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1. Introduction.

1.1. In this paper we refer to [13] and [16] for the basic terminology and properties
of Noetherian rings. For example, an FBN ring means a fully bounded Noetherian ring
[13, p. 132], and a clique of a Noetherian ring R means a connected component of the
graph of links of R [13, p. 178]. For a ring R and a right or left R -module M we use
pr.dim.(M) and inj.dim.(M) to denote its projective dimension and injective dimension
respectively. The right global dimension of R is denoted by r.gl.dim.(/?).

Let R be a ring and let M be a finitely generated right /?-module. We define the
upper grade and grade of M, denoted by u.gr.R(M) and jR{M) respectively, or simply by
u.gr.(M) and j{M), as

u.gr.(M) = sup{« | Ext"R(M, R) ¥• 0},
and

;(M) = inf{« | Ext£(M,/?)*()},

see [4], [6], [7] and [15].

1.2. Suppose that R is a Noetherian ring with finite (right and left) injective
dimensions, which are equal by [29]. If for every finitely generated right or left R-module
M, for every integer i, and for every submodule N of Ext'R(M,R), y(N)>i, then R is
called an Auslander-Gorenstein ring. (This is a generalization of the concept of a
commutative Gorenstein ring, since a commutative Noetherian ring of finite injective
dimension is always Auslander-Gorenstein [2].) An Auslander-Gorenstein ring R is
called Macaulay if j(M) + K.dim.(AZ) = K.dim.(/?) holds for every finitely generated right
or left R-module M, where K.dim.( ) denotes the (Gabriel-Rentschler) Krull dimension.
See [25, Section 1]. The research of Stafford and Zhang [25] shows that the Auslander-
Gorenstein and Macaulay properties are closely related to some other homological
properties, which are explained in the following definition.

DEFINITION. Let R be an FBN ring
(i) If R has finite injective dimension and for each pair of maximal ideals P and Q in

the same clique

then R is called a right injectively homogeneous ring, right inj.hom. ring for short. If for
every maximal ideal P

u.gr.(/?/P) = inj.dim.(fl),

then R is called right injectively smooth, right inj. smooth for short.
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(ii) If R has finite global dimension and for each pair of maximal ideals P and Q in
the same clique

pr.dim.(/?/P) = pr.dim.(/?/Q),

then R is called a right homologically homogeneous ring, right hom.hom. ring for short. If
further for each maximal ideal P of R

pr.dim(/?/P) = gl.dim.(fl),

then R is called a right homologically smooth ring, a ng/jf /zom. smooth ring for short.

In the above definition R/P and R/Q are considered as right i?-modules. We also
have their symmetric left hand sided concepts.

1.3. Horn. hom. rings and inj.hom. rings were first introduced and studied by K. A.
Brown and C. R. Hajarnavis in [6] and [7]. There the definitions are slightly different and
the rings are assumed to be integral over their centres. Our above definition is adopted
from Stafford and Zhang [25]. Stafford and Zhang have proved that right inj. smooth
Noetherian P.I. rings are also left inj. smooth, and these rings are Auslander-Gorenstein
and Macaulay [25, Theorem 1.3]. We point out that the converse of this result is also true,
see 3.2. Proposition, and that right inj.hom. Noetherian P.I. rings are also left inj.hom., so
in this case we may simply call then inj.hom rings. [25, Theorem 5.6] shows that hom.hom.
Noetherian P.I. rings are Auslander-regular. We generalize this result and obtain the
following theorem.

Suppose that R is a right inj.hom. Noetherian P.I. ring. Then R is Auslander-
Gorenstein, and R is also left inj.hom.

In fact there are many Auslander-Gorenstein rings which are not injectively

homogeneous (for example R = , where k is an arbitrary fieldj. However, for a

P.I. ring whose cliques of maximal ideals are localizable (and this includes many
Noetherian P.I. rings; see 3.5 below) one can be more precise. Such a ring R is called
locally Macaulay if the localized ring of R at each clique of maximal ideals is
Auslander-Gorenstein and Macaulay. We show in 3.8 Corollary that a Noetherian P.I.
ring R with each clique of maximal ideals localizable is inj.hom. if and only if R is
Auslander-Gorenstein and locally Macaulay.

In Section 2, we first study the injective homogeneity of crossed products, and then
use the duality machinery of smash products to transfer our results to strongly group
graded rings, and prove the following theorem.

Let G be a finite group and let S = R(G) be a strongly G-graded ring with coefficient
ring R. Then R is a right inj.hom. (respectively right inj. smooth) FBN ring if and only if so
is S.

A hom.hom. version of 2.9 Theorem (2.11 Corollary) is also given.
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2. Injective homogeneity of crossed products and strongly group graded rings. Let
G be a group and let R be a ring. We use R * G to denote a skew group ring or crossed
product of G over R. Suppose 5 is a G -graded ring and suppose the component of S
corresponding to the identity element of G is R. We call R the coefficient ring of S and
denote S = R(G). We refer the reader to [17], [19] and [21] for the definitions and
properties of skew group rings, crossed products and group graded rings.

For the proof of our main results, we first give some lemmas.

2.1. LEMMA. Let R be a right Noetherian ring and let M be a finitely generated right
R-module. Then u.gr.(M) < pr.dim.(M). / / pr.dim(M) is finite, then u.gr.(M) =
pr.dim.(M). In particular, if r.gldim.(R) < oo; then r.inj.dim.(/?) = r.gl.dim.(fl).

Proof. The inequality is obvious.
Suppose that pr.dim.(M) = n < °°. Then ExfR

+l{M, —) = 0 and there exists a finitely
generated right ^-module N such that Ext"R{M, N) ^ 0 [20, Proposition 9, p. 147]. Let

be an exact sequence. Then we have an exact sequence

ExfR{M, R(m)) -» ExtR{M, N) -»0.

Since Ext£(M, N) ¥> 0, Ext"R{M, R(m)) * 0. Thus ExtJ(Af, /?) * 0. Therefore u.gr.(M) =
pr.dim.(M). The final statement follows easily.

NOTE. It is possible that pr.dim.(M) = oo, but u.gr.(M) is finite. For example, let k be
a field of characteristic p>0, let G be the cyclic group of order p and let R = kG be the
group ring. Let k be the principal fcG-module. Then pr.dim.(fc) = °°, but u.gr.(fc) = 0.

From 2.1 Lemma we have the following result.

2.2. LEMMA. Let R be an FBN ring. Then R is right hom.hom. {respectively right
horn, smooth) if and only if R is right inj.hom. {respectively right inj. smooth) and has
finite global dimension.

The following fact will be used later. We list it as a lemma, but leave its proof to the
reader.

2.3. LEMMA. Let R be an FBN ring and let S be a ring Morita equivalent to R. Then S
is also FBN and

(i) if R is right inj.hom. {resp. right inj. smooth), then so is S;
(ii) if R is right hom.hom. {resp. right horn, smooth), then so is S.

2.4. Let R be a ring with an automorphism a and let M be a right R-module. We
can construct a new /?-module, denoted by M", as follows. The underlying Abelian group
of M°', is that of M, but with the elements labelled by ma rather than m; and
multiplication is defined by m"r = {ma~^{r))a. (See [16, 7.3.4] for details.) It is easy to see
that R = Ra as right R-modules and for any two right .K-mdoules M and JV we have an
isomorphism of Abelian groups
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Therefore for any finitely generated right R-module M

u.gr.(M) = u.gr.(M-), (1)

and

. (2)

Suppose that / is a right ideal of R. Then we can see that (R/I)" = R/a(I) as right
/^-modules. Therefore

u.gr.(tf//) = u.gr.(R/a(I)). (3)

2.5. Since the following fact will be used quite often, we list it as a lemma.

LEMMA. Let G be a finite group and let S = R(G) be a strongly G-graded ring with
coefficient ring R. Suppose M is a finitely generated right S-module. Then u.gr.5(M) =
u.gr.^(M), andjs(M) =jR{M).

Proof. By [18, Theorem 2.1], Ext'R(M, R) = Ext's(M, S) for each non-negative integer
i, so our lemma follows directly.

2.6. Let S be a ring with a subring R, let P be a prime ideal of S and let p be a
prime ideal of R. We say that the prime ideal P of S is lying over p if p is a miminal prime
over P n R.

LEMMA. Let G be a finite group, let R be an FBN ring and let S = R*G be a crossed
product. Suppose P is a maximal ideal of S lying over a prime ideal p of R. Then

u.gr.5(5/P) = n.gr.R(R/p).

Proof. By [21, Theorem 16.6], p is a maximal ideal of R and PC\R= (~) ps, where
geG

pg is the image of p under the automorphism of R induced by g. (The context should
prevent any ambiguity with the notation of 2.4.) Since R is FBN, S is also FBN by [14,
Proposition 4.9]. By [13, Proposition 8.4] S/P and Rip are simply Artinian rings. Suppose

SIP = V(n), where V is a simple right S-module. (4)

Being a finitely generated module over the semisimple Artinian ring R/(P C\ R), V as a
right R-module is semisimple Artinian, and we may suppose

V = Vl@V2®...®Vm (5)

as right 7?-modules, where V) are simple right R-modules. Then P(~)R = ann«(V) =
m

Pi annR(V;). Thus for each /, ann(V )̂ =pSi, for some g, e G. As right R-modules
1=1

R/pgi == v\k'\ for some positive integer /c,-. (6)
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Therefore by (3), (4), (5) and (6) we have

u.gr.R(S/P) = u.&.R(V) = max{u.gr.«(V;)} = max{u.gr.*(/?//>»)} = u.gr.R(R/p). (7)

By 2.5 Lemma,

(8)

Combining (7) and (8) we have u.gr.s(S/P) = u.gr.R(R/p).

2.7. We refer the reader to [13] for the definition and basic properties of links
between two prime ideals of a Noetherian ring. The following lemma is motivated by
[5, Lemma 2.2].

LEMMA. Let R be an FBN ring, let G be a finite group and let S = R*G be a crossed
product. Suppose that P and Q are two maximal ideals of S such that there is a link from Q
to P. Let Q(~)R= P | qg and PDR= Dp8. Then there exists an h e G such that either

geC gsC

q =ph (in which case P H R = Q(~) R), or there is a link from q to ph.

Proof. Suppose that R, G, S, P and Q are as stated. By [21, Theorem 16.6] there
exist maximal ideals p and q of R such that Q n R = C\ qs and PC\R= f~] p8. Since

geG geC

there is a link from Q to P, by [13, Theorem 11.2] there exists a finitely generated uniform
right 5-module M with an affiliated series 0 < U < M such that U is isomorphic to a
uniform right ideal of SIP and M/U is isomorphic to a uniform right ideal of S/Q,
anns(U) = P and anns(M/U) = Q.

Let V = annM(PDR). If I /gV, then PHR^Q. Therefore PDR^QDR. Thus
there exists an h e G such that ph ^ q. Because p and q are maximal ideals of R, ph = q.

Thus we may suppose that
U = V. (9)

Let H = {g e G | p8 = p) and let T be a right transversal set of H in G. For g sT, let Eg

be the /?-injective hull of the right ^-module R/pg. It is easy to see that (R/pg)®RS is
essential in Eg®RS both as right R -modules and hence as right 5-modules. By [18,
Corollary 2.6], Eg®RS is an injective right 5-module. Therefore Eg®RS is the injective
hull of (R/ps)®RS. Let E = © (Eg®RS) and let A = © ((R/pG)®RS). Then E is the

ge T g^T

S-injective hull of A.
Since ps, for all g e T, are maximal ideals of R,

np =®(R/P8)
gsT I geT

as right /?-modules. Thus as right./?-modules

{{Rip8)®RS) = [® (Rip8))®RS =
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Let S = (R/( Pi Pg))*G and P = P / ( n Pg)S. Because R / {(~) PS) is a semisimple
\ / VgeT / / / VgsT / / \Se7 /

Artinian ring and G is finite, 5 is a quasi-Frobenius ring by [18, Corojlary 2.10]. By [26, p.
276 Definition and Proposition 3.1], P is a right annihilator ideal of S; that is, there exists
a non-zero right ideal 7 of 5 such that IP = 0. Therefore 7 is a right S/P-module, so it is a
right 5/P-module. Because SIP is a simple Artinian ring and U is isomorphic to a uniform
right ideal of SIP, U is a simple right S/P-module, so we may suppose that U g 7 as right
5-modules. Since U is essential in M, we may suppose that M c: £. It is obvious that
A(P nR) = 0. By (9) ACiM = U. Therefore

M/U = M/(A n M) = (M + 4 )M c £ / A

Choose a uniform /?-submodule C/A of £ M such that C/A <= M/£/ and annR(C/A) = L,
say, is a prime ideal of R. Since 2 H ̂  = annR(M/U) c i , g-f c: L, for some / E G, SO
L = ^ . As 7?-modules

C/AcE/A= © (E(R/pg)®Rh)/((R/pg)®Kh).
hsG

Since C M is uniform, there exist g e T and I I E G such that C/A isomorphic to a
submodule of (E(Rlpg)®Rh)l({Rlp8)®Rh). Let D be a submodule of E(R/ps)®Kh
containing (R/ps)®Rh such that

= D/((R/pg)®Rh).

Let F = annoO*'1). If F = Z) then />** c L and so pgh = L = qf. Therefore q =pghf'\ Thus
we may suppose that F=£D. Choose D' c f l such that 0 <= F c D' is an affiliated series. It
is easy to see that its affiliated primes are pgh and L. By Jategaonkar's main Lemma [13,
Theorem 11.1] there is a link from L to P8"; that is, from qf to pg/l. Therefore there is a
link from q to p^" 1 .

2.8. PROPOSITION. Let R be an FBN ring, let G be a finite group and letS = R*Gbea
crossed product. Then R is right inj.hom. (resp. right inj. smooth) if and only if so is S.

Proof. Suppose that R, G and S are as stated. Since R is FBN, by [14, Proposition
4.9] S is also FBN. By [18, Corollary 2.7]

inj.dim.(S) = inj.dim.(/?),

so R has finite injective dimension if and only if S has finite injective dimension.
(4>) Suppose that R is right inj.hom. Let P and Q be two maximal ideals of S in the

same clique. By [21, Theorem 16.6] we may suppose that

PHR= Dp8, and QDR= (~] q8,
geG geG

where p and q are two maximal ideals of R. By 2.7 Lemma q e U cl(/?g), so there exists
geG

an h E G such that q E d(ph). Since R is right inj.hom. we have u.gr.R(R/q) =
u.gr.R(R/ph). By (3) we have

u.gr.R(R/p) = u.gr.R(R/q). (10)
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By 2.6 Lemma and (10), we obtain u.gr.5(5/P) = u.gr.5(5/<3). Therefore S is right
inj.hom.

(<=) Suppose that 5 is right inj.hom. Let p and q be two maximal ideals of R such
that there is a link from q to p. By [14, Theorem 5.3], there exist prime ideals Q and P of
5 with Q lying over q and P lying over p such that Q and P are in the same clique. By [21,
Theorem 16.6] P and Q are maximal ideals of 5. By 2.6 Lemma and the right injective
homogeneity of 5 we have

u.gr.R(R/p) = u.gr.5(5/P) = u.gr.s(5/Q) = n.gi.K(R/q).

Therefore R is right inj.hom.
The same argument will give the proof of the right inj. smooth version.

2.9. It is well known that the smash product is a useful tool to translate skew group
ring results to the context of group graded rings. We now demonstrate this fact in
generalizing 2.8 Propositon to strongly group graded rings. We use S#G* to denote the
smash product of G over a G-graded ring S. We remind the reader that the smash product
S#G* is a free right S-module with a basis {px}XEc^ S#G* = © E pxS, and there exists

an action of G on S#G* defined by (pxsY = p^-ix)s, so we can form a skew group ring
(5#G*)* G; see [9], [22] and [21, Section 2] for details.

coefficient ring
THEOREM. Let G be a finite group and let S = R(G) be a strongly G-graded ring with
Hcient ring R. Then
(i) R is FBN if and only if S is FBN;
(ii) R is a right inj.hom. (resp. right inj. smooth) FBN ring if and only if so is S.

Proof. Suppose that G, R and S are as stated. We use = to denote an equivalence of
categories. By [9, Theorem 2.2] and [10, Theorem 2.8] we have

Mod(5#G*)« GrMod(S)« Mod(R), (11)

where Mod( ) and GrMod( ) denote the categories of right modules and graded right
modules respectively. As stated before there is a skew group ring (5#G*) * G. Using [21,
Theorem 2.5] we have

(5#G*)*G = M|C|(5). (12)

(i) Since S is a finitely generated right /?-module, see [18, Section 1], if R is FBN,
then 5 is FBN by [14, Proposition 4.9].

Since S#G* is a finitely generated S-module, if 5 is FBN then 5#G* is FBN, again
using [14, Proposition 4.9]. By (11) 7? is FBN.

(ii) (^>) Suppose that R is right inj.hom. and FBN. By 2.3 Lemma and (11) 5#G* is
right inj.hom. and FBN. Then by 2.8 Proposition (5#G*)*G, a skew group ring, is also
right inj.hom. and FBN, and so is S by (12).

«=) Suppose that S is right inj.hom. and FBN. By (i) R is FBN. By (12) and 2.8
Proposition 5#G* is right inj.hom. Then by (11) R is right inj.hom.

The same argument will give the proof of the right inj. smooth version.

2.10. From the proof of 2.9 Theorem, we obviously have the following corollary.

https://doi.org/10.1017/S0017089500031098 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031098


198 ZHONG YI

COROLLARY. Let G be a finite group and let S = R(G) be a strongly G-graded ring
with coefficient ring R. Then

(i) S is FBN if and only ifS#G* is FBN;
(ii) 5 is right inj.hom. (resp. right in), smooth) if and only if S#G* is right inj.hom.

(resp. right in), smooth).

2.11. It is well known that for a finite group G and a strongly G-graded Noetherian
ring 5 with coefficient ring R, when R has finite global dimension, the global dimension of
S may be infinite (even in the group ring case). Thus we have the following modified
version of 2.9 Theorem for right hom.hom. properties, which follows easily from 2.9
Theorem and 2.2 Lemma, noting also [28, Lemma 2.1(ii)].

COROLLARY. Let G be a finite group and let S = R(G) be a strongly G-graded ring
with coefficient ring R.

(i) If S is right hom.hom. (resp. right horn, smooth), then so is R.
(ii) / / R is right hom.hom. (resp. right horn, smooth) and S has finite global

dimension, then S is also right hom.hom. (resp. right horn, smooth).

3. inj.hom. Noetherian P.I. rings are Auslander-Gorenstein. The purpose of this
section is to prove that inj.hom. Noetherian P.I. rings are Auslander-Gorenstein, and to
give equivalent characterizations of inj.hom. and hom.hom. Noetherian P.I. rings which
have all their cliques of maximal ideals localizable. At the end of the paper we point out
that a strongly graded ring by a finite group is Auslander-Gorenstein (or Macaulay) FBN
if and only if so is its coefficient ring.

3.1 LEMMA. Let R be an Auslander-Gorenstein, Macaulay, FBN ring. Then for each
maximal ideal Q of R,

j(R/Q) = u.gr.(R/Q) = inj.dim.(/?) = K.dim.(fl),

where R/Q and R may both be considered as right or left R-modules. In particular, R is
right and left inj. smooth.

Proof. Suppose that inj.dim.(R) = n. Then there exists a finitely generated left (or
right) fl-module M such that Ext*(M, R) ¥=0. Denote Ext"R(M, R) by E"(M). It is easy to
see that En(M) is a finitely generated right (or left) /?-module. By the Auslander-
Gorenstein condition, j(E"(M))>n. By the Macaulay condition, we have

n </(£"(M)) <j(En(M)) + K.dim.(£"(M)) = K.dim.(/?). (13)

Suppose that Q is a maximal ideal of R, so R/Q is a simple Artinian ring [13, Proposition
8.4], and then K.dim.(R/Q) = 0. Thus by the Macaulay condition and [15, Remark 2.2
(1)]

= K.dim.(R/Q)+j(R/Q)=)(R/Q)<n. (14)

From (13) and (14), we obtain

j(R/Q) = u.gr.(R/Q) = inj.dim.(/?) = K.dim.(K).

https://doi.org/10.1017/S0017089500031098 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031098


THE AUSLANDER-GORENSTEIN PROPERTY 199

3.2. Since Noetherian P.I. rings are FBN, from 3.1 Lemma and [25, Theorem 3.10]
we have the following result.

PROPOSITION. Let R be a Noetherian P.I. ring. Then R is in], smooth if and only if R is
Auslander-Gorenstein and Macaulay.

3.3. Suppose R is a ring, in the following we denote the Laurent series ring of R by

R((x)), R((x)) = \ 2 TjX' | rj: e R, n e Z}, see [12]. For a finitely generated right fl-module

M, denote M®R R((x)) by M((x)). Since it is not known at present whether the cliques of
a Noetherian P.I. ring are always localizable (see 3.5 below), we are forced to pass from R
to R((x)) in proving 3.7 Theorem. By using [1, 19.20 Theorem] and [16, 7.2.3
Proposition], we have the following lemma.

LEMMA. Let R be a Noetherian ring. Then R((x)) is a faithfully flat R-module.

3.4 LEMMA. Let R be a Noetherian ring and let M be a finitely generated left
R-module. Then

(i) Ext^M, R) ®R R((x)) = Ext'*(W)(M((x)), R((x)))-
(ii) Ext'R(M, R) = 0 if and only i/Ext^(W)(M((x)), /?((*))) = 0;
(Hi) jR(M) =MW)(M((x))); u.gr.K(M) = u.gr.mx))(M((x))).

Proof (i) is a direct consequence of [8, 1.6 Proposition], (ii) follows from (i) since
R((x)) is a faithfully flat i?-module by 3.1 Lemma, and (iii) follows directly from (ii).

3.5. Suppose that R is a Noetherian ring and P is a prime ideal of R. We use
to denote the set of all the elements of R which are regular modulo P. Let A' be a set of
prime ideals of R, we say X is localizable if: (i) n {<£(P) | P e X}, denoted by ^(X), is an
Ore set; (ii) RX/PRX, for each P e X, is simple Artinian and PRX, P eX, are all the
primitive ideals of Rx. We call X classically localizable if X is localizable and has the
following property: (iii) for each P e X the injective hull of the (both right and left)
^--module RX/PRX is the union of its socle series; see [13, p. 219] and [3, p. 37] for
details.

NOTE. It is an open question whether the cliques of a Noetherian P.I. ring are always
localizable. It is also an open question whether localizable cliques of Noetherian rings are
necessarily classically localizable; see [13, p. 289]. The following results are known: (i) if R
is a Noetherian P.I. ring which is a finitely generated algebra over its centre, then every
clique of R is classically localizable; (ii) if R is an FBN algebra over an uncountable field,
then every clique of R is classically localizable; (iii) if R is an FBN ring, then every finite
clique of R is classically localizable; see [3, Proposition 6.1 and Theorem 6.11] for further
details.

LEMMA. Let R be a Noetherian P.I. ring and let N be a finitely generated right
R-module. If for each clique Q of maximal ideals of R, N((*))n(M) = 0> then N = 0.

Proof. If Q is a clique of 7?, by [24] O((x)) = {£>((*)) | £> e Q} is a clique of the
Noetherian P.I. ring R((x)). By [27, Theorem 8], £J((x)) is classically localizable.

Without loss of generality, we may suppose that NR is a non-zero simple module. Let
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P = annR(N), a maximal ideal of R. Suppose Q is the clique of R which contains P. If
W((*)W» = 0, then N((x)) is <g(Q((x)))-torsion, where ^(Q((x))) denotes the set of
elements of R which are regular modulo each prime ideal in Q((x)). Since R/P = N(n) for
some positive integer n, R((x))/P((x))^N((x)fn\ Therefore R((x))/P((x)) is «(Q((JC)))-
torsion. In particular there exists a c e ^(Q((x))) such that (1 + P((x))c = 0, that is
c e P((x)). This is a contradiction.

3.6. Being motivated by 3.2 Proposition, we would like to give the following
definition.

DEFINITION. Let R be an Auslander-Gorenstein Noetherian P.I. ring with all its
cliques of maximal ideals localiable. If for each clique Q of maximal ideals of R, Rn is
Auslander-Gorenstein and Macaulay, then we call R a locally Macaulay ring.

PROPOSITION. Every commutative Noetherian ring of finite injective dimension is
locally Macaulay.

Proof. Suppose that R is a commutative Noetherian ring of finite injective dimen-
sion. Of course the cliques of R are singletons arid are localizable. Let P be a prime ideal
of R. Then RP is a commutative Noetherian local ring of finite injective dimension, so it is
obviously inj. smooth. By [25, Theorem 3.10] RP is Macaulay. Therefore R is locally
Macaulay.

NOTE. Let R =k[[x]][y], where k is an arbitrary field and k[[x]] is the power series
ring. R is commutative Noetherian of finite global dimension, so it is locally Macaulay by
the above Corollary; but it is not Macaulay as pointed out in [25, Section 2].

3.7. THEOREM. Suppose that R is a right inj.hom. Noetherian P.I. ring. Then R is
Auslander-Gorenstein, and R is also left inj.hom. If each clique of maximal ideals of R is
localizable, then R is locally Macaulay.

Proof. Let Q be a clique of maximal ideals of R. By [24] Q((x)) = {Q((x)) \ Q e Q} is
a clique of R((x)) (this is straightforward to prove directly) and by [27, Theorem 8] Q((x))
is classically localizable. We first prove that R((x))n((x)) is inj. smooth. By [11, Theorem
1.1]

i
But

by [23, Corollary 11.68]. Therefore inj.dim.(i?((x))n(W)) < ». Since Q.((x)) is classically
localizable, {P((x))n((x)) | P e Q} are all the maximal ideals of R((x))n{(x)). Suppose that
P e Q . Then

equals 0 if and only if Ext'Rax))(R((x))/P((x)), R((x))) = 0 by 3.5 Lemma, and if and only
if ExifR(R/P, R) = 0by 3.4 Lemma. Thus

u.gr.(R({x))niix))/P((x))mx))) = n.gr.(R/P). (15)
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For any other element g e Q , since R is inj.hom, we have

Then by (15) we know that

and this number must be inj.dim.(/?((;c))n((x))) by [25, Lemma 3.12]. Therefore R(.(x))n«X))
is inj.smooth. By [25, Theorem 3.10] •/?((*))«((*» *s Auslander-Gorenstein.

Let M be a finitely generated right or left i?-module, let n BN. Suppose that N is a
submodule of Ext£(A/, R). Then

) s Extn
mx))(M((x)),

by 3.4 Lemma and 3.3 Lemma. For every clique Q of maximal ideals of R, we have

Since /?(0c))n((,)) is Auslander-Gorenstein

W ) ) . R((x))n(M)) = 0, for all m<n.

By 3.4 Lemma and 3.5 Lemma we have Ext%(N,R) = 0, for all m<n. Therefore R is
Auslander-Gorenstein.

Let us use l.u.gr.(w) to denote the upper grade of a left module M. Suppose that R
is a right inj.hom. Noetherian P.I. ring and that P is a maximal ideal of R. Let Q be the
clique of R which contains P. Since we have proved that i?((x))n((X)) is (right and left) inj.
smooth. By (15) and its left hand side version, we have

Therefore R is also left inj.hom.
For the final part, suppose that all the cliques of maximal ideals of R are localizable.

Let Q. be a clique of maximal ideals of R. By a simpler version of the above argument, Rn

is inj. smooth. Thus Rn is Macaulay by [25, Theorem 3.10], so R is locally Macaulay.

3.8 COROLLARY. Let R be a Noetherian P.I. ring with each clique of maximal ideals
localizable. Then

(i) R is inj.hom. if and only if R is Auslander-Gorenstein and locally Macaulay;
(ii) R is hom.hom. if and only if it is Auslander-regular and locally Macaulay.

Proof, (i) (̂ >) This is a consequence of 3.7 Theorem.
Suppose that R is Auslander-Gorenstein and locally Macaulay. Let P and Q be

two maximal ideals of R in the same clique Q., say. Then Ra is Auslander-Gorenstein and
Macaulay by hypothesis. By 3.2 Proposition Ra is inj. smooth. As shown in the proof of
3.7 Theorem we have

u.gr.(R/P) = u.gr.(i?n/Pn) = u.gr.(RJQn) = u.gr.

so R is inj.hom.
The proof of (ii) follows from (i) and 3.2 Proposition.
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NOTE. When R is commutative Noetherian, then as indicated in 3.6 Corollary, R
Auslander-Gorenstein implies R locally Macaulay. But we don't have this implication for
noncommutative Noetherian P.I. rings. The following example shows that even
Auslander-regular does not imply locally Macaulay.

[ k k~\
, where k is any field. R is Auslander-regular (as one can

U K J

show by direct calculation or see also [25, Section 5]), but it is not Macaulay. Since R has
only one clique, it is not locally Macaulay.

3.9. We studied the injective homogeneity and homological homogeneity of strongly
group-graded rings in Section 2. As illustrated in the present section and [25], these
properties are closely related to the Auslander-Gorenstein, Auslander-regular and
Macaulay properties, so we would like to finish this paper with the following result.

PROPOSITION. Let G be a finite group and let S = R(G) be a strongly G-graded ring
with coefficient ring R. Suppose that R is Noetherian, {but not necessarily fully bounded).
Then:

(i) R is Auslander-Gorenstein if and only if S is Auslander-Gorenstein;
(ii) R is Auslander-Gorenstein and Macaulay if and only if so is S.

Proof. Suppose that G, R and S are as stated. By [18, Corollary 2.7]

inj.dim.(#) = inj.dim.(S),

so R has finite injective dimension if and only if so has S.
(i) (̂ >) Suppose that R is Auslander-Gorenstein. For each right (or left) S-module

M, each integer i and each 5-submodule N of Ext's(M, S), which is isomorphic to
Ext'R(M, R) by [18, Theorem 2.1], by 2.5 Lemma and the Auslander-Gorenstein property
of R,v/e have

Js(N)=jR(N)>i.

Thus S is Auslander-Gorenstein.
(4=) Suppose that 5 is Auslander-Gorenstein. For each right (or left) R -module M,

every integer / and every submodule N of Ext'R(M,R), S®RN is a submodule of

S®R Ext'R(M, R) = Ex?s(M®R S, S)

by [8, 1.6 Proposition]. Since 5 is Auslander-Gorenstein,

js(S®RN)>i. (16)

Because as .R-modules S<2)RN= 0 N8, where Ng is defined as in 2.4, by (2) we have

JR(N) = JR(S®RN). Thus by 2.5 Lemma and (16) we have

jR(N) = jR(S ®R N) = js(S ®R N) > i.

Therefore R is Auslander-Gorenstein.
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(ii) For every finitely generated right (or left) 5-module M, by [18, Theorem 1.2]

= k.dim.5(M). (17)

For every finitely generated right (or left) i?-module N, by (16) and [13, Corollary 13.2]
we have

k.dim.«(A0 = k.dim.R(N®S) = k.dim.s(JV® S). (18)

Then (ii) follows easily from (17), (18), 2.5 Lemma and the definition of the Macaulay
condition.
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