γ2), where γ =

Δ2

Δ2 +1
· t −1

t
.

Note α∗ = α∗(t,Δ2) is the larger solution to the equation (α −1)2 − γα = 0 and

1
8
(9+

√
17) � α � 1

2
(3+

√
5).

Theorem 1.1. Let G1 and G2 be graphs on n vertices with respective maximum degrees Δ1 and
Δ2. Let Δ∧

1 be the maximum codegree of G1. Let t � 2 be an integer and let α > α∗ = α∗(t,Δ2)
and 0 < ε < 1/2 be reals. Then G1 and G2 pack if Δ∧

1 < t and n is larger than each of the
following quantities: (

t +
α(α −1)

(α −1)2 −α

)
·Δ2 +Δ1Δ2, (1.1)

(2αt +2) ·Δ2 +((2α +1)t −1) ·Δ2
2 +(1− ε) ·Δ1Δ2, (1.2)

1+
(

2+
ε

1−2ε

)
·Δ2 +Δ1Δ2, and (1.3)

(
t +

3− ε
2

)
·Δ2 +

3− ε
2

(t −1) ·Δ2
2 +

1+ ε
2

·Δ1Δ2. (1.4)

Theorem 1.2. Let G1 and G2 be graphs on n vertices with respective maximum degrees Δ1 and
Δ2. Let Δ∧

1 be the maximum codegree of G1 and Δ�
2 the maximum adjacent codegree of G2. Let

s � 1 and t � 2 be integers and let α > α∗ = α∗(t,Δ2) be real. Then G1 and G2 pack if Δ∧
1 < t,

Δ�
2 < s, and n is larger than both of the following quantities:(

t +
α(α −1)

(α −1)2 −α

)
·Δ2 +Δ1Δ2 and (1.5)

(2+2αt) ·Δ2 +(s−1) ·Δ1 +((2α +1)t −1) ·Δ2
2. (1.6)

For better context, we compare Theorems 1.1 and 1.2 to a line of work on graph packing that
was initiated in the 1970s [2, 6, 7, 17]. The following is a central problem in the area.

Conjecture 1.3 (Bollobás and Eldridge [2] and Catlin [7]). Let G1 and G2 be graphs on n
vertices with respective maximum degrees Δ1 and Δ2. Then G1 and G2 pack if (Δ1 +1)(Δ2 +1) �
n+1.

If true, the statement would be sharp and would significantly generalize a celebrated result of
Hajnal and Szemerédi [12] on equitable colourings. Sauer and Spencer [17] showed that 2Δ1Δ2 <

n is a sufficient condition for G1 and G2 to pack, which is seen to be sharp when one of the
graphs is a perfect matching. Thus far the Bollobás–Eldridge–Catlin (BEC) conjecture has been
confirmed in the following special cases: Δ1 = 2 [1]; Δ1 = 3 and n sufficiently large [10]; G1

bipartite and n sufficiently large [9]; and G1 d-degenerate, Δ1 � 40d and Δ2 � 215 [5]. We would
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also like to highlight the following three results that can be considered approximate forms of the
BEC conjecture. (a) The condition (Δ1 + 1)(Δ2 + 1) � 3n/5 + 1 is sufficient for G1 and G2 to
pack, provided that Δ1,Δ2 � 300 [15]. (b) The BEC condition is sufficient for G1 and G2 to admit
a ‘near packing’ in that the subgraph induced by the intersection of their images has maximum
degree at most 1 [11]. (c) If G2 is chosen as a binomial random graph of parameters n and p such
that np in place of Δ2 satisfies the BEC condition, then G1 and G2 pack with probability tending
to 1 as n → ∞ [3].

Corollary 1.4. Let G1,G2,Δ1,Δ2 and Δ∧
1 be as before. Let t � 2 be an integer. Then G1 and G2

pack if Δ1Δ2 +Δ1 � n+1 and Δ∧
1 < t and Δ1 > 17t ·Δ2.

Proof. Choose ε = (2t −2)/(4t −3) and α = 3 in Theorem 1.1. Using that

Δ1 > 17tΔ2 >
(4t −3)(7t −1)

2t −2
·Δ2,

it follows that max((1.1), (1.2), (1.3), (1.4)) � (Δ1 +1)(Δ2 +1)−1 � n. So G1 and G2 pack.

We have the following results concerning the BEC conjecture.

Corollary 1.5. Given an integer t � 2, the BEC conjecture holds under the additional condition
that the maximum codegree Δ∧

1 of G1 is less than t and Δ1 > 17t ·Δ2.

We were unable to avoid the linear dependence on Δ2 in the lower bound condition on Δ1.
Although we have not seriously attempted to optimize the factor 17t above, Theorem 1.2 im-
proves on this factor under the additional assumption that Δ�

2 is bounded, as exemplified by the
following corollary.

Corollary 1.6. Given an integer t � 2, the BEC conjecture holds under the additional condition
that the maximum codegree Δ∧

1 of G1 is less than t, G2 is triangle-free, and Δ1 > (4+
√

5)t ·Δ2.

Proof. Choose

α =
1
4t

(6t +1+
√

20t2 +4t +1)

and s = 1 in Theorem 1.2. Using that

t +
α(α −1)

(α −1)2 −α
−1 = (2α +1)t −1

and that Δ1 > (4 +
√

5)t ·Δ2 > ((2α + 1)t − 1) ·Δ2, it follows that max((1.5), (1.6)) � (Δ1 +
1)(Δ2 +1)−1 � n. So G1 and G2 pack.

Structure of the paper
In the next section, we provide some notation and preliminary observations. In Section 3, we
discuss the common features of a hypothetical critical counterexample to one of our theorems.
In Section 4, we prove Theorems 1.1 and 1.2. We conclude the paper with some remarks about
the results, proofs and further possibilities.
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2. Notation and preliminaries

Here we introduce some terminology which we use throughout. We often call G1 the blue graph
and G2 the red graph. We treat the injective vertex mappings as labellings of the vertices from
1 to n. However, rather than saying, ‘the vertex in G1 (or G2) corresponding to the label i’,
we often only say, ‘vertex i’, since this should never cause any confusion. Our proofs rely on
accurately specifying the neighbourhood structure as viewed from a particular vertex. Let i ∈ [n].
The blue neighbourhood N1(i) of i is the set { j | i j ∈ E(G1)} and the blue degree deg1(i) of i is
|N1(i)|. The red neighbourhood N2(i) and red degree N2(i) are defined analogously. For j ∈ [n],
a red–blue link (or 2–1 link) from i to j is a vertex i′ such that ii′ ∈ E(G2) and i′ j ∈ E(G1). The
red–blue neighbourhood N1(N2(i)) of i is the set { j | ∃ red–blue link from i to j}. A blue–red
link (or 1–2 link) and the blue–red neighbourhood N2(N1(i)) are defined analogously.

In search of a certificate that G1 and G2 pack, without loss of generality, we keep the vertex
labelling of the blue graph G1 fixed, and permute only the labels in the red graph G2. This can
be thought of as ‘moving’ the red graph above a fixed ground set [n]. In particular, we seek to
avoid the situation that there are i, j ∈ [n] for which i j is an edge in both G1 and G2 – in this
situation, we call i j a purple edge induced by the labellings of G1 and G2. So G1 and G2 pack if
and only if they admit a pair of vertex labellings that induces no purple edge. In our search, we
make small cyclic sub-permutations of the labels (of G2), which are referred to as follows. For
i0, . . . , i�−1 ∈ [n], a (i0, . . . , i�−1)-swap is a relabelling of G2 so that for each k ∈ {0, . . . , �−1} the
vertex labelled ik is re-assigned the label ik+1 mod �. In fact, we shall only require swaps having
� ∈ {1,2}. The following observation describes when a swap could be helpful in the search for a
packing certificate. This is identical to Lemma 1 in [15].

Lemma 2.1. Let u0, . . . ,u�−1 ∈ [n]. For every k,k′ ∈ {0, . . . , �− 1}, suppose that there is no
red–blue link from uk to uk+1 mod � and that if ukuk′ ∈ E(G2), then u(k+1 mod �)u(k′+1 mod �) /∈ E(G1).
Then there is no purple edge incident to any of u0, . . . ,u�−1 after a (u0, . . . ,u�−1)-swap.

We will use a classic extremal set theoretic result to upper-bound the size of certain vertex
subsets.

Lemma 2.2 (Corrádi [8]). Let A1, . . . ,AN be k-element sets and X be their union. If |Ai∩Aj|�
t −1 for all i �= j, then |X | � k2N/(k +(N −1)(t −1)).

In particular, this implies the following.

Corollary 2.3. Let A1, . . . ,AN be size � k subsets of a set X. If k2 > (t −1) · |X | and |Ai ∩Aj| �
t −1 for all i �= j, then

N � |X | · k− (t −1)
k2 − (t −1) · |X | .

Proof. Consider arbitrary subsets A∗
1 ⊂ A1, . . . ,A

∗
N ⊂ AN of size k. An application of Corrádi’s

lemma to A∗
1, . . . ,A

∗
N yields that |X | � k2 ·N/(k + (N − 1)(t − 1)), which is easily seen to be

equivalent to (k2 − (t − 1) · |X |) ·N � (k− t + 1) · |X |. The corollary follows after dividing both
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sides of the inequality by k2 − (t − 1) · |X |. Note that this division does not cause a sign change
because of the assumption that k2 > (t −1) · |X |.

3. Hypothetical critical counterexamples

The overall proof structure we use for both theorems is the same, and in this section we describe
common features and some further notation. Suppose the theorem (one of Theorem 1.1 or 1.2) is
false. Then there must exist a counterexample, that is, a pair (G1,G2) of non-packable graphs on
n vertices that satisfy the conditions of the theorem.

Moreover, we may assume that (G1,G2) is a critical pair in the sense that G2 is edge-minimal
among all counterexamples. In other words, G1 and G2 − e pack for any e ∈ E(G2). There is
no loss of generality, since the removal of an edge from G2 increases neither Δ2 nor Δ�

2 and
obviously affects none of Δ1, Δ∧

1 and n, thus maintaining the required conditions.
Now choose any edge e = uv ∈ E(G2). Criticality implies that there is a pair of labellings of

G1 and G2 such that e is the unique purple edge, for otherwise G1 and G2 − e do not pack. Let
us fix such a pair of labellings so that we can further describe the neighbourhood structure as
viewed from u (or v). Estimation of the sizes of subsets in this neighbourhood structure is our
main method for deriving upper bounds on n that in turn yield the desired contradiction from
which the theorem follows.

We need the definition of the following vertex subsets (which are analogously defined for v
also):

A(u) := N2(N1(u))\ (N1(u)∪N2(u)∪N1(N2(u))),

B(u) := N1(N2(u))\ (N1(u)∪N2(u)∪N2(N1(u))),

A∗(u) := N2(N1(u))\ (N2(u)∪N1(N2(u))), and

N∗
1 (u) := N1(u)∩ (N1(N2(u))\ (N2(u)∪N2(N1(u)))).

One justification for specifying the above subsets is that the following two claims (which are
essentially Claims 1 and 2 in [15]) hold.

Claim 3.1. For all w ∈ [n]\{v}, there is a red–blue link or a blue–red link from u to w.

Proof. If not, then by Lemma 2.1, a (u,w)-swap yields a new labelling such that uv is no
longer purple and no new purple edges are created. Thus G1 and G2 pack, a contradiction. See
Figure 1.

Claim 3.2. For all a ∈ A∗(u) and b ∈ B(u), there is a red–blue link from a to b.

Proof. Since B(u) ∩ N1(u) = B(u) ∩ N2(u) = /0 and A∗(u) ∩ N2(u) = /0, we have that bu /∈
E(G1)∪E(G2) and ua /∈ E(G2). Furthermore, since A∗(u)∩N1(N2(u)) = B(u)∩N2(N1(u)) = /0,
there is no red–blue link from u to a or from b to u. Now suppose that there is also no red–blue
link from a to b. Then it follows from Lemma 2.1 that after a (u,a,b)-swap there is no purple
edge incident to any of u,a,b, which implies that there is no purple edge at all. So we have
obtained a packing of G1 and G2, a contradiction.
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v

u

Figure 1. All vertices (except possibly v) are reachable by a link from u (Claim 3.1).

v = N2(u)∩N1(u)

u

N2(u)
N1(u)

B(u) A(u)

Figure 2. The neighbourhood structure of a hypothetical critical counterexample, as seen from u.

See Figure 2
In the next claim, we list three upper bounds on the total number n of vertices in terms of the

sizes of the vertex subsets defined above. In the proofs of Theorems 1.1 and 1.2, we consider
several cases for which we prove at least one of these upper bounds to be small enough for a
contradiction with the assumed lower bounds on n.

Claim 3.3. The total number n of vertices is at most each of the following quantities:

(i) |N2(u)|+ |A∗(u)|+ |N1(N2(u))|,
(ii) |N∗

1 (u)|+ |N2(u)|+ |B(u)|+ |N2(N1(u))|,
(iii) |A∗(v)|+ |A∗(u)|+ |(N2(u)∪N1(N2(u)))∩ (N2(v)∪N1(N2(v)))|.

Proof. In all cases, [n] equals the union of the neighbourhood sets that occur in the upper bound.

(i) The union of N2(u), A∗(u) and N1(N2(u)) covers {v} ∪N2(N1(u))∪N1(N2(u)), which by
Claim 3.1 equals [n].

(ii) The union of N∗
1 (u), N2(u), B(u) and N2(N1(u)) covers {v}∪N2(N1(u))∪N1(N2(u)), which

equals [n].
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(iii) By the proof of (i), [n] is the union of A∗(u) and N2(u)∪N1(N2(u)) as well as the union
of A∗(v) and N2(v)∪N1(N2(v)). It follows that [n] also is the union of A∗(u), A∗(v) and
(N2(u)∪N1(N2(u)))∩ (N2(v)∪N1(N2(v))).

The reason for working with N∗
1 (u) and A∗(u) rather than the simpler sets N1(u) and A(u) is the

following. Under the requirement that the codegree Δ∧
1 of G1 is less than t, we can upper-bound

|N∗
1 (u)| entirely in terms of Δ2. This is sharper than the trivial bound |N1(u)| � Δ1 because we

work under conditions with Δ1 rather larger than Δ2. Similarly, since N∗
1 (u) ⊂ N1(u), we need to

compensate for the loss of covered vertices by working with the slightly enlarged set A∗(u), rather
than A(u). The following claims use the condition Δ∧

1 < t (which is assumed by both theorems).

Claim 3.4. |N∗
1 (u)| � (t −1) ·Δ2.

Proof. Suppose |N1(u)∩N1(N2(u))| � (t −1) ·Δ2 +1; then there is at least one x ∈ N2(u) such
that

|N1(u)∩N1(x)| �
1

|N2(u)| · ((t −1) ·Δ2 +1) > t −1,

which contradicts Δ∧
1 < t.

The following claim (in combination with Corrádi’s lemma) is useful for an upper bound on
|B(u)| that is only linear in Δ2, provided that |A∗(u)| is at least quadratic in Δ2. See case (i) in the
proof of Theorem 1.1.

Claim 3.5. For any b ∈ B(u), |N1(b)∩A∗(u)| � |A∗(u)|/Δ2 − t(Δ2 +1).

Proof. For all b ∈ N1(N2(u)) it holds that

|N1(b)∩N1(N2(u))| � (t −1) · |N2(u)| � (t −1) ·Δ2.

Indeed, otherwise there would exist a blue copy of K2,t in the graph induced by N1(N2(u))∪
N2(u). Similarly, |N1(b)∩N1(u)| � t and |N1(b)∩N2(u)| � Δ2. So for every b ∈ N1(N2(u)), at
most t · (Δ2 + 1) blue neighbours of b are in [n] \A(u). So in particular, for every b ∈ B(u), at
most t · (Δ2 +1) blue neighbours of b are in [n]\A∗(u).

Using Claim 3.2 and the fact that each blue neighbour of a fixed b ∈ B(u) has at most Δ2 red
neighbours in A∗(u), we see that every b ∈ B(u) has at least �|A∗(u)|/Δ2� blue neighbours, and
thus at least |A∗(u)|/Δ2 − t(Δ2 +1) blue neighbours in A∗(u).

4. Proofs

4.1. Proof of Theorem 1.1
Suppose the theorem is false. Consider a critical counterexample, a pair of non-packable graphs
(G1,G2), with G2 edge-minimal, satisfying the constraints of the theorem. We distinguish three
cases, for each of which we derive an upper bound on n, given by one of the inequalities (4.2),
(4.4) and (4.10). At least one of these three inequalities should hold, so together they contradict
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v

u

B(u)
very
small

A∗(u)
large

Figure 3. A depiction of case (i) of Theorem 1.1, that |A∗(u)| = Ω(Δ2
2) implies |B(u)| = O(Δ2).

the condition that

max((4.2), (4.4), (4.10)) = max((1.1), (1.2), (1.3), (1.4)) < n,

thus proving the theorem.

(i) There exists a vertex u ∈ [n] and there are labellings of G1 and G2 such that u is incident to
the unique purple edge and |A∗(u)| � αt ·Δ2(Δ2 +1).

(ii) Case (i) does not hold and furthermore |N2(u)∩N2(v)| < (1− ε) ·Δ2 for some edge uv ∈
E(G2).

(iii) Case (i) does not hold and |N2(u)∩N2(v)| � (1− ε) ·Δ2 for every uv ∈ E(G2).

We now proceed with deriving upper bounds on n for each of these three cases.

Bound for case (i). Choose a vertex u ∈ [n] and labellings of G1 and G2 such that u is incident
to the unique purple edge and |A∗(u)| � αt · Δ2(Δ2 + 1). See Figure 3 for a depiction of the
argumentation in this case. From now on, we write k := |A∗(u)|/Δ2 − t(Δ2 +1). Our first tool is
Claim 3.5, which yields that all b∈ B(u) satisfy |N1(b)∩A∗(u)|� k. Note that k � 1, since α > 1.
Our second tool is Corrádi’s lemma, or rather Corollary 2.3, which we apply with X = A∗(u) and
N = |B(u)| and with size � k subsets A1, . . . ,AN ⊂ X given by N1(b)∩A∗(u), for all b ∈ B(u).
Note that |Ai ∩Aj| � t −1 for all i �= j, or else there would be a blue copy of K2,t .

In order to apply Corollary 2.3, we need to check that its condition k2 > (t −1) · |A∗(u)| holds.
For that, we write β := |A∗(u)|/(tΔ2(Δ2 +1)), so that k = (β −1)t(Δ2 +1). Now

k2 − (t −1) · |A∗(u)| = ((β −1)t(Δ2 +1))2 −β tΔ2(Δ2 +1)(t −1)

= ((β −1)2 − γ ·β ) · (t(Δ2 +1))2,

which is positive if and only if (β −1)2 − γβ > 0, which holds true because β � α > α∗. Thus,
by Corollary 2.3, we obtain

|B(u)| � |A∗(u)| · k− (t −1)
k2 − (t −1) · |A∗(u)| =

1− (t −1)/k
k/|A∗(u)|− (t −1)/k

.
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The numerator and denominator of the right-hand side are both positive, so we can bound and
rearrange as follows:

|B(u)| �
(

k
|A∗(u)| −

t −1
k

)−1

=
(

(β −1)t(Δ2 +1)
β tΔ2(Δ2 +1)

− t −1
(β −1)t(Δ2 +1)

)−1

= Δ2 ·
(

β −1
β

− 1
β −1

· Δ2

Δ2 +1
· t −1

t

)−1

= Δ2 ·
(

β −1
β

− γ
β −1

)−1

� Δ2 ·
α(α −1)

(α −1)2 − γα
, (4.1)

where the last step holds because β � α > α∗ and α∗ is the larger singular point of

β (β −1)
(β −1)2 − γβ

,

which is a decreasing function of β for all β > α∗.
Evaluating (4.1) and Claim 3.4 in the upper bound of Claim 3.3(ii) yields

n � |N∗
1 (u)|+ |N2(u)|+ |B(u)|+ |N2(N1(u))|

� (t −1) ·Δ2 +Δ2 +
α(α −1)

(α −1)2 −α
·Δ2 +Δ1Δ2

=
(

t +
α(α −1)

(α −1)2 −α

)
·Δ2 +Δ1Δ2. (4.2)

Bound for case (ii). Choose labellings of G1 and G2 such that there is a unique purple edge uv
that satisfies |N2(u)∩N2(v)| < (1− ε) ·Δ2. Note that the inequalities |A∗(u)| < αt ·Δ2(Δ2 + 1)
and |A∗(v)| < αt ·Δ2(Δ2 +1) are satisfied as well, as a direct consequence of the assumptions of
case (ii).

We proceed with deriving a technical estimate on an intersection of neighbourhood sets. For
each x ∈ N2(u)\N2(v) and y ∈ N2(v)\N2(u) we have x �= y and therefore absence of blue copies
of K2,t implies the inequality |N1(x)∩N1(y)| � t −1. So

|N1(N2(u)\N2(v))∩N1(N2(v)\N2(u))| � ∑
x∈N2(u)\N2(v)

∑
y∈N2(v)\N2(u)

|N1(x)∩N1(y)|

� |N2(u)\N2(v)| · |N2(v)\N2(u)| · (t −1)

� (Δ2 −|N2(u)∩N2(v)|)2 · (t −1).

Furthermore, since |N2(u)∩N2(v)| < (1− ε) ·Δ2,

|N1(N2(u))∩N1(N2(v))| � |N1(N2(u)∩N2(v))|+ |N1(N2(u)\N2(v))∩N1(N2(v)\N2(u))|
< Δ1 · |N2(u)∩N2(v)|+(Δ2 −|N2(u)∩N2(v)|)2 · (t −1)

� max
p∈{0,1,2,...,�(1−ε)·Δ2�}

(Δ1 · p+(Δ2 − p)2 · (t −1)).
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v u

A∗(v)
small

A∗(u)
small

N1(N2(u)∩N2(v))
small

N1(N2(u)\N2(v))∩N1(N2(v)\N2(u))
small

Figure 4. A depiction of case (ii) of Theorem 1.1, that |N1(N2(u))∩N1(N2(v))| is small.

See Figure 4. Finally, we evaluate this in Claim 3.3(iii) to find the following bound on n:

n � |A∗(v)|+ |A∗(u)|+ |(N2(u)∪N1(N2(u)))∩ (N2(v)∪N1(N2(v)))|
� |A∗(v)|+ |A∗(u)|+ |N2(u)|+ |N2(v)|+ |N1(N2(u))∩N1(N2(v))|
� 2αt ·Δ2(Δ2 +1)+2Δ2 + max

p∈{0,1,2,...,�(1−ε)·Δ2�}
(Δ1 · p+(Δ2 − p)2 · (t −1)). (4.3)

In particular, this implies the slightly rougher bound

n � 2αt ·Δ2(Δ2 +1)+2Δ2 +(1− ε) ·Δ1Δ2 +Δ2
2 · (t −1). (4.4)

Bound for case (iii). Choose a pair of labellings of G1 and G2 that induces a unique purple edge
uv. The assumptions of this case imply, in particular, that in the red graph the neighbourhoods
of each pair of adjacent vertices overlap significantly: |N2(x)∩N2(y)| � (1− ε) ·Δ2 for each
xy ∈ E(G2).

We will derive two consequences, namely the implication(
|A∗(u)| � 1+Δ2 +

ε ·Δ2

1−2ε

)
=⇒ (|B(u)| � (t −1) ·Δ2

2) (4.5)

and the inequality

|N2(N1(u))| � 1+ ε
2

Δ1Δ2 +
1− ε

2
(t −1) ·Δ2

2 +
3
2

Δ2. (4.6)

We start by proving the statement (4.5), the first consequence. See Figure 5. Suppose a ∈
A∗(u)\N2(u) has a red neighbour x∈N2(u). Then ux and ax are edges of G2, so |N2(a)∩N2(x)|�
(1−ε)Δ2 and |N2(u)∩N2(x)|� (1−ε)Δ2. Combining this with the obvious fact that |N2(x)|� Δ2
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v

u

a

B(u)
small

A∗(u)
not very small

Figure 5. A depiction of (4.5) in case (iii) of Theorem 1.1.

yields that

|N2(a)∩N2(u)| � (1−2ε) ·Δ2. (4.7)

Let us define

A∗∗(u) := {a ∈ A∗(u) | a has a red neighbour in N2(u)}.

It follows from (4.7) that

∑
a∈A∗∗(u)

|N2(a)∩N2(u)| � |A∗∗(u)| · (1−2ε) ·Δ2,

so

∑
x∈N2(u)

|N2(x)| � ∑
x∈N2(u)

|N2(x)∩N2(u)|+ ∑
a∈A∗∗(u)

|N2(a)∩N2(u)|

� (1− ε)Δ2 · |N2(u)|+ |A∗∗(u)| · (1−2ε) ·Δ2,

and (crucially) since ∑x∈N2(u) |N2(x)| � Δ2 · |N2(u)|, it follows that

|A∗∗(u)| � |N2(u)| ·Δ2 − (1− ε) ·Δ2|N2(u)|
(1−2ε) ·Δ2

=
ε · |N2(u)|

1−2ε
. (4.8)

Next, suppose we would have that |A∗(u)| � 1+ |N2(u)|+ |A∗∗(u)|. Then there exists a vertex
a ∈ A∗(u) \A∗∗(u). By the definition of A∗∗(u), this vertex satisfies N2(a)∩N2(u) = /0. Further-
more, since a ∈ A∗(u), we have that for all b ∈ B(u) there is a red–blue link from a to b. In other
words, B(u) = N1(N2(a))∩B(u). This implies that

|B(u)| = |N1(N2(a))∩B(u)| � |N1(N2(a))∩N1(N2(u))| � (t −1) ·Δ2
2,
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where the last inequality is a consequence of the facts that N2(a)∩N2(u) = /0 and G1 does not
contain a copy of K2,t . In summary, we have shown the implication

|A∗(u)| � 1+ |N2(u)|+ |A∗∗(u)| =⇒ |B(u)| � (t −1) ·Δ2
2. (4.9)

Combining (4.8) and (4.9) yields our first desired main consequence (4.5).
We now prove inequality (4.6), the second consequence. See Figure 6. First, the absence of

blue copies of K2,t implies that for every x ∈ N2(u) we have |N1(x)∩N1(u)| � t −1. Therefore

|N1(u)∩N1(N2(u))| � |N2(u)| · max
x∈N2(u)

(|N1(x)∩N1(u)|) � Δ2 · (t −1).

In other words, there is a red–blue link from u to y for at most Δ2 · (t − 1) vertices y ∈ N1(u).
Recalling that there is a link from u to every vertex (possibly with the exception of v), it follows
that there are at least h := |N1(u)|− (t−1)Δ2−1 vertices y ∈ N1(u) for which there is a blue–red
link (and no red–blue link) from u to y. In other words, m := |N1(u)∩N2(N1(u))| � h. It follows
from the definition of blue–red link that any y1 ∈ N1(u)∩N2(N1(u)) is connected to at least one
other vertex y2 ∈ N1(u)∩N2(N1(u)) by a red edge.

This means that N1(u)∩N2(N1(u)) can be covered by a collection of vertex-disjoint red stars
S1,S2, . . . that each have at least two vertices (unless m ∈ {0,1}, in which case inequality (4.6) is
clearly satisfied). Let S be one such star, with central vertex y∗ and leaves y1,y2 . . . ,y|S|−1. Each
of its edges has a large common red neighbourhood: for all j ∈ {1,2, . . . , |S| − 1} it holds that
|N2(y

∗)∩N2(y j)| � (1− ε) ·Δ2. Therefore

∣∣∣∣
⋃
y∈S

N2(y)
∣∣∣∣ � |N2(y

∗)|+ ∑
y∈S\{y∗}

|N2(y)\N2(y
∗)| � (1+ ε · (|S|−1)) ·Δ2,

which is at most (1+ ε)/2 · |S| ·Δ2. So

|N2(N1(u)∩N2(N1(u)))| =
∣∣∣∣
⋃

i

⋃
y∈Si

N2(y)
∣∣∣∣ � ∑

i

∣∣∣∣
⋃
y∈Si

N2(y)
∣∣∣∣

� ∑
i

1+ ε
2

· |Si| ·Δ2 =
m
2
· (1+ ε) ·Δ2.

Last, note that

|N1(u)∩ (N1(N2(u))\N2(N1(u)))| = |N1(u)|−m−1{� link from u to v} � |N1(u)|−m.

We are now ready to derive (4.6):

|N2(N1(u))| � |N2(N1(u)∩N2(N1(u)))|+ |N2(N1(u)∩ (N1(N2(u))\N2(N1(u))))|+ |N2(v)|

� m
2
· (1+ ε) ·Δ2 +(|N1(u)|−m) ·Δ2 +Δ2 =: g(m).
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v

u

N1(u)∩ (N1(N2(u))\N2(N1(u)))
very small

N1(u)∩N2(N1(u)))

N2(N1(u)∩N2(N1(u)))
small

N2(N1(u)∩ (N1(N2(u))\N2(N1(u))))
small

small

small

small

Figure 6. A depiction of (4.6) in case (iii) of Theorem 1.1.

Since Δ2 � 0 and ε < 1/2, the function g(x) is non-increasing on the whole of R. Since h � m,
it follows that g(m) � g(h). So

|N2(N1(u))| � g(|N1(u)|− (t −1)Δ2 −1)

=
1+ ε

2
· (|N1(u)|− (t −1) ·Δ2 −1) ·Δ2 +(t −1) ·Δ2

2 +2Δ2

� 1+ ε
2

·Δ1Δ2 +
1− ε

2
· (t −1) ·Δ2

2 +
3− ε

2
·Δ2,

as desired.
Finally, we evaluate (4.5) and (4.6) in the bounds on n given by Claim 3.3, parts (i) and (ii), to

obtain

n � min(|N1(N2(u))|+ |A∗(u)|+ |N2(u)|, |N2(N1(u))|+ |N2(u)|+ |N∗
1 (u)|+ |B(u)|)

� min

(
Δ1Δ2 +Δ2 + |A∗(u)|, 1+ ε

2
Δ1Δ2 +

1− ε
2

(t −1)Δ2
2 +

(
t +

3− ε
2

)
·Δ2 + |B(u)|

)

= Δ1Δ2 +Δ2 +min

(
|A∗(u)|, |B(u)|+

(
t +

1− ε
2

)
·Δ2 −

1− ε
2

(Δ1Δ2 − (t −1)Δ2
2)

)

� Δ1Δ2 +Δ2 +max

(
1+Δ2 +

εΔ2

1−2ε
,

3− ε
2

(t −1) ·Δ2
2 −

1− ε
2

Δ1Δ2 +
(

t +
1− ε

2

)
·Δ2

)
,

(4.10)

where we employed Claim 3.3 in the first line, Claim 3.4 and inequality (4.6) in the second line
and implication (4.5) in the last line.
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4.2. Proof of Theorem 1.2
Suppose the theorem is false. Consider a critical counterexample, a pair of non-packable graphs
(G1,G2) satisfying the constraints of the theorem, such that there is a near-packing with a unique
purple edge uv. We distinguish two cases, (i) and (ii). From the first we derive the inequality
(4.11) and from the second we obtain the inequality (4.12). Together they contradict the condition
that max((1.5), (1.6)) < n, thus proving the theorem.

(i) |A∗(u)| � αt ·Δ2(Δ2 +1) or |A∗(v)| � αt ·Δ2(Δ2 +1).

Without loss of generality, we assume |A∗(u)| � αt ·Δ2(Δ2 + 1). From here on the proof is the
same as for case (i) in the proof of Theorem 1.1, leading to the same bound,

n �
(

t +
α(α −1)

(α −1)2 −α

)
·Δ2 +Δ1Δ2. (4.11)

(ii) Case (i) does not hold.

From here on we proceed almost exactly as for case (ii) in the proof of Theorem 1.1, the
difference being that instead of the upper bound |N2(u)∩N2(v)| < (1− ε) ·Δ2 we use |N2(u)∩
N2(v)| < s, which holds due to the additional condition Δ�

2 < s. (Compare with (4.4).) It follows
that

n � 2αt ·Δ2(Δ2 +1)+2Δ2 +Δ1 · (s−1)+Δ2
2 · (t −1). (4.12)

4.3. Concluding remarks
We wish to make the following remarks about Theorems 1.1 and 1.2.

• In Theorem 1.1, the bottleneck is the quantity (1.2), which corresponds to the bound (4.4)
of case (ii). So improving in this case would improve the overall bound on n, albeit not by
much.

• The condition in Theorem 1.2 that Δ�
2 < s is equivalent to ‘|N2(x)∩N2(y)| < s for all xy ∈

E(G2)’. With a little adaptation, we can replace this with the weaker but perhaps obscure
condition that G2 has no subgraph G!

2 such that |N2(x)∩ N2(y)| � s for all xy ∈ E(G!
2).

Indeed, this property is invariant under edge removal, and so holds for an edge-minimal
critical counterexample, which therefore has an edge uv with |N(u)∩N(v)| < s, for which
we can choose labellings such that uv is the unique purple edge. From here on, one again
proceeds exactly as in case (ii) of the proof of Theorem 1.1.

• Theorem 1.2 yields a better bound than Theorem 1.1 only if Δ1 is much larger than Δ2 and s,
t are both small.

• By taking G2 to be a collection of (nearly) equal-sized cliques, Corollary 1.4 implies that if G
is a K2,t-free graph of maximum degree Δ with Δ �

√
17t ·√n, then the equitable chromatic

number of G is at most Δ. Note that this result cannot be obtained by the result of Hajnal and
Szemerédi on equitable colourings [12].

The BEC conjecture notwithstanding, naturally one might wonder whether Theorem 1.1, or
rather Corollary 1.5, could be improved according to a weaker form of the BEC condition, as
was the case for d-degenerate G1 [5]. In other words, it would be interesting to improve upon the
Ω(Δ1Δ2) terms appearing in each of (1.1)–(1.4). We leave this to further study, but point out the
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following constructions where G1 has low maximum codegree, which mark boundaries for this
problem.

• When n is even, there are non-packable pairs (G1,G2) of graphs where G1 is a perfect
matching (so Δ∧

1 = 0) and 2Δ1Δ2 = n: see [14].
• Bollobás, Kostochka and Nakprasit [4] exhibited a family of non-packable pairs (G1,G2) of

graphs where G1 is a forest (so Δ∧
1 = 1) and Δ1 lnΔ2 � cn for some c > 0.

• If Δ∧(G) = 1, then the chromatic number of G satisfies χ(G) = O(Δ(G)/ lnΔ(G)) as Δ(G)→
∞, and there are standard examples having arbitrarily large girth that show this bound to be
sharp up to a constant factor: see [16, Ex. 12.7]. Since the equitable chromatic number is at
least the chromatic number, these examples moreover yield non-packable pairs (G1,G2) of
graphs having (Δ1/lnΔ1)(Δ2 +1) � cn for some c > 0 and Δ∧

1 = 1.

Since the examples can also have the maximum adjacent codegree Δ�
1 being zero, this last

remark hints at another natural line to pursue, which could significantly extend both the result of
Csaba [9] and a result of Johansson [13]. If Δ1 is large enough and G1 is triangle-free, is some
condition of the form (Δ1/lnΔ1)(Δ2 + 1) � cn for some constant c > 0 sufficient for G1 and G2

to pack?
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