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TOPOLOGIES DETERMINED BY d-IDEALS ON Wl 

S. BROVERMAN, J. GINSBURG, K. KUNEN, AND F. D. TALL 

0. I n t r o d u c t i o n , a-ideals (collections of sets which are closed under subset 
and countable union) are certainly impor tan t mathematical ly—consider first 
category sets, sets of measure zero, nonsta t ionary sets, e tc .—but aside from 
the observation tha t in certain spaces the first category c-ideal is proper, 
cr-ideals have not been extensively studied by topologists. In this note we s tudy 
a natural topology determined by a d-ideal, exploiting the interplay between 
the set-theoretic properties of the o--ideal and the topological properties of the 
associated space. For simplicity we shall restrict ourselves to s tudying cr-ideals 
on coi, al though generalizations to large cardinals are interesting as well. 

Corson [4] defined the space 

2 = | / ^ . : | i « : / ( a ) = 1}| ^Xo}, 
given the topology inherited from the usual topology on the product of Ki 
copies of the two-point discrete space. Let J> be an arb i t ra ry cr-ideal on wi. 
Define 

H(J) = {/(E 2"': {« : / (« ) = 1} <E J}. 
T h e spaces S ( ^ ) will be our object of s tudy. One could also look a t various 
box topologies on 2 ( J ^ ) bu t these are of less interest. 

Section 1 of this note characterizes the normal 2 ( < / ) ' s . Section 2 deals with 
cardinal invariants and calibers. Section 3 is concerned with "Bai reness" and 
the effect of various set-theoretic assumptions. 

Since whenever S is an uncountable subset of wi, 2 s is homeomorphic to 2Wl, 
wi thout loss of generality we shall assume J contains all countable subsets 
of coi. 

1. N o r m a l i t y . Although we are primarily interested in cardinal functions 
on S ( J ^ ) , in this section we give a nice characterizat ion of the J^'s for which 
S ( J ^ ) is normal. 

T H E O R E M 1. ^(J) is normal if and only if J = SP(u\) {the collection of all 
subsets of OUI) or [coi]w (the collection of all countable subsets of coi). 

Proof. Corson proved 2 is normal. Suppose J is not [wi]w or é^(coi). We 
claim S ( J^ ) is not normal. There is an uncountable A G J with uncountable 
complement. T h u s 2A , 2Wl~A, and 2A X 2" 1 - A are all homeomorphic to {0, l } " 1 . 
Let 

h:2A X 2"i~A -> 2W* 
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be defined by 

h(J,g)) = / W « . 
Clearly h is a homeomorphism. Let 7r# be the projection map from 2A X 2e01"' 
onto 2^~A. Let X = TrJTr1 (2 ( . / ) ) ] . Then X = {g G 2 W ^ 4 : ^ ( { 1 } ) £ * / } • 
Thus I 5 ( K 2wi~A : |̂ —x({ 1})| ^ Ko}, but the function g l : on - A -* 2 
defined by gi(/3) = 1, for all/3 Ç coi - 4 , is not in X. Note also tha t 2A X X = 
•K*~1(X) = / ^ - 1 ( 2 ( ^ ) ) , and hence /z|(2A X X ) is a homeomorphism onto 
2 ( J ^ ) . But we shall show 2A X X includes a closed non-normal subspace, so 
it and S ( J ^ ) are not normal. 

Let coi(o>! + 1) denote the order topology on coi (coi + 1). I t is easily seen 
tha t coi + 1 is homeomorphically embedded in 2W1 by 

( l if 0 < a < wi, 
[0(a)] (/5) = ^ O i f a ^ 0 < W l , 

' 1 if a — coi. 

Since \A\ = |cox — 4̂1 = Xi, we can similarly embed coi + 1 into 2A and 
into 2W l - i by homeomorphisms r and 5 defined as above. Thus r(o>i + 1) is a 
closed subspace of 2A and sfai + 1) is a closed subspace of 2"1- '4 . Fur thermore 
s (a) Ç X for all a < coi, since [S(ÛO] _ 1 ({ 1} ) is countable, hence in J. Since 
s(ooi) = gi, we see tha t s(o>i + 1) O X = s(<i>i) is a closed subset of X . Since 
^(G)I) is homeomorphic to a>i, we have wi + 1 X wi embedded as a closed subset 
of 2A X X . But (see e.g. [7, 8M4]) wx + 1 X o>i is not normal. Hence 2A X X 
and 2 ( J 0 are not normal. 

2. Cardinal invar iant s a n d cal ibers . We refer to [9] for the definitions of 
various cardinal functions. S ( J^ ) is dense in 2"1 and hence satisfies the count
able chain condition, indeed has precaliber Xi [13]. I t is easy to see t ha t any 
S ( J^ ) is Ho-bounded (every countable subset has compact closure) and hence 
countably compact, but 2 ( J ^ ) is separable if and only if J — ^ ( c o i ) . Since 
the weight of Tl is Xi, the popular cardinal functions on £ ( < / ) are easily 
determined. All Z(J) have weight Xi and vr-weight Xi. If J ^ ^ ( w i ) , the 
Lindelôf number of 2 ( J ^ ) is Xi. The hereditary Lindelôf number, hereditary 
density, and spread of all 2 ( J ^ ) are Xi. Since £ ( < / ) is dense in 2"1 which has 
character Xi, so does £ ( * / ) . Indeed no point of 2e"1, hence 2 ( J ^ ) , has countable 
character, so since 2 ( < / ) is countably compact, \p(^(J)) = Xi. Clearly 
\2(J)\ = 2«i unless J^ = [Wl]

w in which case | 2 ( J ^ ) | = 2*°. 

W h a t are non-trivial and what are the heart of this note are the calibers and 
Baireness (see next section) of S ( t / ) . 

Definition. Let K be an infinite cardinal. A space X has caliber K (or K is a 
caliber of X) if each family of K open subsets of X includes a subfamily of power 
K with non-void intersection. 

See [3] and [13] for information on calibers. A problem raised in the former— 
to which we shall give in some sense the " n a t u r a l " solution—is to find spaces 
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with predetermined sets of calibers. But first we characterize those , / ' s for 

which X(J) has caliber Xi. 

T H E O R E M 2. Let J> be a a-ideal on coi. Then ^(J) has caliber Xi if and only if 
each uncountable subset of coi includes an uncountable member of J. 

Proof. Suppose S ( ^ ) has caliber Xi. Let 5 be an uncountable subset of coj. 
For each a G S, let Ua = ira-

l({l})n 2 (J). Since 2 (J) has caliber Xi, there 
is an uncountable S' Q S such t ha t H {Ua • oc G S'} ^ 0. Let 
/ G n{Ua:a f S '}. Then f~l({l\) 2 S', so S' G A 

Conversely, let { Ua}a<^i be a family of open subsets of £ ( < / ) . Wi thou t loss 
of generality we may assume each Ua is the intersection of ^ ( J ^ ) with a basic 
open set in 2WL Basic open sets in 2Wl restrict only finitely many coordinates, 
say Ua restricts Ra Ç coi. By the A-system lemma (see e.g. [10]) there is an 
uncountable 5 Ç cot and a finite -ft Ç coi such t ha t for every a, [3 G 5, 
Rar\Rp = R. There is then an uncountable S' Ç 5 such tha t irt(Ua) = Kb (Up) 
for all ô G ft and a, ft G S'. Since Ra — R is finite, there is an n G co and an 
uncountable 5 " C 5 ' such t ha t \Ra - ft| = « for all a G S" . Let Ra - R = 
{<ta,i, • • • ,(U,n\' Then {(/«^ : a G .S7''} is an uncountable subset of coi. By 
hypothesis then, there is an uncountable Si Ç^S" such t h a t {aa,\ '• OL G S\) G ^ . 
Suppose k < n and we have obtained uncountable Si, . . . , S* C| coi such 
tha t Si 3 . . . Z) S7-, and each {<7ait- : a G S*} is in J. Then as before there is 
an uncountable SkVi Ç S& such t ha t {^«^+1 : a G S&fi} G - / . Cont inuing by 
induction, we obtain an uncountable Sn included in each SA, k g n, such t h a t 
{««,* : a G S,} G </ for 1 S k â n. D e f i n e / G 2"1 by 

(irô(Ua) if ô G f̂t, any a G S„, 
/ (ô) = ht(Up) if 0 G S„, 5 G ft/3 - f t , 

(0 if ô G S„. 

Then f G H { £4 : a G S,,} and so ^(J) has caliber Xi. 

In part icular it follows immediately t ha t 2 does not have caliber Xi [13]. 
This is the key to the solution of Comfort 's problem. Shelah [12] gave an 
earlier solution but his spaces wrere not regular. Ours are products of generaliza
tions of w and hence are completely regular, and—in some sense—canonical. 
Let X be an infinite cardinal. Let 

* x = Iff 2* : | / - ' ({1})I < X } . 

T H E O R E M lA. For every regular X, an infinite cardinal \x is a caliber of X\ if 
and only if cf (n) ^ Xo and cf (jx) ^ X. 

Proof. If pt is a caliber of X\, cf (/x) ^ Xo since clearly Xo is not a caliber of 
X\ and, as Shelah observes, if M were a caliber, so would be cf (jit). A straight
forward generalization of Theorem 2 yields t h a t X\ does not have caliber X. 
Conversely, suppose cf (id) ^ Xo and cf (id) j* X. If /x is regular, /x < X, then 
again the method of Theorem 2 shows X\ has caliber id. If /x > X is regular, 
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X\ clearly has caliber /x since it has a basis of cardinali ty X. Suppose /x is 
singular. If cf (/x) > X, again X\ trivially has caliber /x. The non-trivial question 
then is when cf (IJL) < X, which breaks down into two cases depending on 
whether /x > X or /x < X. 

Case 1. Suppose M > X. There is a strictly increasing sequence {MaU<cfO) °f 
regular cardinals such tha t /x = U{M« : a < cf (/x)} and each /xa > X. Let 
^ = { Ui : i < ju} be a family of basic open sets in X\. For each a < cf (/x) 
there is a basic open set Ba in AT\ such tha t \{i Ç ^« : 73a Ç £/2-}| = /xa, since 
the weight of X\ is X. Since cf (/x) is a caliber of X\, there is then an A C cf (/x), 
| / 1 | = cf (/x) such tha t O Î & : « G -4} 7e 0- Thus 

nlniu,: i e ̂ } -.a e A\ 3 n{Ba :a e A\ ^ 0. 
Hence X\ has caliber /x. 

Case 2. Let ^ = { Ut : i < /x} be a family of basic open sets in X\ . Let 7K* f be 
the set of coordinates restricted by Ui. litis finite and so | U{7^7; : i < /x} | ^ /x. 
Let 7̂  = \J\li, : z < /x}. Let U' f be the trace of Ut in 2^. Shelah [12] proved 
tha t even singular calibers are preserved by arbi t rary products, so 2R has 
caliber /x. Hence there is an S ÇZ ^, | 5 | = /x, such tha t H Î ̂ Z1' • £ G S} 9^ 0. 
But then in XA, H{ £A- • i £ S] ^ 0 since |7^| < X. Thus X\ has caliber xx. 

T H E O R E M 4. 7 w singular X wz7/z cf (X) > Ko, M ^ ^ caliber of X\ if and only if 
Cf (/x) > Ko ^^<7 jLt ^ X. 

Proof. If /x is a caliber, then cf (p) > Ko. Also, X is not a caliber of X\ by the 
usual argument . Suppose cf (V) > Ko and M ^ X. If /x is regular then AT\ has 
caliber /x as before. If IJL is singular and cf (AX) > X, again /x is a caliber as in the 
previous Theorem. If /x < X, then \x is a caliber of A \ as in Case 2 above. If 
/x > X but cf (/x) < X, as in Case 1 /x is a caliber of X\. 

COROLLARY 5. 7 w ^m^ *ve/ F of infinite cardinals, there is a l\k space Xv such 
that X is a caliber of X v if and only if cf (X) 7^ Ko, X (••_ F, and cf (X) (J- F. 

Proof. If F is empty, let X r be, for example, 2W. Otherwise let 

XT = I I { X x : X t T\. 

This solution to Comfort 's problem is natural in tha t the X\s are easily 
defined from the X's. The only improvement one could ask for is to get a 
compact space with predetermined calibers. One cannot jus t take compactifica-
tion of our spaces since this will reintroduce the calibers we have omit ted. This 
is because the AY s are dense in powers of 2 and hence inherit precalibers [13]. 

3. Ba ireness a n d se t theory . We now consider the "Baireness" of the 

2 ( . / ) ' s . 

Definition. Let K be an infinite cardinal. A space X is K-Baire if the intersec
tion of ^ K dense open sets is always dense. A Baire space is an Ko-Baire 
space. 
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Every 2 ( t / ) is countably compact and hence Baire. Since 2 ( J ^ ) is dense 
in 2e"1, if 2e"1 is not K-Baire for some K, then S ( J ^ ) is not /c-Baire. We are inter
ested in the Ki-Baireness of the 2 ( t / ) ' s because of the sophisticated set theory 
involved. 

Since the Cantor set 2W is a direct factor of 2"1, if the Cantor set is not 
Xi-Baire, neither is 2"1 or any other 2 ( ^ ) . Assuming the cont inuum hypothesis 
(CH) then, no 2 ( < / ) is Ki-Baire. This seems to be the theme of our results; 
we can show under various hypotheses how to get all or some 2 ( J ^ ) ' s not 
Ki-Baire, bu t we have not been able to find a condition which implies a non-
trivial class of 2 ( J ^ ) ' s are Xi-Baire. 

I t is set-theoretic folklore t ha t it is consistent with the negation of CH tha t 
the Cantor set be not Ki-Baire (add Cohen reals). T h u s we see it is consistent 
with either CH or ~CH t ha t no 2 ( < / ) is Ki-Baire. 

Under the assumption of Mar t in ' s Axiom (MA) plus ~CH, 2"1 is Xi-Baire. 
This is the only example we have of a 2 ( < / ) even consistently Ki-Baire. T h e 
following result gives a useful condition under which 2 ( < / ) is not Ki-Baire. 

T H E O R E M G. Let J be a a-ideal on coi. Suppose there is a family {Ta}a<C01 of 
infinite subsets of wi such that for each I Ç J, there is an Aa such that I C\ Aa = 0. 
Then 2(J) is not Ki-Baire. 

Proof. Let Ua = {f G 2(J) : f~l(W) H Aa ^ 0}. Each Ua is a dense 
open subset of 2 ( < / ) . If f Ç H{ Ua : a < coi), then / - ^ ( { l } ) meets each Aa so 

f d: so/). 
I t is not difiicult to see t h a t disjointness can be weakened to finite intersec

tion in this result. 

Definition [14]. An uncountable subset L of an is said to be J -Lusin for a 
d-ideal J if L H 7 is countable for all / £ </. 

COROLLARY 7. If //zm? ̂  an J -Lusin set, then ^(J) is not Ki-Baire. 

Proof. Let L = {ap : 0 < coi}. Let Aa = {ap : (3 ^ a}. 

Observe tha t the condition in Corollary 7 is jus t the negation of t ha t in 
Theorem 2. T h u s if 2(J) is Xi-Baire, 2 (J) has caliber Xi. Indeed Tall [13] 
shows more generally tha t any countable chain condition Xi-Baire space has 
caliber Xi. Note t ha t any uncountable subset of coi satisfies the condition in 
Corollary 7 for the space 2 , showing t h a t t ha t space is not Xi-Baire. This 
result is due to Solomon [13]. 

Definition. A cr-ideal J> is n-generated if there is a set / ' Ç , / , \^'\ fg K, 
such t ha t each member of J' is included in a countable union of members of J'. 

T H E O R E M 8 [14]. If J is ^-generated, then there is an J -Lusin set. 

There is a model of set theory (namely tha t for Baumgar tner ' s version of 
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Generalized Mar t in ' s Axiom) in which 2Xo = Ki, 2K l > N2, and for each 

J which is /^-generated for some K < 2K l there is an J^-Lusin set. 

I t is thus easy to generate o--ideals which—assuming some extra set-theoretic 

axioms if necessary—fail to have caliber Xi and hence are not Xi-Baire. 
Our next combinatorial notion seems to have a more felicitous formulation 

in terms of filters ra ther than ideals. Given a c-ideal J, let , / * be the dual 
countably complete filter, i.e. J* = {S C coi : cox — 5 Ç J \ . 

Definition. J^ is the assertion tha t there exist infinite subsets of u>\{Aa}a<wl 

such tha t each uncountable member of J* includes some Aa. f is 1&(U1). 

By Theorem 6, Ty impies J is not Xi-Baire if J is proper. I t also implies 
2wi is not Xi-Baire, for let {Aa}a<œi witness f. Let Ta = {/ £ 2^ : / (£) = 1 
for all £ e Aa}. Then / g U {Ta : a < wi| implies |{£ : / (£) = 1}| ^ Xo- Let 
Sa = {f e 2-1 : / ( f ) = 0 for all £ > a} . Then 

2"i = U { 7 ; : a < Wl} U { S a : a < W l } . 

But each Sa and Ta is nowhere dense. I t follows tha t MA + ^-CH refutes f. 
Baumgar tner had also shown this directly. 

Clearly \ implies T̂ - for all J^. CH trivially implies f as does 

* : there exists {Sx : X countable limit ordinal} such that 'Sx Ç| X, the order-
type of S\ in the natural order is co, U Sx = X, and every uncountable subset 
of coi includes some S\. 

* was introduced in [11] and is called "c lub" . J, being weaker, is here called 
"s t ick" . This proposition was considered and generalized in [2]. CH does not 
imply * since * + CH = 0 [5] and CH Y> 0 (Jensen [6]). Hence } -/> * . 
Shelah has recently shown tha t * does not imply CH. I t follows (as Baum
gartner [2] had already shown) tha t J -/* CH. Baumgartner also obtains 
models in which | fails, for example by adjoining X2 Cohen reals. These models 
of Baumgartner , we note for future use, are obtained by CCC extensions. 

Although we cannot prove tha t no 2 ( J ^ ) , J proper, is Ki-Baire, we can 
show tha t (2(J^)C0 cannot be Xi-Baire for any proper J. This follows from the 
fact t ha t no such 2 ( < / ) is separable, but all have 7r-weight Xi. As Juhâsz 
observed [8; 13], if Xw is Xi-Baire and T(X) g Xi, then X is separable. It 
follows tha t , assuming MA + ^CH, S ( t / ) has no "reasonable" completeness 
property (else ( 2 ( \ / ) ) w would be Xi-Baire [13]). 

In contrast to the Ki-Baire question, we do have two interesting examples 
of J^'s for which 2 ( * / ) has caliber Xi. I t follows from Theorem 2 tha t 
S ( ^ ( c o i ) ) has caliber Xi. Another example can be obtained by generating a 
o--ideal from the elements of a maximal almost disjoint collection of subsets of 
coi. Most interesting is 2 ( ^ ) for the cr-ideal^/ of nonstationary sets. (A subset 
of wi is nonsta t ionary if its complement includes a closed unbounded set. See 
[10] for discussion and proof t h a t ^ is a cr-ideal.) I t is an easy exercise to show 
tha t every uncountable subset of wi includes an uncountable nonstat ionary 
set, so by Theorem 2, 2 ( ^ / ) has caliber Xi. 
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It is known (see e.g. [1, 7.5]) that if M[G] is a CCC extension of a model il/, 
then every closed unbounded subset of coi in the extension includes a closed 
unbounded set in the ground model. Therefore Jy is preserved by CCC exten
sions. In particular then, there are models of ^ f indeed of MA + ~CH in 
which \$ holds and hence 2 ( ^ ) is not Ni-Baire. Indeed we do not know the 
answer to the following: 

Problem. Find a model for ^Ty. 

Note added in proof. After seeing the first version of this paper, Baumgartner 
constructed a model in which 2 ^ / ) is Ki-Baire. Indeed, as he later noted, this 
conclusion follows from Shelah's "Proper Poset Axiom," which is a strength
ening of Martin's Axiom plus <^CH. It follows that whether or not S ( ^ ) is 
Ki-Baire is independent of Martin's Axiom plus ^CH. 
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