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Comparison Geometry With
L'-Norms of Ricci Curvature

Jong-Gug Yun

Abstract. We investigate the geometry of manifolds with bounded Ricci curvature in L'-sense. In
particular, we generalize the classical volume comparison theorem to our situation and obtain a gen-
eralized sphere theorem.

1 Introduction

We shall in this paper establish some geometrical results for manifolds with bounded
Ricci curvature in L!-sense.

Let us first introduce some necessary notations: (M, g) is an n-dimensional com-
plete Riemannain manifold with metric g. At each point x in this manifold, we denote
by Ric_(x) the lowest eigenvalue for the Ricci tensor at x. Let S, C T,M denote the
space of unit tangent vectors at x and d(f) be the distance from x to the cut point in
the direction § € S, = §"~! C T, M.

Then we define w(r, 8) by pulling back the volume form dvol of M to U, =
{(n0) e T,M: 0<r<d),0€S,},ie,

dvol = w(r, 0)dtdo,

where d@ is the standard volume form on S, = S" .

For convenience, we define w(r, #) to be zero for r > d(6).

Let w, (1, 0) be the w(r, ) of the space form S/, of dimension n with constant cur-
vature k > 0. We then know that w’ = hw (resp., w) = h,w,), where h (resp., h;;) is
the mean curvature of the level sets of distant function on (M, g) (resp., S%).

In 1997, P. Petersen and G. Wei [PeW] generalized the classical volume compari-
son to a situation where the amount of Ricci curvature which lies below (n — 1)k is
small in L?-sense for p > 7.

Note that for some analytic reason, the condition p > (> 1) in the study of the
geometry of manifolds with bounded Ricci curvature in LP-sense is essential and the
proof of the above result strongly relies on the condition of p > 7, where the case
p = 1is excluded.

In 2000, however, some results on the geometry of manifolds with bounded Ricci
curvature in L!-sense were developed by C. Sprouse [S]. In fact, he managed to show
that if one assumes the manifold has Ric_ > —(n — 1)k(k > 0), then it suffices to
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assume that the amount of Ricci curvature which lies below (n — 1) in L'-norm in
order to get a diameter bound close to 7. Motivated by this result, the author [Y1]
provided a corresponding volume structure theorem as follows.

Theorem 1.1 ([Y1]) Forgiven R > m, € > 0, k > 0, and an integer n, there exists
ad = (e,R,k,n) such that if M is a complete n-manifold with fB(x.R)((n - 1) —
Ric_), dvol < 8, Ric_ > —(n— 1)k (k > 0), then vol(B(x,R) — B(x, 7)) < € for all
xeM.

Here, u, = max(0, u) is the positive part of the function u.
By applying some results obtained while we proved Theorem 1.1, we can prove
the following volume comparison theorem.

Theorem 1.2 Letk > 0, n € N, 0 < r < R be given. Then for every ¢ > 0, there
exists 0 = 0(e, n, k, 1, R) > 0 such that if M is an n-dimensional Riemannian manifold
with Ric_ > —(n — 1)k and fM((n — 1) — Ric_); dvol < 6, then we have

vol B(x,R)  volB(x,s)
v(n, R) v(n,s)

forallx € M and s withr < s < R, where v(n,s) means the volume of metric s-ball
in S".

As an application of Theorem 1.2, we can obtain the following volume and curva-
ture pinching result.

Theorem 1.3 For given p > n,R > 7, and C > 0, there exists a 0 > 0 such that if M
is an n-dimensional Riemannian manifold with

/ | Ric |P dvol < C, / ((n—1) —Ric_), dvol < §, Ric_ > —(n— 1)k,
M M

then M is diffeomorphic to S" provided that vol B(x,R) > (1 — &) vol(S") for some
x € M.

2 Proof of Theorem 1.2

Consider a sequence (M;, g, x;) of Riemannian #-manifolds with metrics g; and x; €
M; such that

Ricy;, > —(n— 1)k (k > 0), / ((n—1) — Ric_); dvol < ¢,
M;

where lim;_, . §; = 0.
Then it suffices to show that for every € > 0, there exists N = N(¢,n,k,r,R) € N

such that
vol B(x;,R)  volB(x;,s)

v(n,R) v(n,s)
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foralli > Nandswithr <s <R.

Recall that for every ¢ > 0, there exists an N € N such that vol(B(x;,R) —
B(x;, 7)) < eforalli > N by Theorem 1.1. So without loss of generality, we may
assume that R < 7.

We use the same notation as in [P] and repeat it here.

Forany d > 0, let

Vol(Ef;) = Vol{ x € B(x;,R) : / ((n—1) —Ric_)ydvol > ¢ },
B(xi,R)
which converges to zero since

/ ((n—1) = Ric_);dvol > [ ((n—1) —Ric_); dvol
M;

E

6 dvol = 5V01(Ef5).

5
We also let
Syes,(0) = infls 15> 6,0 € (D yz ), n(vp([0:,5]) N E) > e},
where
D yzs = {0 €S C TM; : u(vp([6;, min(R, d'(9))]) N Ej) < ei}

and y1 is the measure on v} (t) = exp,, t0.

We should recall that for any § € ® 4z 5, we have that (h;(t,0) — hi(¢))+ can be
arbitrarily small on [/7, min(d’(0), R)] for sufficiently large i [Y1]. Here, 7; is a
positive number with lim;_, ., 77 = 0.

Now, we first analyze vol B(x;, R) for any R > 0 as follows.

vol B(x;, R) = / / w; dtdf +/ / w; dtdf
$=1 JB(x;,6:) ) ;

Y& .6 0;

. f / w,dtd9+/
@3/—0 J o

But it is easy to see that the first and the second term in the above sum converge
to zero as i — 00. So we may express vol B(x;, R) as follows.

(2.1)  volB(x;,R) = / / w; drdf + / / w; dtdf + n;
J (]

for some 7; > 0 with lim;_,, 7, = 0.

R
/wi dedé.
5. J b

(® y75;)

\4/?)
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Now we recall that on ¥ := ¥, U ¥,, where

U ={(t,0):0 € @y, Vi <t <R},
Uy = {(t,0):0 € (Pyez) V1 <t <Sygs(0)},
we have
hi(t,0) — hi(t) < i
for some p; > 0 with p; — 0 [Y1].
Thus, from the above inequality, we have
(Inw;(t,0))" — (Inw; (1) < pi,

which gives (In Lt’te)))’ < W;.

wi (

Thus for any (11, 6), (t,,0) € U with ; < 1, we get

2wl 0)
/t1 (ln 0 ) dt < pi(t, — t1),

which implies
wi(t, 0) wi(t1,0)
n —1In < pi(t, —ty).
wi(t2) wi(tr) pilta =)

Consequently, we have

wilty,0) o wi(0,6)

22) wi(t2) wi(t)

for some v; > 0 with lim;_, . v; = 0.
Now we consider the following lemma which is a slight modification of [Z, Lem-
ma 3.2].

Lemma 2.1 Let f, g be two positive continuous functions defined on [0, 0o]. If Z é:)) <

exp(u)% for some v > 0 and for all a, b with 0 < a < b, then for any given R > 0,
r>0anda > 0withR > r > awe have

R s
[ f@)at - [ f@)ar .

[Fed ~ [gwar T

foralls > 0withR > s > r > a and for some T(v) > 0 satisfying lim,_,o 7(v) = 0.

Proof It suffices to show that the function

7 f@yar

F(y) = 7f,fg(t) o
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is almost nonincreasing with respect to y € [r, R]. Specifically, we first compute

oo 1
Fy) = —(fayg(t)dt)z{f(y / (t)dt — g(y)/ f(t)dt
_gy) [] g(v) dr { o ) f(t)dt}

T (et L) [T dr
But
o (v )f()
g(y) — ()
fora <t <y.
Thus fy (t) dt > exp(— V)g(y) fy (¢) dt, that is,
IO < oot o fdt ) () dt
gs(y) — [gwydt
Consequently, we have
y y
(2.3) F(y)ig(y)f g)dr | f0dr ) —1)

(J] gwydn)? [7 () dt

forall y witha <r <y <R.

Since the right-hand side of the above inequality tends to zero as v — 0, we can
express F'(y) < p(v) for some pu(v) > 0 satisfying lim,_ u(v) = 0. Then by

integrating this inequality from s to R, we get F(R)

— F(s) < (R—9)u(v).

Soifwelet 7(v) ;== (R—s)u(v) < Ru(v), then we have F(R) < F(s)+7(v), which

is our desired result.

We can now estimate the volume ratio for the case (¢,0) € ¥, using (2.2) and the

above lemma.

For v; > 0in (2.2), we define y;(> /7;) so that fé; wdt = /1.
Then from (2.3) in the proof of Lemma 2.1 and (2.2), it is easy to check

yi<y<R

( il é? wi dt) /
7
f% wldt
which converges to zero as i — oo.
So we have

R
f%widt f\/_w,dt

f\l;;’_wl dt f\}/;wl

C(k7 n? R)7

T(v)

for some 7(v;) > 0 satisfying lim;_, 7(¢;) = 0 and for all s with y; <s <R.
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From the above inequality, we can easily obtain the following.

R s
fq)%.ﬁ] f% wj dtdf _ fq)\“/ﬁ-f’i f% w;j dtdf

(2.4) < 5
o [ wdtdo T fg [ wi drdd

+T(V,‘).

Here we used 7(v;) as a generic constant with the property lim;_,, 7(;) = 0, and
we always use 7(v;) in such a way afterwards.

Next, we shall estimate the volume ratio for the case (¢, 0) € ¥, in the similar way.

Note first that (® Y )¢ can be divided into the following three subsets:

(Plyzs) = {0 € (Pyzs) : Syes(0) < yi <R},
(@iﬁ’&_)c ={0€(®yas) :yi <Syas(0) <R},
((Di%,é,-)c = {9 S (@\4/5751.)6 1y < R < 8\4@_’5{(9)}.

For the case (¢t,0) € ¥, and 0 € (<I>i4/a.5i)f, we get, for all swith y; <s <R,
S%_(gi(@ s
f(qﬂ%ﬂi e f6i w; dtdf f@%%)( fé,- w; dtdf

(2.5) < ’
S [y w1 dede s [y wr drdo

which is evident because [, , f;T_ wy drdd > [, f\i/T_ wy dtdf and S yz 5,(6) < s.

For the case (¢,0) € ¥, and 6 € (@%_51_)‘, we use Lemma 2.1 and (2.2) to get

S 45, (0)
Nt . s )
f@zg el widedb f«paﬂ e Sy wi dtdd
1771 < 1271

>~ s + T(Vi)

forall swith y; <'s < Syz.(0).
Butsince Sz 5,(0) < Rin this case, we can rewrite the above inequality as follows:

S i, 0) s
f(‘bﬂﬁg . f\sﬁ w; dtdf f@z\%& e f\g/?x w; dtdf

(2.6) — < — +7(v;)
Jous Sy wn drd6 Jsi1 Sy wr dtdf

for all s with y; < s < S%_gi(e).

Furthermore, in case Sz 5, (/) < s < R we clearly have

[ o [ oade [, [ w;dede
@ Jom @ om

< 3
Jsir [y w1 ded6 Jorr oy wn drd6

So we may say that (2.6) holds for any s with y; <s < R.
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Thirdly, we obtain the similar estimate for the case (t,0) € ¥, and 0 € ((1)36/5, 6{)‘
using the same method as above.

R
S, 1y i dedo < S Sy i dedo

(2.7) < i
Sy [y wor dedo Jsus Sz v dedd

+’7’(Vi).

for all s with y; <s <R.
Now we sum the above four inequalities (2.4)—(2.7) and use (2.1) together with
[Y1, Lemma.2.1] to show that, for every € > 0, there exits N € N such that

vol B(pi,R) _ volB(pi,s)
+ €
v(n, R) v(n,s)

foralli > N and for all s with y; < s <R.
Since y; — 0, we complete the proof of Theorem 1.2.

3 Proof of Theorem 1.3
Let (M;, gi, x;) be a sequence of manifolds such that

/ | Ricyy, |P dvol < C, / ((n—1) — Ric_), dvol < ¢;,
(3.1) M; M;

Ricy, > —(n— 1)k, and volB(x;,R) > (1 — §;) vol(S"),

where §; tends to zero as i goes to infinity.
We first show that

sup{d(xi,q:) : q; € M;} < 3R

To obtain this, suppose that it were not true and find g; € M; such thatd(x;, q;) = 3R
for each large i. Then we easily see that B(x;, R) C B(qi, 4R) — B(gi, 7), which implies
vol(B(g;,4R) — B(g;, ™)) > vol B(x;, R) > (1 — §;) vol(S§").

By letting i — oo, the above inequality gives a contradiction by Theorem 1.1.
Consequently, we have

sup{d(x;,qi) : g; € M;} < 3R,

which means that B(x;, 3R) = M; for all i. Now we show an analogue of [Y2, Lem-
ma 3.1].

Lemma 3.1 For sufficiently small §;, the class of all complete Riemannian manifolds
satisfying (3.1) is precompact in the C**“ topology (1 + v < 2 — %).
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Proof The proof is similar to that of [Y2, Lemma 3.1] and the argument depends
on the proof of [Pe, Theorem 5.1].

To obtain the necessary volume growth condition, we first claim that for any given
n > 0, there exists a D € (0, 7) such that

vol(B(x;, D))
vmD) ="

for all sufficiently large i. Indeed, if this were not true, we may choose D; < 7 with

D; — 7 such that

vol(B(x;, D;))
vmDy !

for each i.
Then we have

n—206 = (1-0)—(1—mn)
vol B(x;, R) B vol B(x;, D;)
vol(S") v(n, D;)
v(n, D;) vol B(x;, R) — vol(S") vol B(x;, D;)
vol(S")v(n, D;) '

By Theorem 1.1, we know that vol B(x;, R) — vol B(x;, D;) converges to zero. So the
last quantity in the above inequalities tends to zero as i goes to infinity. Consequently
1 — &; tends to zero, which is a contradiction.

Next, by Theorem 1.2, for every € > 0, there exists N € N such that

vol(B(x;, R)) vol(B(x;, s))
v(n,R) = v(n,s)

forall swith y; < s < Randi > N. So if we choose 17 and € so that n + € = 7),,, where
7, 1s the universal constant appearing in [An, Lemma 3.1], then we obtain that

vol(B(x;, s)) S 1o,
v(n,s)

forall s with y; < s <R.
Since y; — 0 asi — o0, there is no problem in applying the same arguments as
in [Y2, Lemma 3.1] and we easily arrive at the desired result by the standard metric
rescaling argument. [ |

By Lemma 3.1, we have a C!'*®-manifold (N,g) and (M;,g) — (N,g) in the
C'“ topology. Since the same argument in [Y2, Lemma 3.2] can be used for our
situation, we can show that (N, g) is a C'**-Wiedersehens manifold and we know
that it is isometric to S"(See [Y2, Lemma 3.2] for details). Thus we have established
the theorem.
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