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1. Statement of Results

If H is a subgroup of a group G we shall say that G is H-residually finite if for
every element g in G, outside H, there is a subgroup of finite index in G, containing
H and still avoiding g. (Then, according to the usual definition, G is residually
finite if it is E-residually finite, where E is the identity subgroup). Definitions of
other terms used below may be found in § 2 or in [6].

In this note we obtain the following result, proved in a slightly more general
form as Theorem 3.1.

1.1 THEOREM. Suppose G is the free product of its subgroups A; indexed by
some set I, and let H be a finitely generated subgroup. The following two conclusions
hold.

1.1.1 If for each i€ I, ge G, A; is (g~ Hg n A;)-residually finite, then G is
H-residually finite.

1.1.2 If the A; are residually finite and if for each icl, ge G, g 'Hg n 4;
is a free factor of a subgroup of finite index in A;, then H is a free factor of a sub-
group of finite index in G.

This theorem and Theorem 3.1 generalize Theorem 1 of [1], and the idea of
the proof is the same.

Statement 1.1.1 is a generalization both of the result of M. Hall, Jr. [4] that
a free group is H-residually finite for all finitely generated subgroups H, and of the
result (Gruenberg [3]) that a free product of residually finite groups is residually
finite. Statement 1.1.2 generalizes the result ([1]) that a finitely generated subgroup
of a free group is a free factor of a subgroup of finite index. C.f. also [7].

We make a few further brief observations. The converse of 1.1.2 is true without
the condition that the A4, be residually finite. (This is a simple consequence of the
Kurosh subgroup theorem (see § 2, Theorem 2.3). A counterexample to show that
1.1.2 is not true without some such hypothesis is provided by the free product of a
2-cycle and the Priifer group C,«, taking for H the infinite cycle generated by any
element of length 2.
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Secondly we observe that if we combine the hypotheses of both 1.1.1 and 1.1.2,
then given g € G\ _H, there is a subgroup of finite index in G, containing H as a free
factor and avoiding g : 1.e. a subgroup satisfying simultaneously the conclusions
of 1.1.1 and 1.1.2 can be found. This follows from Lemma 2.5 below.

Finally, if (following a suggestion of S. Meskin) we define a group to be
extended residually finite * if it is H-residually finite for all subgroups H, and
locally-extended residually finite if it is H-residually finite for all finitely generated
subgroups H, then we have the following result as a simple consequence of 1.1.1
and the Kurosh subgroup theorem.

1.2 CoroLLARY. The class of locally-extended residually finite groups is closed
under formation of free products.

If we denote by & the class of finite groups, and by R#, ER% and LERF
the classes of residually finite, extended residually finite and locally-extended resi-
dually finite groups respectively, it is not difficult to see that

F < ER¥ < LER¥ c R¥%,

where < denotes strict inclusion. Thus by Corollary 1.2 and Gruenberg’s result
respectively, LER% and R% are closed under free product formation. On the
other hand % is trivially not, and, since free groups of rank > 1 do not belong to
ER, neither is ERF .

I thank Drs. S. Meskin and R. Gregorac for helpful comments.

2. Preliminaries

The following more-or-less well-known definitions and results are needed for
the proof of our Theorem 3.1. For the sake of precision we include the definition
of a free product. The identity will be denoted throughout by e.

2.1 DEFINITION. Let G be a group and {A}lie I} a set of subgroups indexed
by 1. We say that G is a free product of the A; if every non-trivial element ge G
can be written uniquely in the form a; - - a; where e # a, €A, (k=1,--,n)
and iy # i 4y (k =1, -+, n—1). We say that this is the reduced form of g, that g
has length n (ascribing length zero to e), and that g ends in a;, (and e ends in no
element). The A; are called free factors of G and we write G = [ |1 A;, or briefly
G = [1* 4..

Note that every group has at least two free factors, namely itself and E.

In order to state the Kurosh subgroup theorem and a converse of it due to
Dey [2], we need the concept of a uniform Schreier system in a free product. It is
straightforward to verify that the following definition is interchangeable with that
of Dey [2, Definition 2.1] or that on p. 239 of [6], except that ours includes im-

Termed ‘a group with finitely distinguishable subgroups’ by A. I. Mal’cev. (On homo-
morphisms onto finite groups, Ivanov. Gos. Ped. Inst. UCen. Zap., 18 (1958), 49—60.)
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plicitly the specification of ‘a set of admissible functions’ (see [2]). The following
formulation is convenient for the proof of Theorem 3.1.

2.2 DEFINITION. Let G be a free product [ |* A;. A uniform Schreier system is a
triple

221 ({T, S:iliel}, {B(i,0), Z(i,0) liel, o€ S}, {0, | i,jeI})
with the following properties:

222 Forall iel, T, = G, eeT;; if te | )i T, ends in an element a;€ A;,
then't, ta;' € T;.

2.2.3 For allie I, S;is the subset of those elements of T; which do not end in an
element of A;; for each pair (i,0), iel, c€S;, B(i,0) is a subgroup of A;, and
Z(i, o) is a right transversal for B(i, o) in A; such that

() o Z(i, 0)=T; N 04,

2.2.4 For each ordered pair (i,j)e Ix1, 0;;: T; = T; is a bijection satisfying:
(i) 6;; =03"; (ii) 8,; is the identity map on T; n\ Ty; (iii) 0,0,; = 0,; for all k € I.

In the following statements we include explicitly only those details relevant
to the present note.

2.3 TueoreM. (Kurosh) (cf. [5]) If G = [|* 4; and H is a subgroup of G
(briefly H < G) then there exists a uniform Schreier system 2.2.1 such that

H = F=[]* []* oB(i, 0)a ",
iel o0€S;

where F is free on the set
{t{t:0,,) |0, i € I, a fixed, t;€ T;, t,(1,0,,) " # e}.
In addition it follows that for each (i, o), iel, 0 € S,
2.3.1 B(i,0) = ¢ 'Ho n 4,.
2.4 THEOREM. (Dey [2, Theorem 3.11]) Given G = [[* A; and any uniform
Schreier system 2.2.1 in G, then the set
{t(t:00) o, i € I, o« fixed, t, € Ty, 1,(1;,0,,)"" # e}
Jreely generates a free group F,, say, and the subgroup closure H, of F, and the sub-
groups oB(i,a)s™ ", iel, o €S,;, is the free product of F and these subgroups.

It then also follows that for each i, T; is a right transversal for H, in G.
Lastly we state the following lemma.

2.5 LeMMA. If a group G is H-residually finite for some subgroup H which is
also a free factor of a subgroup of finite index in G, then given any finite subset
S € G\H, there is a subgroup of finite index in G, containing H as a free factor
and avoiding S (i.e. there is a subgroup serving both purposes at once).
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The proof is trivial once the following simple corollary of the Kurosh sub-
group theorem (2.3) is recalled:
If A is a free factor of a group G and B < G, then A n B is a free factor of B.

3. The Theorem

3.1 THEOREM. Let H be a subgroup of a free product G = [[* 4;, with a
corresponding uniform Schreier system

({1, SHliel}, {B(i,0), Z(i, 0)lie I, 6 € S;}, {0;;li, j € I})
yielding the free decomposition

H = F=[[* []*oB(i,0)a™ "

iel oeS;

in accordance with Theorem 2.3, such that F has finite rank and the set
Q0 ={(i,o)liel,ceS;, B(i,o) # E}

is finite. Suppose further that for all iel, ge G, A; is (97 'Hg n A;)residually
finite. Then G is H-residually finite.

If in addition to the above assumptions on H, for alliel, ge G, g 1Hg n A,
is a free factor of a subgroup of A; of finite index, then H is a free factor of a sub-
group of G of finite index.

Statement 1.1.1 of Theorem 1.1 follows immediately and 1.1.2 is also easily
deduced once the following fact is noted:

If K is a free factor of a subgroup B of finite index in a group A (B = K * K,
say) and K, is residually finite, then A is K-residually finite.

The proof of this is as follows. By Theorem 3.1, B is K-residually finite. It is
then a straightforward consequence of the definition that since B has finite index
in A, the latter is also K-residually finite.

PRrOOF OF 3.1. By the Kurosh subgroup theorem (2.3) F is freely generated by
the set
{tt:0.)" o, i € I} afixed {1;€ T\ {e}-
Define

R, = {olfor some iel,(i,6) e Q} U {t;, 1,0,lie L, t,e T;, t,(1,0,,)" ' # e}.

By [5, Lemma 8, equation (20)], if #;(#;0;,)"" # e, then r,(1,6,,)"" =
1,(t;0;,)"" if and only if ¢; = ;. (This may also be proved by induction on the
length of #;.) This, together with the hypotheses of the theorem, implies that R,
is finite.

Let S be a finite subset of G avoiding H. Adjoin to R, the identity e and the
representatives in 7, of the cosets contained in HS, together with all initial seg-
ments of the resulting set, to form R,, still finite. (If g = a;, * - - a;_is in reduced
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form in n* A;, then all elements a;, - - - a; (1 < r < n), and e, are called initial
segments of g.) The inclusion of e ensures that R, is not empty. Clearly R, <
{Jier T: by property 2.2.2 in the definition of uniform Schreier system.

For each pair (i, o) such that 6 € R, 0 S;, we define the sets

X(i,0) = {a;la; € 4;, 5a;€ R,}
and
Y(@i,0) = X(i, 0)X(i, 6) "\ {e}.
We then have
Y(i,0)n B(i,0) = ¢

since by 2.2.3 (i), X(i, o) is a subset of the transversal Z(i, o) for B(i, ¢) in A;.
Further since R, is finite, clearly so is X(i, o) and therefore also Y(i, o). Consider
those pairs (i, 0), 6 € R, n S, for which ¥ (i, 6) is non-empty. By 2.3.1 and hypo-
thesis, B(i, o) is contained in a subgroup B, (i, o) say, of finite index in 4; and
avoiding ¥(i, o). Thus X(i, o) can be extended to Z, (i, ¢), a (finite) transversal for
B,(i,¢) in A;. For the pairs (i,0), 0 € R, 1 S;, such that Y(i, o) = ¢, define
B,(i,0) = A;and Z,(i, 6) = {e}. For every pair (i, ¢) with ¢ € R, n §;, adjoin to
R, all elements of 6Z,(i, ) to obtain finally R. The subset R is finite since the
finiteness of R, implies that there exist only finitely many pairs (i, ¢) for which
Y(i, 6) is non-empty.
We shall now choose a uniform Schreier system

3.1.1 ({R:, SilieI}, {By(i,0), Z(i,0)lie I, o € S;}, {0;li,j e I})
in G, such that (), R; = R. Set
3.1.2 R; = (T, A Ry) U (R\R,).

Then S is defined in accordance with 2.2.3 as the subset of those elements of R;
which do not end in an element of 4;. For those pairs (i, ) with 6 € S{ N R,
(= S: " R,), By(i, o) and Z,(i, 6) have been defined above. For those (i, ) with
0 € S;\R,, define B,(i,0) = 4, and Z,(i, 6) = {e}.

Define 6;; to agree with 8;; on T; n R, and as the identity on R\ R,. That this
definition of {6;;} is possible and satisfies 2.2.4, follows from the fact that

3.1.3 (T; N R2)0U = T’ [ R2 fOI‘ a]l l,_] € I.

This is established as follows. Let t;e T; " R,. If 1,0;;=1;,then 1,0,; =1, T;NR,.
Suppose on the other hand that #,0,; = t; # f,; then at least one of ¢, ¢; differs
from #,0;, = ,0,;0;, = 1;0,,. Thus at least one of 7,(#,0,,)"" and 1,(¢;0;,)"" is
non-trivial, whence by the definition of R = R,, we have 1,0;, (= t;0;,) € Ry,
and ¢; and #; must both belong to R, . For if they both differ from ¢;8;,, the defini-
tion of R, forces them to be in R,, while if either equals #,6,,, it is trivially in R,.
Thus (T; " R,)0;; < T; n R,, and 3.1.3 follows by symmetry since (T; n R,)0;;
= (T; 0 Ry)0;;.
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Secondly we verify that R; satisfies 2.2.2. Thus suppose 7€ | ) R; ends in an
element a; e A;. If t € R,, then since R, is closed under taking initial segments,
also ta; ' € R,. But R, = {J T;. Thus, since {T;} satisfies 2.2.2, both ¢ and ta; !
arein T;. Hence ¢, ta7 ' € T, n R, < R;. Suppose on the other hand ¢ ¢ R,: then
t e R\ R,. It follows from the definition of R that t € 6Z,(j, o) for some element ¢
in §;n R,. Clearly, since 1¢ R, and ¢ ends in a;€ A;, we must have j = i,
a;€ Z,(i,c)and ta; ' = ¢. Hence ta; ' € R, n T; < R;. Notethatsince e € T;nR,,
we have e € R, for all 7.

There only remains to check that condition 2.2.3 (i) is satisfied; i.e. that

6Z(i,06) = Ry 0 d4;

for each pair (i, ) witho € S{. If 6 € R, , then 6Z,(i, 6) = R, by definition, whence
6Z,(i,0) < R;ncd;. If 0 ¢ R,, then by definition, Z,(i, 6) = {e} and ¢Z,(i, ¢)
= {6} S R;n 0A;. It remains to prove that ¢Z,(i,6) 2 R; N 0A;. Let xe R,
N 6A;; say x = oa;. If o€ R,, then by construction of R, oa,e6Z,(i, o). If
o ¢ R,, then oa; ¢ R, since R, is closed under taking initial segments, and therefore
oa;€ 6'Zy(j, ') for some ¢’ € R, n §; where j # i. It follows that a; = e, and
then trivially x = ¢ € 6Z,(i, o) since e € Z,(i, o). This completes the verification
that 3.1.1 is a uniform Schreier system.

Let H, be the subgroup determined by this system in accordance with Theorem
2.4. Since R; is finite, H, has finite index in G. We now show that H, = H. To this
end let (i, o) be an arbitrary element of Q: then o € R, by definition of R,, whence
6eT;n R, < R;, showing that ¢ € S;. Now for each (i, 6) € Q, B(i, o) was cho-
sen to contain B(i, ¢). We therefore have, for each (i,0)€ Q, 6B(i,0)6 ™' <
oB,(i, 0)o 1. But the latter is a free factor of H, by Theorem 2.4, whence

314 ¢B(i,0)0"' < H;.

Define
F, = sgp {t;(t;0;,)"'li, x € I, a fixed as before, t; € R,}.

We shall show that
3.1.5 F, = F.

Now F = sgp {t,(t;0,,) 'li, x€ I, a as above, ;€ T;}. By definition of R,, for
tieTy, t{t;0,,)"" # e only if t;€ Ry; ie. only if ,e R, " T; = R, n T;. Since
0;, agrees with 0;, on R, n T; and (R, n T;)8,, = R, n T, by 3.1.3, we have
F, 2 F. On the other hand if ¢; € R; is such that 7,(¢,0;,)"' # e, then by the def-
inition (3.1.2) of R;, and that of 6;;, ¢, T; n R,. It follows that F; < F,and 3.1.5
1s proved.

We infer from 3.1.4, 3.1.5 and Theorem 2.4 that H < H,.

Next we prove that H, avoids S. By the definition of R,, for each s € S there
is a non-trivial element r € R, such that st™! e H. Suppose s€ H;: then since
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H £ Hy,re H;. However r is a non-trivial member of a right transversal (at least
one of the R;) containing e. Hence s ¢ H; and we have proved that G is H-residually
finite.

The second statement of the theorem is proved as follows. By Lemma 2.5 and
the hypotheses of the theorem, for each pair (i, 6) € Q there exists a subgroup
of A;, say D(i, o), avoiding Y(i, o) and containing B(i, o) as a free factor. For these
(i, o) we may therefore choose B, (i, 6) = D(i, 6). We have, by Theorem 2.4,

Hy = F=][* [[*oB,(i,0)0™";
iel oeSy’

whereas
H=F«[]* [[*oB(i,0)0"
iel oeM
where M; = {o((i, 6) e Q}. However M, < S; by the definition of R; and S/, and
since oB8(i, ¢)o~! is a free factor of ¢B,(i, ¢)o ! for (i, o) € Q, it follows that H
is a free factor of H,. This completes the proof of the theorem.
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