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ON THE CANONICAL HOLOMORPHIC MAP FROM
THE MODULI SPACE OF STABLE CURVES TO
THE IGUSA MONOIDAL TRANSFORM®

YUKIHIKO NAMIKAWA

Introduction.

Let .#, be the coarse moduli space of complete non-singular curves
of genus g and ©} the coarse moduli space of principally polarized
abelian varieties of dimension ¢g. There is a canonical map:

ity — S

defined by sending the isomorphism class of a curve C to the isomorphism
class of the Jacobian variety of C. The famous theorem of Torelli as-
serts that this map 7 is injective (e.g. [28]). Moreover the map ¢ is
holomorphic (and even algebraic). It can be seen by rewriting the map
1. That is, ©F is defined analytically as the quotient space of the Siegel
upper-half plane &, of degree g by the integral symplectic group Sp(g, Z).
It can be considered as the moduli space by letting 2 mod. Sp(g,Z) cor-
respond to the isomorphism class of C?/(1,,2)Z*. Then the map 7 can
be defined as the map which sends the isomorphism class of C to the
residue class of the period matrix of C, and by this definition 7 is known
to be holomorphic (cf. (4.1)).

However the spaces .#, and ©F are not compact if g > 0, which
gives rise to the problem of their compactification. Several kinds of
compactifications with geometrical meaning are known. In case of .4,
the moduli space &, of stable curves of genus g due to Deligne
and Mumford gives a good compactification ([4)]. In case of S} the
Satake compactification &* is a natural one ([19], [20]). As a set S
is a union of &%, 0 < ¢ <g. However this compactification has too
small boundary (of codimension g), so &F is very singular at the
boundary though normal. Igusa studied the desingularization problem

* This article was presented to Nagoya University for the author’s doctorate.
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of the Satake compactification by blowing-up along the boundary ([8]).
Unfortunately this procedure does not give the desingularization if
g > 3. The author was informed that now in this direction Mumford
and Satake began to study in more general situation (i.e. the desingulari-
zation of the Satake compactification of the quotient spaces of bounded
symmetric domains). It should be also remarked that the very interesting
study on the degeneration of abelian varieties by my colleague, Nakamura
([13]) has a close relation to this problem. It is expected that in the
near future we have a nice compactification of &} other than Satake
compactification. Anyway in this article we shall consider the Satake
compactification & and the normalization €F of the blowing-up of &
along the boundary which we call the Igusa monoidal transform. Denote
by p the canonical bimeromorphic map from @;" to &F.

Then the problem arises naturally whether the map 7: .4, — &¥ can
be extended to a holomorphic map j: ¥, — &*. Our Theorem 4 in §6
gives the affirmative answer to this problem. The composite map j =
poj:F,— B sends the isomorphism class of a stable curve C to the
isomorphism class of the Jacobian variety of the normalization of C
(Theorem 3 in §5). In fact we show the existence of j first and we
show that j can be lifted to 7. In the proof we use the methods in-
troduced by Igusa in [8] in its full extent. Especially we use the notions
of Fourier-Jacobi series and central cones. For the proof of Theorem
4 we must use the fact that a cone in the vector space of real symmetric
matrices generated by a finite number of non-negative integral matrices
is covered with a finite number of central cones, which is proved in
Theorem 1 in §1.

After this we shall study the properties of j precisely.

First of all with a stable curve C we associated a (dual) graph whose
vertices are the irreducible components of C and whose edges are the
double points of C (4.4). We call C planar if the graph associated with
C can be embedded in the plane. Those points in &, corresponding to
planar stable curves are mapped by 7 into “good” points in &% ; especially
the singularity in &¥ of each image point is at most quotient singularity
(Theorem 5 in § 7).

Secondly denoting by %, those points in %, which correspond to
irreducible stable curves, we shall study j on %,. Let C be an irreduci-
ble stable curve. Then the generalized Jacobian variety J(C) of C is a
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group extension of the Jacobian variety J(C) of the normalization C of
C by a product of some copies of the multiplicative group C*. We
note that the extension class of J(C) is explicitly determined by C
(Theorem 6 in §8). With the help of this theorem we prove that j is
injective on %, (Theorem 7), which gives a natural extension of Torelli’s
theorem.

Finally we prove that in case of g = 2 the canonical map j is an
isomorphism (Theorem 8 in §9). This fact plays an essential role in
the study of degenerated fibres in families of curves of genus two by
Ueno and the author ([15]).

This article is divided into 9 sections. The first three sections are
preliminary. In Section 1 we recall the notions of fundamental cones
and central cones in the theory of positive symmetric matrices due to
Igusa [8] and we prove Theorem 1. In Section 2 we recall Satake com-
pactifications and introduce the Igusa monoidal transforms with Igusa’s
fundamental results in [8]. In Section 3 we make a brief summary on
the theory of stable curves due to Deligne and Mumford ([4]).

There is a universal family @: 2, — #, of stable curves which is
smooth outside a divisor 2 in s, with only normal crossings (3.3). By
corresponding z in s, — 2 to the period matrices of @ '(x) in &,, we
obtain a multiple-valued holomorphic function T'=7T,:#, — 9 - S,
which is called the period map (of @). In Section 4 we introduce this
period map and after making a precise study on the homology group
of stable curves we study the behaviour of the period map T near the
discriminant 9 (Proposition 5 and Theorem 2). This result is the founda-
tion of the main theorems in this article.

The rest of this article is devoted to the proof of the main theorems
mentioned before.

The author would like to express his hearty thanks to his best friend
Dr. Kenji Ueno, whose incessant encouragement and advices were in-
dispensable to this work.
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List of Notations

B,(n) = &*(n) — Sk(n), (2.2).

C: the field of complex numbers.

C* = C — {0}: the multiplicative group.

C,=C,NY; (1.4) Def. 2).

C,: the central cone associated with ¢ ((1.4) Def. 2).

C, = C, : the principal cone (1.7).

C(a,, --+,a,): the cone generated by a,,---,a, (1.6).

9: the discriminant of @ (4.1).

D(a,, ---,a,): the simplex generated by a,, ---,a, (1.6).

e( ) =exp@zv—1( )), (2.9).

F,=F,NY: 1.2).

F,: the fundamental cone associated with ¢ ((1.2) Def. 1).

F,=F, where g, is defined in (1.3.1).

GL(g,R): the general linear group of degree ¢ with coefficients in R.

He=H,— 2, 4.1).

H, (z,,7"): Fourier-Jacobi series (2.4.2).

j: &, — &%, (6.1).

J=poj: ¥, — ¥, (Introduction).

J(C): the (generalized) Jabobian variety of C (8.3).

My, 1.49).

M,: the coarse moduli space of non-singular curves of genus g (Intro-
duction, (6.1)).

p:S* - &*: the canonical surjection (Introduction).

D, SE(n) — S(n), (2.5).

R: the field of real numbers.

R*: the set of non-negative real numbers.
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S, = H,/ PGL(g — 6): the coarse moduli space of stable curves of
genus ¢ (3.3).

©,: the Siegel upper-half plane of degree g (2.1).

€} = Sp(g, Z)\&,: the coarse moduli space of principally polarized abelian
varieties of dimension g (2.1).

Skn) = I'(m\S,, (2.1).

©}: the Satake compactification of S} (2.2).

S¥(n): the Satake compactification of S}(n) ((2.2) Def. 4).

@;"(n): the monoidal transform of &*(n) along B,(n), (2.5).

S*: the Igusa monoidal transform of &}, (2.6).

©*(n): the Igusa monoidal transform of &}(n), ((2.6) Def. 5).

S2(n): the set of those points in &*(n) which are conjugate to limits
of points in &¥(n) with normal coordinates bounded above (2.5).

Sp(g, R): the symplectic group of degree g with coefficients in R (2.1).

T=T,:#; —S,: the period map associated with @ (4.2).

T.:S—@&,: the period map associated with a family »: X — S ((4.2)
Def. 8).

tr( ): the trace function (1.1).

% .

o: the open set of points in &, corresponding to irreducible stable
curves (8.0).

Y;,Y*: the set of positive integral matrices (1.1).

Y;,Y*: the set of non-negative integral matrices (1.1).

Y#: the set of positive half-integer matrices (1.1).

Y;: the set of positive half-integer matrices ¢ with C; # ¢ (1.5).

9,9+ the set of positive real matrices (1.1).

V:,P*: the set of non-negative real matrices (1.1).

Z: the ring of integers.

Z*: the set of positive integers.

I',(n) = Ker (Sp(9,Z) — Sp(9, Z/nZ)): the principal congruence subgroup
2.1).

w(y), 1.4).

@:Z%Z,— H,: the universal family of tricanonical embedded stable curves
3.3).

0:3k(n) — &¥(n): the Siegel operator (2.2).

wx,s 0c: the dualizing sheaves (3.2).

(a,p): the intersection number of « and g (4.1).

1,: the identity matrix of degree g.
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§ 1. Fundamental cones and central cones.

(1.1) Let 9, denote the set of real symmetric matrices of degree g,
which is a vector space of dimension N = g(g + 1)/2. Let 9; (or simply
9* if no confusion occurs) denote the set of positive symmetric matrices of
degree g. Then §; is an open convex cone in 9, and its closure 9; is
the set of non-negative symmetric matrices of degree g. We write
y > 0 if y is an element of Y*; we write y > 0 if ¥ is an element of J*.

On 9, there is a non-degenerate bilinear form defined by

V9. XY —R

(V) [

W*y) — tr (W*y)
where tr () denotes the trace function. With this bilinear form 9; is
the dual cone of itself.

In 9, the set Y, of all integral matrices forms a lattice. Denote
Y, N9* by Y; (or simply Y*), and Y, NY; by Y; (or simply Y*)
respectively. Note that we can choose a system of generators of Y, in
Y;. Then the dual lattice Y#* i.e. the set of matrices with tr (cy) e Z
for all ¥ in Y, is nothing but the set of half-integer symmetric matrices,
i.e. ¢ =(0;) with ¢;,€Z and 20,,€¢Z for 1 <4, j<g. The set Y} =
Y¥* N Y; of positive half-integer matrices ¢ is the set of matrices ¢
with tr (ey) e Z* for all ¥y in Y;.

1.1.1

(1.2) The group GL(g,R) acts continuously on 9§, as

GL(g,R) X 9§ —9
(1.2.1) ) )
(, y) —> Uy = Uy ‘u
and this action keeps §* stable and is transitive on §*.

The discontinuous subgroup GL(g,Z) of GL(g,R) acts on *. The
reduction theory asserts that the action of GL(g,Z) on Y* is properly
discontinuous and there is a normal fundamental domain with respect to
this action.

Following Igusa [8] we shall not consider the fundamental domain
itself but a fundamental set F such that GL(g,Z)-F = §* and the set
{fueGL(9,Z);u-F N F + ¢} is a finite set, or equivalently to say, F is
covered with a finite number of fundamental domains.

DEFINITION 1. Choose an element ¢ of §* and fix it. Let F, be the
set of elements y of 9) satisfying
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(1.2.2) tr (ouy ‘u) — tr (oy) > 0
for all w in GL(g,Z). We call this F, the fundamental cone associated
with ¢.%

Also denote F, N Y* by F,. The F, and F, have the following
properties:

i) F, is a closed convex cone in 9*;

i) GL(9,Z)-F,=9";

i) {ueGL9g,Z);u-F; NF, + ¢} ={ueGL(g,Z); 'ucu = ¢} where
F° denotes the set of interior points of F. We denote the above sub-
group of GL(g,Z) by I(s);

iv) ([12]) if moreover ¢ is a half-integer matrix, then for only a
finite number of u in GL(g,Z) we have u.-F, N F, = ¢. The boundary
of F, consists of a finite number of “thin” convex cones. Hence F, is
covered with a finite number of fundamental domains.

(1.3) In the following we shall consider a special fundamental cone.
Let o, be the half-integer matrix

(1 1/2-.-1/2)

!1/2 1 -..1/2]
(1.3.1) g, =1 - . <]
e 12 1

We denote F, (resp. F,) simply by F, (resp. F.).

Denote by V, the real vector space of column vectors with g coeffi-
cients. Take a column vector = with coefficients «,, - - -, z,. If we introduce
a column vector z with coefficients ,, -+, 2, @y = — (@ + -+ + ),
then we have an imbedding i,: V, — V,,, whose image is the subspace
V, defined by the equation

X+ Xy e+ By =0

Let ¥ = (y;;) be a point of 9,. Introduce a new matrix ¥ in 9,.,
with coefficients ¥;;, 1 <%, 7 < g + 1 where additional g + 1 coefficients
are determined by the equations

+1

(1.3.2) Yy =0, i=1,2,-.-,94+1.
1

J

Q

The correspondence y — % can be extended to a linear map 9, — 9,1
*) This F, was introduced by Venkov [26], Koecher [12] and independently by Igusa [8].
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With (1.3.2) 7 is uniquely determined by its N = g(g + 1)/2 coefficients
Yy for 1 <i<j<g+ 1. It is clear that by these N coefficients y is
also determined. Arranging these coordinates lexicographically we call
them normal coordinates of y. Alsoc we call ¥ the matrix associated
with .

Let =, be the symmetric group of permutations of the set {1, --.,n}.
There is a canonical representation =,,, —» GL(g + 1, Z) defined by send-
ing p = (i — p() to a(p) = (u(p);;) with wu(p);; =1 if (@, 7) = (¢, p() and
0 otherwise. Clearly this matrix 7%(p) preserves V; above, hence it
induces a matrix u(p) in GL(g, Z) through i,. Then we have a representa-
tion

Ty —> GL(9,Z)
w ]
p —>
This representation being injective, we identify =z,,, with its image in
GL(g,Z). Then we have
LEMMA 1 ([8D. I(o,) = 7y U (—my,0).

(1.4) Next we shall introduce another type of closed cone. To define
this cone and investigate it we must introduce a few more notations.
Let vy be an element of * = 97 and put

wy) = inf tr(ey) ,
cevy
and

M(y) = {oe Y}; tr (oy) = p(y)} .

LEMMA 2. 1) For a positive real number 2 we have
pQy) = Ap(y) and MQy) = M(y) .
iii) For every element uw of GL(g,Z) we have
wuwy ‘) = p(y) and  Muy ‘u) = ‘uM@)u .
iii) For v,y €9 we have
My N M) € MQy + py)

where 1 and p are positive real numbers.
iv) w(y) is upper-semicontinuous.
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The proof is clear.

LEMMA 3. Suppose y is contained in §*. Then we have

i) the set of walues tr (oy) with oe Y¥ is a discrete set in RY,
especially we have p(y) > 0;

i) M) # ¢ and it is a finite set;

iii) there is a meighbourhood U of y such that for any element of
x of U we have M(x) C M(y).

Proof. i) It is sufficient to prove that for any number N only a
finite number of ¢’s in Y} satisfy the inequality

(1.4.1) tr(oy) < N .

On the other hand for a sufficiently small positive number ¢ we have
Y > el, where 1, denotes the identity matrix in §, (for example, ¢ = the
least eigenvalue of y). Then if ¢ satisfies (1.4.1), we have

N > tr (oY) > tr (s(ely)) = etro .

Since ¢ is positive definite, there are only a finite number of such ¢’s.
ii) This is clear from the proof of i).
iii) In the same way as in the proof of i) we see that for any
compact set K in §* and any real number N, only a finite number of
g’s in Y* satisfy the inequality

tr (cx) < N

for an = in K.
Let w(y) + ¢ be the smallest value of tr (¢y) but p(y). Take a neigh-
bourhood V of y whose closure V is compact and contained in §*. Then

by the remark above for only a finite number of ¢,’s, 1 =1,.-.,7, In
Y* there is an element 2 in V with tr (¢;2) < p(y) + e. Especially M(y)
is contained in {o,, :--,0,}, so assume for example M(y) = {o,, -+, 04}

Hence for j > k + 1 we have
tr (o) > wy) + ¢ .

By continuity of the function tr (¢;-) there is a neighbourhood W of y
contained in V such that for all x in W and for all 7 > k + 1,

tr (o;2) > p(y) + de.

https://doi.org/10.1017/5002776300001597X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001597X

206 YUKIHIKO NAMIKAWA

By the uppersemicontinuity of ux(y) also there is a neighbourhood W’ of
¥ such that for all x in W’ we have

p@) < ply) +

€ .

o

Hence if we put U = W N W’, then for any point & in U we have
tr (o;0) > p(¥) + te > ()
for 7>k + 1 and
tr (ox) > w(y) + ¢ > )
for any ¢ #9; (j=1,---,7). That is,
M(x) C M(y) . q.e.d.

LEMMA 4. Put

Dy = {y ey = (0 0/) where Y ¢ 9;,}
0 y
and
V= U i -
g’'<g

Then for each point y = (8 g,) of ‘D; we have:

i) the set of values tr (oy) with o€ Y} is o discrete set in R*;
i) p@) =pW)>01 y+0;

iii) M(y) = {a = (: :,) ; a’eM(y’)} *
iv) there ts a meighbourhood U of y such that M(x) C M(y) for all
xz m U with x > v.

Proof. The claims i), ii) and iii) are clear from the fact that for

each y = (g 2,) with ¥’ €Y} and ¢ = (* j,) with ¢’ e Y¥ we have

*
tr (cy) = tr (¢’Y) .

iv) Let w(y) + ¢ be the smallest value of tr (sy) but wp(y). Since
#(y) is uppersemicontinuous, there is a neighbourhood U of ¥ for any
element x of which

wx) < wy) + ¢ .
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Hence if moreover x > v, for any ¢ e M(x)

tr (oy) < tr (oY) + tr (6@ — ¥)
= tr (ox)
= u(x)
<y + e

which implies
tr (oy) = p(¥) .
That is,
oge M(y) . q.e.d.

DEFINITION 2. Let ¢ be an element of Y¥. We call the closed convex
cone defined as C, = {y € 9*; a0 e M(y)} the central cone of . Also denote
C.nY* by C..

By Lemma 3 ii) §* is covered with central cones. There arises
naturally the problem whether the fundamental domain is covered with
a finite number of central cones. It is the main object in this section
to answer this question affirmatively.

Remark. In general p(y) =0 and M(y) = ¢ for y in the boundary
9t — 9*. For example you can see easily that for y = <_];/'2“ —«;2)
it holds that p(y) = 0. It seems to me that if the set of values tr ()
is discrete (hence u(y) > 0 and M(y) + ¢), then y is conjugate to a point
in §*. This subject also seems to have a relation to “rational boundary
components” in the sense of Baily and Borel ([2]).

(1.5) First of all we shall note some elementary properties of the
central cones.

LEMMA 5. i) Let Y; be the subset of o’s with C; # ¢ where C?
denotes the set of interior points of C, in 9*. Then Y* is covered with
C,’s with e Y,. We call such C, a non-degenerate central cone.

ii) Let o be an element of Y. For a point y in C,, M(y) = {a} if
and only if ye C?.

iii) Let o be an element of Y; and put N, ={reY;;C, N C, + ¢}.
Then we have

C,={we9";tr(zy) > tr (oy) for all e N,}.

https://doi.org/10.1017/5002776300001597X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001597X

208 YUKIHIKO NAMIKAWA

Proof. i) The claim is clear by Baire’s theorem.

ii) By Lemma 3 iii) the set #, of elements y with M(y) = {¢} is
open, hence %, C C?.

Conversely suppose that y is contained in C;. Note that u(x) =
tr (¢x) on C,, which is a linear function. Hence if ¢’ satisfies the equality
w(y) = tr (¢’y), we have tr (¢’x) = tr (6x) = w(x) on a neighbourhood U of
y, since tr (¢’x) > tr (x) on U. Therefore ¢’ = g.

iii) It is evident that

C,c{ye®d*;tr(cy) > tr(oy) for all zeN,}.

We shall prove the converse by reductio ad absurdum. Let y be an
element of 9* with tr (zy) > tr (¢y) for all ze¢ N, which is not contained
in C,. Take an element x of C;. Then we have two inequalities:

tr (oy) < tr (zy)
tr (ox) < tr (zx) .

Since the segment zy is not contained in C, by assumption, on it there
is a point z in the boundary of C,, hence at least an element z of N, is
contained in M(z). This implies tr (¢2) = tr (zz), but this is impossible
by the above inequalities q.e.d.

(1.6) Let a,,---,a, be n elements in 9;. We call D(ay,---,a,) =
{Dli4a;; 4, e RT and 3 A, = 1} the simplex generated by a,, ---,a,; We
call C(ay, +«+,a,) = {322 0:5 2, € R*} = User+ AD(ay, - - -, a,) the cone gener-
ated by a,, -+ -, Q.

If all a;’s are in Y}, we say C(a,, ---,a,) to be integral.

Our main theorem in §1 is the following.

THEOREM 1. Let a,---,a, be n integral non-negative matrices of
degree ¢, and let C(a,, ---,a,) be the integral cone generated by them.
Then C(ay, ---,a,) 18 covered with a finite number of non-degenerate
central cones.

Clearly we have only to prove that C(a,, ---,a,) N 9* is covered with
a finite number of central cones.

The reduction theory asserts that the fundamental domain in §;
with respect to GL(g,Z) is a finite union of integral cones (e.g. cf. [11]).
Hence we have:
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COROLLARY 1. A finite union of fundamental domains in 9 with
respect to GL(g,Z) is covered with a finite number of non-degenerate
central cones. Especially the fundamental cone associated with o half-
integer matriz is covered with them.

COROLLARY 2. For a half-integer positive matriz ¢ the central cone
C, is a finite union of integral cones and has only a finite number of
neighbouring non-degenerate central cones.

Proof. If we prove the finiteness of the number of neighbouring
non-degenerate central cones, then the other statements are clear from
the definition and Lemma 5 iii). On the other hand let S be the set of
non-degenerate central cones which cover the union of F, and its
neighbouring fundamental cones. Then S is a finite set by Corollary 1.
Since C, is contained F',, every neighbouring central cone of C, belongs
to S, which proves the assertion. q.e.d.

To state the next corollary we shall introduce a stratification of §*.
For a finite subset M in Y} we define the stratum %, associated with
M as the set of points ¥ in §* with M(y) = M. By virtue of Lemma 3
ii) and iii) these strata cover ¥* and are locally finite.

It is also easy to see that each stratum is locally an integral cone
and on it u(y) is a linear function. Hence as the similar way as the
proof of Lemma 5 ii) we have

LEMMA 6. If we consider the stratification each stratum of which
s the set of points y in 9* with M(y) N Y = M° for a finite subset M°
m Y, then this stratification coincides with the one defined above. That
s, for each point y in Y* the set M(y) is determined by M(y) N Y?.
Hence together with Theorem 1 and Corollary 2 we have

COROLLARY 3. i) Ewvery integral cone is covered with a finite strata.
(Note that every integral cone is contained in the interior of a larger
integral cone in 9*.)

ii) Fach stratum is a finite union of integral cones.

ii) If %, D%y, then M C N.

iv) @y = Meennre C,

1.7 Now let us prove Theorem 1.
First of all we shall reduce the theorem to the case of a special type
of cones.
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DEFINITION 3. A cone C(a,, ---,a,) is called regular if
a, >0, G, >0> >0, >0.

For any cone C(a,,---,a,) using the barycentric subdivision of
D(a,, ---,a,), we have

LEMMA 7 ([11]1 §4). Put S={a;, + -+ + a;;7 > 0}. Then C(a,, - - -,
a,) 1S a union of a finite number of regular cones whose generators are in S.

LEMMA 8 ([11] §11). Let C(a, ---,a,) be a regular integral cone.
Then there is a matrix u in GL(g,Z) with uCla, ---,a,)u C Y, or
equivalently, uai”ue@; for all 7, where @; is defined in (1.4).

Proof. We shall prove this lemma by induction on g. In case of
g = 1 there is nothing to prove. Suppose that the claim is true for any
g’ < g. Letk be the minimum of ¢ with deta;, = 0. Then for any ¢ <k
we have a, > 0. Now take an element u, of GL(g,Z) such that w,a;'u,

= (g 22) with b, e Y} (¢’ <g). Since w,a;,u, > w,a;tu, for any k > 1> 7,

it follows that w,a,'u, = (g g,.) with ble ¥*, and b, > bl > --- > bl

Hence by assumption there is an element u, of GL(¢’, Z) with u,b;‘u, =

0 0 , b; > 0. If we put u = 1y O u,, it satisfies the desired con-
0 b 0 u,
dition. q.e.d.

Secondly we note the following.

LEMMA 9. Let Cla, ---,a,) be a cone in 9. For any point y in
D(a,, - --,a,) there is a neighbourhood U of y with M(x) C M(y) for all
z in UN D(ay, ---,a,).

Proof. We may assume that a,,---,a, are irredundant, i.e. D(a,,

vy lyy e, a,) S D(ay, -0+, 0,) for any ¢ where D(a,, ---,d;, -+, a,) is the
cone generated by {a,, ---,a,} — {a;}. Assume that
Y= A0

with 2, > 0. We may further assume that 2, >0 for 1<k and 4, =0
1> k. Then we have

D(aly "‘,a’n) = U D(y’al""di’ "’7a'n) .

1<j<k

Hence we may assume ¥y = q,.
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The set Dy, = {& = > 4,a,; 4, > 1/2} is a neighbourhood of @, in D(a,,
<o, a,). Put D, = D(a,,a, + @y, -+, + @,). Then the map

p: D, D,

() L
2z = A0, + Z;Zi(ot1 + a;) —>2/(2 — 1)
=

is a homeomorphism. Further we have
M(z) = M(»(2))
and
z2 >0 for all z in D, .

By Lemma 4 iv) there is a neighbourhood V of a, in D, for any element
z of which M(z) € M(a,). Hence U = p(V) is a neighbourhood of @, in
D(a,, ---,a,) for any element & of which M(x) C M(a,). q.e.d.

Proof of theorem 1.

By virtue of Lemmas 7 and 8 we have only to prove the theorem
for regular integral cones contained in 2');;. (See also Lemma 2 ii).) More-
over since M(y) is invariant under scalar multiplication (Lemma 2 1)),
it is sufficient to prove that the simplex D(a,, ---,a,) is covered with a
finite number of nondegenerate central cones.

We shall prove it by induction on ¢g. In case of g = 1 the theorem
holds trivially. Hence we suppose that g > 1 and that the theorem is true
for all ¢’ <g.

Let C(a, ---,a,) be the regular integral cone considered. Let %k be
the maximum of ¢ with deta; > 0. Then we shall prove the theorem by
descending induction on k. It is easily seen that we may assume that » is
equal to g(g + 1)/2 and the generators a,, - -+, a, are linearly independent
(i.e. the cone is non-degenerate and its generators are irredundant).

Suppose that ¥ = ». Then D(a, ---,a,) is compact and contained in
9*. Hence the claim is true for &k = »n by virtue of Lemma 3 ii) and iii).

Now suppose the claim is true for any k' > k. By assumption we
have

0 0 +
A1 = (0 blc+1) ’ b€y (<9

and for j > k
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0 0 N+ Y+
a, = (0 bj), b,e9s N T,

hence
D(bk+1’ M) bn) C @;/ .

By the assumption of induction D(b,,,, ---,d,) is covered with a finite
number of non-degenerate central cones. Further by Corollary 3,
Dby, -+, b)) C U™, D(efy, - -+, ¢¥) such that for each D(c(,, ---,c®)
an open dense subset of it is contained in a stratum #{.

By this remark we may assume that an open dense subset of D(b,,,,
---,b,) is contained in a stratum %, in 9;.

Put D, = D(ay,,, ---,a,) and D, = D(ay, - - -, ay).

Take a point 2 in D, N %, (We identify ¥’ in §),, with (g 2,) in @;.)
and fix it. By Lemma 9 there is a neighbourhood U of z in 9; N D(a,,
..+,a,) such that for any z in U we have M(z) C M(x).

Therefore for a sufficiently small positive real number i the simplex
D,,= 1 — Az + 2D, is contained in U. As it is contained in 9*, it is
covered with a finite number of non-degenerate central cones C,,, ---, C,,.
By the assumption and by Lemmas 2 iii) and 4 iii) we have

C,U---uUC,DD = \J pD,,+ QA — D, .

0<p<1

On the other hand the intersection of 9),, and the closure D” of D(a,,
-++,a,) — D’ is nothing but the boundary of D,. Hence D’ is covered
with a finite number of simplexes with %’ > k, so the claim is true for
D” by the assumption of induction on k.

Hence D = D’ U D” is covered with a finite number of central cones.
Thus the theorem was proved.

(1.7 We shall close this section with a few remarks and problems.

Igusa proved that C, = F, if ¢ =2, and 3. This C, was also in-
troduced by Voronoi ([27]) with the name “principal cone”. It can be
expressed explicitly as the set of matrices whose normal coordinates
(1.3) are all non-positive. We shall denote C, simply by C,. In case of
g = 4 when one uses Igusa’s result ([8] Lemma 5) he can prove that

F, c C‘,DU( U c,,i,)

1< <5
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where ¢;; is defined as
tr (O'ijy) = tr (0'0'.1/) - y’l.]

for every y in 9. (Here y,; is the (i, j)-component of the normal coordi-
nates of y (1.3).)

Now what is the most interesting is that the non-degenerate central
cones seem to coincide with the type I cones due to Voronoi ([27]) and
Koecher ([11]). The latter is defined as follows. Let » be an element
of 9; such that the minimum of values ‘gvg for ge Z¢ is equal to 1 and
that g ‘g with such integral vectors g as ‘gvg = 1 generate non-degenerate
cone C, in 9;. Such C, is called the type I cone associated with v.
Koecher proved that all coefficients of v are rational numbers ([11] p. 405).
If one can show that v is in fact a half-integer matrix, the conjecture above
is true. By the observation above the conjecture is true for g < 4.

§2. Satake compactifications and Igusa monoidal transforms

In this section we make a review on Satake compactifications and their
monoidal transforms along the boundary which were introduced by Igusa
[8]. For details that we omitted to prove here, we refer the reader to [8].

(2.1) Denote by &, the set of symmetric matrices of degree g with
complex coefficients whose imaginary parts are positive definite. This &,
is called the Siegel upper-half plane of degree g. On it acts the sym-
plectic group Sp(9,Z) as 1 — M.t = (Ar + B)(Cz + D)™ for M = (‘é g)
in Sp(g,Z). Let I'y(n) be the kernel of the natural homomorphism
Sp(g, Z) — Sp(g, Z/nZ), which is called the principal congruence subgroup
of level n. This group I',(n) acts on &, properly discontinuously ([25]).
Further if » is greater than 2, the action is free. Hence the quotient
space ©F(n) = I'y(n)\S, admits a canonical structure of a normal analytic
space and if » >3 it is even non-singular. We write simply &F for
SF).

(2.2) Let A(I',(n), be the vector space of Siegel modular forms of
weight %, that is, holomorphic functions « on &, such that (M-.z) =
det (Ct + D)*y(z) for every M in [",(n). Then the projective variety

St () = Proj (@ AW, ()
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contains &¥(n) as a Zariski open subset.

DEFINITION 4. The projective algebraic variety &¥(n) is called the
Satake compactification of &¥(n) (cf. [19], [20]).

The boundary %B,(n) = &¥(n) — G*(n) is a disjoint union of a finite
number of copies of €%(n) with ¢’ <g. This inclusion is defined by the
so-called Siegel operator @. Put ¢” = g — ¢’ and write an element 7 of

S, as
7
@.2.1) ¢ = <‘c -
where ¢ is a ¢’ X ¢” matrix. For every ¢ in A(',(n), we define
O(y) as
2.2.2) O = Ili}}l ¥(z),

and then O(y) belongs to A(l",.(n)),. Hence @ gives a homomorphism:
A ,(n)) — A(I';.(n)) of graded rings, which is surjective up to a finite
number of weights. This homomorphism @ defines, therefore, an embedd-
ing @*:8¥(n) — &%(n) and the image of Sk(n) by &* is a locally closed
algebraic subset in &%(n). On S&%(n) the group Sp(g,Z/nZ) acts and
this group transforms the image of S¥(n) by @ to its conjugates, and
these conjugates with ¢’ < g forms the boundary 8B,(n). In particular if
n =1, & = &¥1) is a union of &% with ¢’ < g.

(2.3) A system of fundamental neighbourhoods of the image @*(t)
of a point ¢ in &%(n) is given as follows.
Fix a fundamental domain F,(n) of I'y(n) in &, such that for all

¢’ < g those elements 7’ in &, with r = (&gl E,,) e F,(n) form a funda-

mental domain F,.(n) of I',.(n) in &,.. (For example take the Siegel funda-
mental domain.) Take a neighbourhood U of ¢ and a positive number
K. We define B¥(U,K) with ¢/ <k<g as

2.3.1) V®U, K) = {T = <‘2 i’) mod. I'y(n) e ©F;
reF(n),” mod. ',(n)e U and Im<" > Klk*g,} ,

and V(U,K) as Uy <<, PF(V®(U, K)). Then these sets V(U,K) form a
system of fundamental neighbourhoods of @*(¢) in &¥(n) when U runs

https://doi.org/10.1017/5002776300001597X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001597X

MODULI SPACE OF STABLE CURVES 215

over a system of fundamental neighbourhoods of ¢’ in &%(n) and K runs
over the positive integers ([19] Th. 1).

(2.4) Take a point ¢/ in &, and consider its image in &*(n) by @*
which we denote by ¢. Then the analytic local ring 0, of ©¥(n) at ¢/
consists of the so-called Fourier-Jacobi series. More precisely Igusa
proved the following theorem ([8], Th. 1 and Supplement).

Before the statement of the theorem we shall introduce some prelimi-
nary notations. Let Y* be the set of non-negative half-integer matrices
and GL(g, Z)(n) be the kernel of the canonical homomorphism: GL(g,Z) —
GL(g,Z/nZ). Then GL(g,Z)(n) acts on 7;" as o — ‘uou for uw e GL(g, Z)(n).
Denote exp 274/ =1( )) by e( ).

THEOREM. i) The analytic local ring 0, of &¥(n) at t' consists of
convergent power series of the form

i 4 _ ’ 7"
2.4.1) f(tC T,,) = S H(, )
where
(2.4.2) H, (¢, 7)) = > 0,(<, ¢ ‘we((1/n) tr (Cusur”)) .

Here the summation in (2.4.1) is taken over a set of representatives of
Y%, |GL(9", Z)(n) and the summation in (2.4.2) is taken over all distinct
tuou for u in GL(9”,Z)n). And every 6,(,%) is holomorphic in U X 8
for an open meighbourhood U of < in S, and the vector space 3 of
g’ X g” wmatrices. Further 6,(c',{) satisfies the following functional
equations:

2.43)  0,, 0+ 7m+ n) = 0,(r, De(—(1/n) tr (o2 ‘m{ + ‘mz'n)))
where m and n are g’ X g’ integral matrices;
(2.4.4) g,(M’-7,4(C't" + D)%)
= 0,(/,0e((1/n) tr (¢ '¢(C'7" + D")'C’Y)

where M’ = <‘é,/ gi) eSplg’, Z)(n) and M -7 = 7.

i) The ideal £, in O, which defines the boundary B¥(n) consists of
such series >, H (</,{,7"") that o is (strictly) positive definite.

(2.5) 1In [8] Igusa introduced the monoidal transform @;"(n) of &*(n)
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along the boundary $B,(n) and studied its singularity. We shall use the
notations in Section 1 freely.

Denote by p (or p, more precicely) the canonical morphism from
©#(n) to S¥(n). Then the singular locus of &¥(n) is given as follows.

THEOREM ([8] Section 3). Here we suppose that n > 3.

i) Let T be a point in &¥(n) and t =p@) in Sin). Then t is a
simple point if T is contained in SF(n) or T is a conjugate of a limit of
points t® = (féi’,: Tf,k(),,,) mod. I',(n) such that Imt”’® — o and the normal
coordinates (1.3) of Im z”/® are bounded above, i.e. the distance of Im ¢”/®
and the principal cone C, is bounded (¢f. (1.7)).

i) Let & be a lLimit of points t® = (féi',‘f) ffffk,) mod. I',(n) with

Imz”’® — oo and the normal coordinates of Im<c”* bounded above.
Further taking o subsequence if necessary, we may assume that there
exist the limits

7 =lim®, £ =1m¢* and §&;=lime(@/n)(—};®)),
k—oo k—co koo

1<:i<ji<g"+1,

(where i® 1is the (i,j)-component of the normal coordinates of /).

Put &;; = e((1/n)(—<}})). Then a system of local coordinates of &¥(n) at
t is given by

(7, - f',C - i"g - é) .
iii) The projection of the singular locus of @;"(n) to ©*(n) is pre-

cisely the union of all conjugates of the image of SF ,(n) by the Siegel
operator. In particular C%';"(n) 18 non-singular if g < 3.

We shall denote by &2(n) the set of points in @;"(n) satisfying the
assumption in the above theorem i).

(2.6) We do not know even whether &¥(n) is normal. (It is affirma-
tive if the equality (F()": £(n)"+%) = F£(n)* does hold.) Hence we shall
consider the normalization &¥(n) of &,(n).

DEFINITION 5. We call @;"(n) the Igusa monoidal transform of &F(n)
or the Igusa compactification of S¥(n).
In case of » =1 we write simply &% for S}(1).

2.7 In the following we study the relation between &¥(n) and
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S#(mn) to show that &#(n) is isomorphic to (I'(n)/I'(mn))\&*(mn). We
shall begin with a study of Satake compactifications.

We took a note before that the finite group Sp(g, Z/nZ) = Sp(g, Z) | I'(n)
acts on G¥(n) complex-analytically (and even algebraically). Further we
have:

PROPOSITION 1. i) For each n,m > 1, there is a canonical morphism
On,mn * ©F(mn) — S¥(n).

ii) There is an isomorphism <, n,: (') /I'(mn)\S¥(mn) — S¥(n)
which satisfies the following commutative diagram ;

W @;kfn)
2.7.1) S fninn
TT— W | T (mm)\SF(mn) .

In particular ¢, m.i8 @ finite morphism.

Proof. The existence of these morphisms is clear and it is easy to
show that ¢, ., is a finite morphism. To see v, ., to be isomorphic
we have only to use the Zariski main theorem since all varieties are
normal. q.e.d.

Note that the sheaf #(mn) of ideals of cusp forms on &*(mn) is stable
under the action by I'(n)/I'(mn). Moreover through ., ,,, we obtain an
isomorphism :

P (S (M) T I s g()

Then we have:

PROPOSITION 2. i) For each m,n > 1, there is a canonical morphism
Prn.mn : SE(mn) — S¥(n) which satisfies the following commutative diagram :

& mm) -2 G (n)
(2.7.2) lpmn lpn
Bi(mn) 22T Sk(n)
ii) The group Sp(g, Z/nZ) acts on S¥(n) and the action is compatible
with p,: &¥(n) — SF(n).

iii) There is an isomorphism v, ,,: (L)) T(mr)\SE(mn) — S¥(n)
which satisfies the following commutative diagrams:
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Bn,mn
(2.7.3) = / T:];n mn
Sk(mn) .

(') | T (mn))\&S¥(mn) Fnmn, &x(n)
@.7.4) p,,ml lpn
(L) | T (mm))\ & (mm) 2222 S(n)

Si(n)

Proof. 1) By the remark above we obtain a ¢} ,,,-homomorphism of
sheaves of algebras:

(2.7.5) OF s (—ZB J(n)t — P F(mn)*
k20 k20

where ¢F ... 1 Osyiny — Osyimny 18 induced from ¢, n,.
This homomorphism induces canonically a rational map

Gn,mn : PT0j (@ S (mn)’“) —— Proj (@ S (n)")

k=0 k>0

L L

S*(mn) ——————— S*(n)
and further ¢, ., is a morphism in fact by the remark just before
Proposition 2. (We have only to use the fact that the support of
oF na(F(n)) is the same as that of S(mn).) Then it can be lifted canoni-
cally to a morphism:

Pnymn @;k(mn) —_—> @;k(n) .

ii) Clear from the remark above.

iii) Since ¢, m, is induced from ¢} ,,-homomorphism (2.7.5), it is
an affine map ([6] II. 3.5.1). Moreover clearly it is also proper, hence
finite by virtue of Chevalley’s theorem (ibid. III. 4.4.2). Therefore &, n,
is also a finite morphism. Since S¥(n) and &F(n) are birational, the
rational function field of S¥(mn) is a Galois extension of that of &¥*(n)
by Proposition 1. Hence the conclusion follows. q.e.d.

§ 3. Stable curves and their moduli spaces.

In this section we recall the definition and fundamental properties
of stable curves due to Deligne and Mumford [4]. For the proof not
given here we refer the reader to their article above. Although their
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method is algebraie, it is the same in the analytic category by virtue
of the representability of the Hilbert functor ([21] Exp. 16).

(3.1) DEFINITION 6. Let S be an analytic space. Let g > 2. We
call a morphism n: X — S a family of stable curves of genus g over S
if it satisfies the following conditions:

i) = is a proper and flat epimorphism whose fibres are reduced,
connected curves;

ii) for each seS the fibre X, = z~%(s) has only ordinary double
points as singularities;

iii) if I" is a non-singular rational component of X, then I meets
the other components of X, in more than two points;

iv) dimg; H(X,,0x) = g.

If S is one point, X is called a stable curve.

(8.2) Since 7 is flat and its fibres are locally complete intersections,
7 is locally a complete intersection. Hence by the theory of duality of
coherent sheaves in the analytic category ([17]), we have the following
proposition and from it we infer the following theorem in the same
way as in [4].

PROPOSITION 3. Let n: X — S be a family of stable curves of genus
g over S. Then there is a canonical invertible sheaf wy,s on X such

that :
i) for all morphism f:T — S,0xur;r 8 canonically isomorphic to
S
S *(COX/S); .
ii) if S is one point, let p: X — X be the normalization of X,
Ly oo s Xy Y1y *+* » Yn, the points of X such that the 2, = f(x) = flyy),

1 < i< n, are the double points of X. Then wy,s iS the sheaf of mero-
morphic 1-forms 5 on X regular on X except for simple poles at the
x’s and y’s and with Res () + Res ,,(p) = 0;

iii) of S is one point, and F is a coherent sheaf on X, then

Hom, (H'(X, #),C) = Hom,, (¥, wx/s) .

If S is one point, we denote wy,s simply by wx. Note that if X is
o smooth curve, wy is nothing but the usual sheaf of holomorphic one
forms on X.

COROLLARY. w.wy/s 1S a locally free Os-Module of rank g, where Og
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denotes the sheaf of holomorphic functions on S. For each seS there
are a neighbourhood U of S and g sections w,, ---,0, tn '@ (U),wx:s)
such that for each t in U the restrictions (w),,i=1,---,9, of o's to
the fibre X, = o~ '(t) form a basis of I'(X;, wx:).

Proof. By the conditions i) and iii) of Proposition 3 we have

Ho(Xs,wX/SIX,) = HO(XM wX,) = Homax, (QX,’ Q)X,)
= Hom, (H'(X,,0x)-C) .

Hence dimg HY(X;, wx,s|x,) = g always. By the theorems of Grauert ([5])
the conclusion follows. q.e.d.

(8.3) To construct the moduli space of stable curves we shall make
use of Hilbert moduli space. The starting point is the following theorem.

THEOREM. Let n:X — S be a family of stable curves of genus g¢.
Then ¥ is relatively very ample if n > 3 and #, (%) s a locally free
sheaf on S of rank (2n — 1)(g — 1).

Taking n = 3, we can realize any family of stable curves as a family
of curves in P%~°® with Hilbert polynomial:

Pmn)=@@n—-1D(@g—-1.
Further there is an analytic subspace
#, C Hilb%!,_,

of all tricanonically embedded stable curves where HilbL!,_, is the Hilbert
moduli space in P*~° with Hilbert polynomial P,. Over £, there is a
family @:2%,— o, of stable curves of genus g with a tricanonical em-
bedding Z, — #, X P*~® which has the following universal properties:

(8.8.1) let #: X — S be a family of stable curves of genus ¢ with
the relative projective embedding i: X — P*~® X S over S such that the
inverse by ¢ of the line bundle determined by the hyperplane of P%-%is
0%s. Then there exists a canonical holomorphic map f:S— s, such
that X is isomorphic to S X , %, over S and the embeddings into P*-*
x S are compatible with f. This f is uniquely determined by this
property.

Note that by virtue of GAGA [22] Hilb}y,_, is the analytic space
associated with the algebraic Hilbert scheme.
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On s, acts the reductive group PGL(5g — 6). We see that the
quotient space &, = #,/PGL(59 — 6) exists and it is quasi-projective [9],
[16]. In fact it is projective and it is a coarse moduli space of stable
curves of genus g.

(3.4) On the structure of #, and %, with the approximation
theorem of Artin [1], we infer the following theorem after Deligne and
Mumford ([4] Th. 1.6).

THEOREM. J#, s smooth and the discriminant of o is reduced with
only normal crossings.

More precisely, let © be a point in s, and C be the stable curve
n %, lying over x with the double points z,, ---,2,. Then there are a
neighbourhood U of x in 3, which is isomorphic to an open set in C¥
with local coordinates (t, ---,ty), and a neighbourhood V, of z, in &,
which is isomorphic to an analytic subset defined by the equation:

in an open set in CY¥*% with local coordinates (U, vty -+ ,ty) such that
the structure morphism @:V,— U is induced from the projection:
CN+2 N CN
(O] [©)]
(um Viy tu Tty tN) — (tu ] tN)

through these isomorphisms.

§ 4. Periods of stable curves.

In this section we study the period map of the family @: 2%, — #,,
especially its behaviour near the points corresponding to singular stable
curves. For this purpose we shall study the homology group of stable
curves and the monodromy of .

A) Period maps of families of smooth curves.

(4.1) Let s be the biggest open subset of #, over which & is
smooth, i.e. the complement of the discriminant 2 of @. Denote the
inverse image @~'(o#;) by %;. For simplicity we write s#° and Z°
instead of s and 2, in this section. As we have remarked before
in (3.2), the sheaf w,.,,. is the sheaf of germs of holomorphic relative
one forms on Z°.

Then w:Z° — #° is a topological fibre bundle whose fibre is a
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compact surface of genus 9. Hence we have the following lemma.

DEFINITION 7. Let C be a compact topological surface. A free
basis {a, -+, B -5 B} of H(C,Z) is called a canonical basis if the
intersection numbers of the «’s and the g’s are the following:

1 ifi=174
(@, B)) = {0 itig,
(ahaj):(ﬁi’,@j):() for i,j:1,~--,g.

LEMMA 10. For each point x in H#° there exist a mneighbourhood
U of #° and 29 cycles ay, -+, ay, By +++» By on @ (U) such that for
each y in U the restrictions (a;),,(8;), of a; and B; to the fibre C, =
@ (y) form a canonical basis of H,\(C,,Z).

(4.2) Let n: X — S be a smooth family of non-singular curves of
genus g and S, the Siegel upper-half plane of degree g.

For each s e S, choose a neighbourhood U of s, g linearly independent
sections wy, +++,w, of I'(z7'(U), wx,s), and 2g cycles a,, -+, @y By -+ By
whose restrictions (a;);, (8;); to X, = z~'(t) for every t in U form a ca-
nonical basis of H(X,,Z). (This is possible by the corollary of Prop-
osition 3 and Lemma 10.)

Then we shall define T, on U by

T.:U— G,

[ ) B
¢ (@) o)

where <f (coj)t> and (I (a)g),) are considered as square matrices of
(ag)e (Br)e

degree g¢.

Since X, is non-singular and the (w;),’s form a basis of the vector
space of holomorphic 1-forms on X,, T.(s) belongs to &, by virtue of
Riemann’s equality and inequality.

DEFINITION 8. We call this multiple-valued map T,:S — &, the
period map of the family =.

The matrix 2, = (1,, T.(?)) is usually called the period matriz of X,
where 1, is the identity matrix of degree g. Also the matrix T (t) itself
is often called the period matrix of X,. In this article we use mainly
the latter terminology.
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The multiple-valuedness of 7', comes from the freedom of choice of
canonical bases. In fact let («,p) and (¢/,p) be two canonical bases.
If we express («/, ) with («,p) in the form:

gi= Z]: (AyBy + Bijery)
o, = 21 (Cyf; + Dyjary)
J

then M = (‘é g) is contained in Sp(g, Z) where A = (4,,),B = (B;),C

= (C;;) and D = (D,;;) are matrices of degree g, and the value T’ of
T.(t) defined with (¢, g) is expressed with the value T of T (t) defined
with (a,p) as

T"=M-T = (AT + B)CT + D).

Hence values of T, differ only by the action of Sp(g,Z) on €,.

When we are given a family of stable curves n:X — S which is
smooth over an open dense subset S°, there arises a problem on the
behaviour of the period map of = near S — S°. Since the family o : %,
— H#, is universal (3.3), we have only to study the period map T =T,

Cof w:Z° — #O.

B) Homology groups of stable curves.

(4.3) For later use we shall make a precise study on the homology
group of stable curves.

Let C be a stable curve with the double points =z, ---, 2,. Denote
by f: C — C the normalization of C and by ,, - -+, €4, ¥y, * - - Yo the points
of ¢ with f(z) = f(y) =2,1<i<d. LetC,---,C, (vesp. C,,---,C))
be the irreducible components of C (resp. ) where C; corresponds to Cj
for each j. The genus ¢’ of C is the sum of the genus g; of 6’,,
1<i<r.

For each C, choose a canonical basis ®@je1s * s Xgagp Biers s Bisg,
(j = 3lic; 9») of the first homology group H,(C,, Z) of C,. Then

1, 2) = ® H(C, 2

and the whole «’s and §’s form a canonical basis of H,(C,Z)

(4.4) To study H/(C,Z) we shall associate a graph I" with C as

https://doi.org/10.1017/5002776300001597X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001597X

224 YUKIHIKO NAMIKAWA

follows (cf. [4]):
i) the set of vertices of I" is the set I', of irreducible components
of C;
ii) the set of edges of I" is the set I'. of the double points of C;
iii) the extremities of an edge z; e I, are the irreducible components
on which z; lies.
This graph is connected by the condition i) in Definition 6 in (3.1).
Then we have:

LEMMA 11. The first homology group H,(I',Z) of I' is a free abelian
group of rank d —r + 1. Further we can choose o free basis 7y, -y Ya—rs
such that

i) if z,el’, has only one extremity, then z; is one of y’s (with
orientation) and no other y than z; passes through z;;

i) if we assume moreover that the graph I can be embedded into
the sphere S* (or equivalently into the FEuclidian plane R?), then for each
zie I, a) there is no y passing through z;, or b) there is only one y pas-
sing through z;,, or c) there are only two y’s passing through z; with
opposite directions.

Proof. The first claim is easy to prove.

Let 2z, --,2, be the edges of I' with only one extremity and put
i =25 t=1,---,e, with a fixed orientation. Consider the graph I',
obtained by deleting these z’s. Then we have easily that

H(I',2) = H({I',,2) ® (@ zn) :

Hence if we choose a free basis of H,(I',, Z), then together with 7, above
they form a free basis of H,(I',Z) satisfying the condition i).

Now further we assume that I" can be embedded into S%. This is
equivalent to assume that I, is embedded into S% Take a point oo in
S? outside I',. Then the embedding of I', gives a partition of S* into
cells, 4,, ---,4; and 4., where 4, contains the point co. These cells are
naturally oriented by the orientation of S°. Let y; be the boundary of
4,1 <i< k. Then it is easy to see that these 7, form a basis of
H(I',,Z) satisfying the condition ii).

DEFINITION 8. A stable curve is called a planar stable curve if the
graph associated with it can be embedded into the sphere S (or equiv-
alently, in the plane).

https://doi.org/10.1017/5002776300001597X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001597X

MODULI SPACE OF STABLE CURVES 225

(4.5) Now we embed this graph I’ into C so that

i) the image of C;eI', is a simple point ¢; in the irreducible com-
ponent C;;

ii) the image of 2z,¢I’, with extremities C;,C, is a path with
extremities ¢, c, which lies on C, and C, and passes through z, once,
and through no other 2’s.

With this embedding and the normalization f: C— C, we have a
homomorphism:

o:H((C, 20 HU',2)— H(C,2) .

PROPOSITION 4. The homomorphism ¢ is an isomorphism of groups.
Hereafter we identify them through .

Proof. We shall prove the lemma by induction on the number  of
the components of C. In case of r =1 or in case I" is a tree, the proof
is clear. In the general case take an irreducible component such that
the curve C’ obtained by deleting this component remains connected.
We assume for example that the component C, is a such one.

Denote by C, and €’ the respective normalizations of C, and C'.
Note that C is a disjoint union of C, and (o4

Denote by I', and I the intersections of C, and ¢’ with the embed-
ed I' respectively. Then I', and I” are respectively homotopic to the
graph of C, and C’, and I', N I" = C, N C’ is a finite set of points.

Hence by the theorem of Mayer-Vietorius we obtain the following
commutative diagram where the horizontal sequences are exact.

HC)®HWE) H(©C)
(0} = H(, N ") — ® - ® —>HI,NI")—HI,)®HWI")
HI)®HIT) H(W)

l ool ¥

{0} = H\(C, N ") — H\(C,) ® H\(C") - H(C) —» H(C, N C") - H\(C,) ® H(C)

Evidently y and ¢’ are isomorphic and ¢’ is also by the induction
hypothesis. Hence the isomorphy of ¢ follows by virtue of the five
lemma. q.e.d.

C) Monodromy of families of stable curves.

(4.6) In this paragraph C) we consider only a family n: X — D of
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stable curves of genus g over a disc D = {t{ ¢ C; |t| < ¢} which is smooth
on D =D — {0}. We shall denote by X, the fibre z~*(¢) over %.

At each double point z of X,, there is a neighbourhood U of z which
is isomorphic to a closed analytic subset defined by the equation zy — t»
=0 in an open set in C°® = {(x,¥,?)} containing the origin (cf. (3.4)).
Hence replacing z by a series of (n — 1) projective lines, we obtain a
non-singular model X of X. Denote by # the canonical map from X to
D. Note that in the preceding discussion in B) we did not use the
condition iii) of Definition 6, hence all results in B) hold also for the
curve X, = 771(0).

For the fibre X, = C we shall use the same notations as in (4.3).
By the remark above, in particular, we can choose a basis {a, ---,a,,
Bis s Byrstis v s 7o} of H(C,Z) such that the aj,.4 85,41 <k <g)
form a canonical basis of Hl((j,-,Z) and the 7,1 < k < ¢”, form a basis
of H(I', Z) satisfying the conditions in Lemma 11.

Take a point ¢, in IV. For simplicity we assume t, = 1. Then
we have:

LEMMA 12. a) There are families of cycles (1), -+, a,(t), Bi(D),

<, B,(0,0 <t L1, in H(X,,Z) such that

1) they vary continuously;

i) for each 0 <t <1 they form a canonical basis of H(X,,Z);

iil)  aj.(0) (resp. B7,.:(®)),1 < k < g;, tends to aj,. (resp. B7,.) f ¢
tends to 0; ’

iv) B, 1 <k < 97, tends to yy, if t tends to 0;

V) a0, 1< k< g”, tends to a cycle homologous to zero if t tends
to 0.

b) For each double point z; in C = X, there is o small open neigh-
bourhood of z; which is homeomorphic to a join of two discs meeting
at z;. Take the boundary J; of one of these discs. Then there is a
family of mnon-zero cycles 6,(1),0 <t <1, (called the wvanishing cycles
associated with z;) which tends to 6, when t tends to 0.

2 —p,

d;
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For the proof see [3] Lects. 4 and 5 for example.
As an important corollary of Lemma 11 we have:

LEMMA 13. i) FEach 6,(t) can be expressed as a linear combination
of a, (), 1< k< 9",

ii) Further if C is planar (Note that X, is planar if and only if
XD s planar.), then §,(t) is homologous to zero, or =+ a,., (1), or ay, ()
— a0 with 1 < j,k < 9”.

Proof. 1) If we express §,(f) in the form
a(t) = i}l a04(t) + ZQII by8,(t)
J= 7=
in H(X,,Z), then we have

Qi = ., ,Bj(t)) = (3;, ,3]) =0, 1<j<y,

— (5. — ; ’
by = (5i(t),aj<t)){ =0pa)=0, 1<j<¢,
=(;,00=0, 9<j<g,

by Lemma 12 and the condition i) of Lemma 11.

ii) Assume moreover that C is planar. Then by Lemma 11, for
each z; in C only one of the following three cases occurs:

a) there is no y passing through z,;;

b) there is only one y; passing through z;;

¢) there are two cycles 7,7, passing through z; once with different
orientations. Since a;,.,; = (d;,7;), the conclusion follows.

(4.7 Take a circle I' rounding the origin once counterclockwise
with base point 1. For a cycle ¢ in H(X,, Z) we denote by ¢’ the trans-
form of ¢ along I'. This operation induces an automorphism of H,(X,, Z)
called the monodromy or the Picard-Lefschetz transformation of #. Then
by the theorem of Picard-Lefschetz we have

¢ =c+ z @3.1), O3(1) .

Let A be the d X g matrix with the (3, /)-th coefficient (5,(1), 8,(1)).
Then by the above formula we obtain

(4.7.1) ¢l =¢+ a(l) tAACaD), 0) .

PROPOSITION 5. The monodromy of = is expressed in the form
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(167 f ),B ='AA, 1, = the identity matrixz of degree g,
g

by using the basis {B(1), -+, 8,1, 1), - - -,e,(1)}. Here B = (g %)
where B, 18 a positive definite symmetric matriz of degree g”. ’
Moreover if X’o = C is planar, then B, is contained in the principal

cone C, (1.7).

Proof. The first part is clear from the argument above except for
the claim that det B, # 0. Since the §;(1)’s generate the subgroup
generated by «, 1), --,,(1), rank A = ¢g”. The formula: rank ‘A4 =
rank A shows that det B, # 0.

Denoting by a; the i-th row vector of A, we have

B =3 fmay .

2

If C is planar, then Lemma 13 ii) shows that ‘aa; = (4%) is a matrix
of one of the following types:

a) AL =0,1<4k<yg;

b) there is a § with ¢’ <7 < ¢ such that

) 1 ife=x=7j
Al = .
0 otherwise;

c) there are 7,k with ¢’ < 7,k < g such that

1 if¢t=x=37 or &,
AL =4—1 if (,6) = (G, k) or (&7,
0 otherwise.

Therefore each minor matrix A¢ = (4%),, .., is contained in C,, hence
B, = > A also.

D) Behaviour of the period map near the discriminant.

(4.8) Now we go back to study the period map T of w: Z° — #°.
Take a point « in s, and let C = @~'(x) be the stable curve in Z,
over z with the double points z,,---2;,. Then by Theorem (3.4) there
is a coordinate neighbourhood U = {(t,, - - -, tx); |t;| < e} with the centre
2 such that each z; has a neighbourhood biholomorphic to an analytic
subset defined by the equation: x,;y; — ¢; = 0 of an open set in C¥** =
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{(@s, Yy £y -+ -, ty)}. Hence the discriminant 2 is the union Uf,{(H e U; t;
=0} in U. Its complement U — 2 N U is isomorphic to (D) x D¥-¢
where D = {te C;|t| <e¢} and D' = D — {0}, and the fundamental group
of U —2n Uis ZI'® --- ® ZI'; where I'; is the homotopy class of a
circle rounding the divisor {¢{; = 0} once counterclockwise.

Choose a basis of H,(C,Z) as in (4.6). Take a point z, = (¢, .-,
t®) with ¢, 0 in U sufficiently near to x such that there is a canonical
basis of the first homology group H,(C,, Z) of the non-singular curve
C, = w'(2,) such as in Lemma 12. Then the monodromy of H,(C,, Z)
along I'; is

M, = (19 B,.)
0 1,

where B; = (b;,,) is a non-negative symmetric integral matrix of rank
at most 1 with b,, ., =0 for ¢ < ¢’ or £ < ¢’ (Proposition 5). Hence the
analytic continuation T'(I";t) of T'(f) along I'; is subject to

(4.8.1D TUt) = M;-T@) = T@® + B; .

Hence the matrix-valued function:

2 logt,
4.8.2 St =T — > —2= 1L
( ) @® ® ZZ=; G s
is a single-valued function on U — 2 N U. Our main result in this
section is:

THEOREM 2. The function S(t) (4.8.2) is bounded on U — 2 N U.
Hence it can be extended to a holomorphic function on U by virtue of
Riemann’s removable singularity theorem.

Proof. Since a holomorphic function defined except on an analytic
subset of codimension two can be extended, we have only to prove the
case that C has only one double point by virtue of Theorem (3.4).

Even if C has a double point, the monodromy can be trivial. In
this case T(f) is already single-valued and is a map into a bounded do-
main &,, hence the conclusion follows.

Now we suppose that the monodromy is non-trivial. Then by Pro-
position 5 we may assume B = (8 2),1@ >0 (in fact n =1). Let S;;(®

(resp. T;;(t)) denote the (i, j)-coefficient of S(¢) (resp. T(t)). Then by the
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same argument as above, for all (¢,7) but (g, 9),S;;(t) = T,;(¥) is bounded.

So we must prove that S,,(t) = T,,(t) — (nlogt)/(2rv/—1) is holo-
morphic on £, = 0 also. This method of proof is due to Mayer ([3]).
Since Im 7,,(t) > 0, e(t) = exp (2rv/ —1 T,,(1)) is bounded on U, hence
can be extended to a holomorphic function on U. As e(t) does not vanish
except on ¢, = 0, we have e(f) = t7'e,(t) where ¢,(0) # 0, so S'(t) = T,,(t)
— (m/ 274/ —1) log t, is single-valued and holomorphic on a neighbourhood
of z. If m # n, then S'(t) cannot be single-valued. This shows that
m =n and S’(Y) = S,,(t) is holomorphic at ¢, = 0. q.e.d.

§ 5. The canonical map from the moduli space of stable curves to the
Satake compactification.

In this section we shall prove the following theorem.
THEOREM 3. Let n: X — S be a family of stable curves of genus g.
Denote Sp(g,Z)\S, by &F. Then there is a canonical holomorphic map
T#:S—>&F = | &% (cf. (2.2))

g9'<g
sending s € S to the period matrix of the non-singular model of X, = n~'(s).

Proof. By (3.3.1) there is a functorial map f:8S — 5, such that
X is isomorphic to S X %,. Hence we have only to prove the map
Hg

T#: #,— &F is holomorphic. On the points in #;, — 2 whose fibres
are smooth curves, this map is nothing but the composition of the
canonical surjection &, — &} and the period map T we have defined in
(4.2). Hence it is holomorphic.

The question being local, we consider a point xe 2 C »#, and a
neighbourhood U of x in Theorem (3.4). Let C = @ (x) be the stable
curve lying over x whose normalization C has a genus ¢’ = g — ¢”. By
virtue of Hartog’s theorem we have only to prove that T,f, is holomorphic
on a neighbourhood of x in a generic line through z,i.e., a line which
cuts 2 transversally.

Denote by = a local parameter of a neighbourhood L of z in a line
{(aye, -+ ,ayt); |c] <. By assumption.

is holomorphic except at = = 0. Hence it is sufficient to show that T*
is continuous at = = 0.
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First of all we shall consider the period map T =T,,_: L — {0} — &,.
By Theorem 2, T'(z) can be expressed in the form

log (0 0)
T() = —2-_ S
@ =575 5)*+5O
where B, is a positive definite symmetric matrix of degree g” and S(z)
is holomorphic on the whole L. Let T’ be the ¢’ principal matrix
(Ti)1<i,j<,» of T which is hence holomorphic on the whole L. Then by
the definition of the topology of Satake compactification (2.3), we have

lim,_, T*(z) = T'(0) mod Sp (¢’, Z) .

Hence we have only to prove the following.

PrOPOSITION 6. T7(0) is the period matrix of the non-singular model
C of C.

Proof. Let C, ---,C, be the irreducible components of C. Then
Cis a disjoint union of the normalizations Cj of C;,1 <7< r, with
genus g;. Take such a basis {a;, -+« ,p, B, =+ s Byrs T+ ++ 57} of Hi(C, Z)
as in (4.6).

On the other hand let us consider the dualizing sheaf w, on C (3.2).
Then we can choose a basis of I'(C,w,) including holomorphic forms
05,01 <7< 1,1<k<9;,]=D>,9, such that for each 7, the restric-
tions on C; of 5.1 < k< gy, form a basis of I’(C'j,waj) and they vanish
identically on the other C.’s. Further by a suitable change of basis we

may assume that
f o — {1 , 1=k
a]+1; rk 0 ) 1: i k .

Since @,w,,,, is a locally free sheaf of rank g, we can extend these
sections to w,(?),1 <k < g, in I'(a"'(V), 0,,,,) where U is a neighbour-
hood of z in 42,.

By Lemma 12 there is a path [” from «, in U N #; to « such that
there is a family of canonical bases of H,(C,,Z) with C, = @~ '({),tel’
satisfying the conditions in Lemma 12. In particular for each 1 <17 < g”,
1< k< g we have

lim,_, j 0 (t) = j 0, = 0
ag’ +i(t) L5
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since §; is homologous to zero.
Hence we have

T,,(0) =j opl<ii<g,
Bj

that is,
(2, 0
ro=| %,
0 ' 02,
where 2, = (Lj“m]”)l <1tk < g, is the period matrix of C'j.

Remark. Since 2 is a closed analytic subset in s, with only normal
crossings, the extendability of T%::#° — &* to T#: o#, — &F follows also
directly from the theorem of Kobayashi-Ochiai ([10]) in the theory of
hyperbolic analysis.

§6. The canonical map from the moduli space of stable curves to the
Igusa monoidal transform.

(6.1) Now we are ready to prove the first main theorem of this
article.

THEOREM 4. Let n: X — S be a family of stable curves of genus ¢.
Denote by &* the Igusa monoidal transform of the Satake compactification
¥ (Definition 5 in (2.6)). Then the canonical map T*:8S — B can be
lifted to o holomorphic map T%:S — &*.

From this theorem we obtain the following important corollary.

* Sk

COROLLARY. Let 4, and &, be the coarse moduli space of mon-
stngular curves and stable curves of genus g respectively. Then there
is @ holomorphic map j: ¥, — &* which is an extension of the injection
i M, — SF.
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Proof. Clear since ¥, = #,/PGL (59 — 6) and T% is PGL (59 — 6)-
invariant.

(6.2) Proof of Theorem 4. By the same reason as in the proof of
Theorem 3, we have only to prove the theorem for the family @,:Z,
— H,.

On &F the morphism p is isomorphic, hence 7% can be defined and
holomorphic on #, — 2 = #.

Since the question is local, we shall consider a point z in 2 and
take a neighbourhood U satisfying the condition in (3.4). We shall use
the same notations in (3.4).

By Theorem 2 the period map T on U — 2 N U is subject to

d
1) = 3,28 b_ 4, + St

where A4, is a non-negative matrix of degree ¢ whose (¢, 7)-coefficient is
zero if 1 < ¢’ or 7 < ¢’ and S(f) is a holomorphic function on the whole U.

Take a ramified covering c¢: V = {(s,, - - -, s5)} — U defined by sending
s;to t; =8, 1<i<d, and to t; = s;,, d <i{< N. The ramification locus
of ¢ is F = ¢7%(2). Then the composite map T, = T oc is subject to

d .
6.2.1) Ts) =3, _z%g/.%mi + S(s)

where S,(s) = Soc is holomorphic on V. Denote nd; by B;. Then the
composite map:

T# = p,oTy: V — E — &,(n) —> G¥n)

satisfies the commutative diagram:

*
v—E DL ermc&im

I e

U—92nUls & c &,

Since these analytic spaces are normal, it suffices to prove that T¥ can
be extended to a holomorphic map from V to &#(n) for an n. More-
over since ©¥(n) is the normalization of the monoidal transform &¥*(n),
we have only to prove that T3 can be extended to a map from V to
Sk(n).
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Let T#:U — &* be the extension of T* in Theorem 3. Then it is
easy to see that there is a holomorphic map T¥: V — &¥(n) satisfying the
commutative diagram:

T _
V —> &¥(n)
|, b
ik
vl &
where ¢, , is defined in (2.7).
Put y = T¥(), and let f,,---,f, be a system of generators of the
ideal #,(n) of cusp forms at y. We may assume that they are holomor-

phic in a neighbourhood W of y. Then the monoidal transform @;"(n)
over W is a strict transform of the image by the map defined by

W N &¥m) —> W X P,
() [
z —> (2, (fo(&): -+ 1 f5(2) .

Taking a smaller neighbourhood of z if necessary, we may assume that
T#(V) c W. Hence in order to prove the existence of an extension T;": 1%
— @;‘(n) of T¥, it is sufficient to prove that the image of V — E by the
map T:V — E — P, defined by sending z to (f,(2): - - : f,(2)) is bounded.
In fact we shall prove the following claim:

(x) V — FE is covered by a finite union of subsets V,; such that for
each ¢ there is a unique point ¥ in Py with lim, , .y, T(2) = 9.

(6.3) The proof of the claim (x) is done in a few steps.
Write the period map T,: V — E - &, as

_ (T T3
ﬂ®*me w@)

where T7’(s) is a ¢’ X ¢” matrix, or simply as (T4, TV, TV).
Then by (6.2.1) Ti(s) and T7’(s) is holomorphic on the whole V and

mey . < logs; 7 1
(6.3.1) TY(s) = ;1 mBi + SY(s)
where B} is non-negative, B” = >'¢., B} is (strictly) positive and S (s)

is holomorphic on V. The imaginary part of T;(s) is hence
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d

(6.3.2) Im T/(s) = 3, _l_ogEiB" + Tm 8/(s) .

Write also re€ &, as

=(¢ %)

where ¢ is a ¢’ X ¢’ matrix, or simply as r = (¢/,¢,7""). Then ' = T/(s)
(resp. { = T7”(s)) moves a bounded set K, in &, (resp. K,, in the vector
space 3 of ¢’ X ¢g” matrices) when s moves in V.

(6.4) Now we shall use Theorem (2.8) in the full extent. Moreover
as you will see soon, our method of proof depends heavily on the method
developped by Igusa in [8]. We shall use the same notations as in (2.4).

LEMMA 14 (cf. [8] Lemma 9). Let o be a half-integer positive matrix
in Y* and consider a holomorphic function 6,(z',8) on K, X 8 satisfying
the functional equation (2.4.3). Then there are positive constants p, C in
R such that for (/,0) e K, X K,, and ue GL(g9, Z)(n) we have

10,z', ¢ 'u)| < C exp (utr (‘uow)) .

Proof. Let Z be the set of points /m + n in 8 where 7’ ¢ K,, and
m and n are real ¢’ X ¢g” matrices with coefficients in [0,#n]. Then Z is
compact. For every {eB, ue GL(g,Z)(n) and ¢’ ¢ K, write {‘u in the
form ¢, + /m + n with { € Z and with m,n = Omod. n. Put Re(L..({,{)
=*Im¢Im () Im¢ after Igusa [8]. Then by (2.4.3) we have

10,(', )| = 16,(z",¢.) | exp (—(2x/n) tr (¢ Re (L. ,E.))))
X exp ((2r/n) tr (cu Re (L., 1)) ‘) .

Since K, and K,, are compact, there are positive constants C, p with

160,(z",¢.)| exp (—(2r/n) tr (¢ Re (L. (£,, L)) < C
for ’eK,, {,eZ

and with (2z/n) Re (L.(, ) < p1, for 7’ ¢ K, and { ¢ K,;,. Hence we have
10,(z', ¢ 'u)| < Cexp (¢ tr (Cuou)) . q.e.d.

(6.5) Let C,, 1<k <p, be a finite family of non-degenerate central
cones whose union C is convex and contains C(BY,-.-,B}) and which
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contain the C,’s with ¢ e M(B”)NY,; (cf. (1.4) and (1.5)). We can choose
such a family by virtue of Theorem 1 in §1.

For each o, only a finite number of « in GL(g, Z) satisfy F., N F.yo.
# ¢. Hence for a sufficiently large n no such an element but the identity
is contained in GL(g,Z)(n). That is, tr ((ueu — 0)y) > 0 for ye F', and
1, x> ue GL(g,Z)(n). We may also assume n > 3. We shall fix such an
n from now on.

Take an arbitrary positive number » and let § be a sufficiently large
positive number with éB” > (n/2z)(¢ + v)1, where g is the number in
Lemma 14.

When s moves in V, Im S/(s) moves a bounded set K, in the vector
space of real matrices of degree g. By the assumption above B” is con-
tained in the interior of C. Hence for a sufficiently large ¢, K, + ¢B” is
contained in the interior of C.

Then we have:

LEMMA 15, If |s;| < exp(—2x(6 + ¢), then ImT{(s) —oB"eC.
Further suppose that Im T7(s) — 6B” ¢ C, for ¢ = g;,. Then the series

H (T (s)e(—1/n) tr (cT7(s))
= > 0,(T(s), T (s)we((1/n) tr (Cuou — 0)T7(s)))

can be dominated by a series

C 3 exp (—y tr Cuow))

where u runs over GL(g,Z)mn) and v > 0.
Moreover H (T,(s))e(—@Q/n)tr (6T () converges to 6,(T(0), Ty”(0)) if
s— 0,

Proof. Put ' =Ts), {=T7(s), p=1Im S/(s) and d,= — (1/2x) log |s,|.
Then we have

Im TY(s) — éB” = >, 6,B] — éB” + B
=>(;—0—¢eB! +(B"+peC.

since §; —d — >0 and eB” 4+ peC.
If we suppose that Im T7(s) — éB”" ¢ C, C F,, then we have

tr (Cuou — o) O, 6,BY —oB” + f > 0.

Hence we have
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16,(z', ¢ tw)e((1/n) tr (Cuou — )T7(8))]
= [0,(</, ¢ 'w)| exp (—2r/n) tr ((tuou — o) G 6,B7 + B)))
< const. exp (z tr (‘usu)) exp (— @2z /n) tr ((Cuou — 0)6B"))
< const. exp (—v tr Cuow)) .

Hence the first conclusion follows.
On the other hand with the estimation obtained above we have

16,(z", C 'u)e((L/n) tr (Cusu — o) TV ()]
=10,(", ¢ 'u)| exp (— 2z /n) tr ((uou — o) (3] 6:B7 + B))
< const. exp (¢ tr (‘uow)) exp (—(2x/n) tr ((uou — o) 3 0:B7 + p))
< const. exp (—v tr (fucw)) exp (— 2z /n)
X tr ((tueuw — o) G 6;BY + p— dB")) .

By the condition on n above this tends to zero for s-— 0 unless u

=1 Together with the first claim the conclusion follows. q.e.d.

gl/-
LEMMA 16. The assumption is the saome as Lemma 15. For any
half-integer positive-definite matriz o' the series

H,(T(s)e(—1/n) tr (¢T7(s)))

1s dominated by a series

C > exp (—v tr (fuc'w)) .

The proof is similar to that of the first part of Lemma 15.

(6.6) Now we shall finish the proof of Theorem 4.
Shrinking U if necessary, we may assume that |s;| < exp (—2x(6 + ¢))
on V. Put

Vi={seV;ImT/(s) —éB"eC,}.

Then by assumption V = () V,; and on V, the estimates in Lemmas 15
and 16 hold.

Since n > 3, by the theorem in the theory of the theta function, for
a function 0,,(z’, {) defined near (74(0), T'7”(0)) we have 6;(T7(0), T7”(0)) # 0.
Let H;(z) be the Fourier-Jacobi series with the above 6;. Then by
Lemmas 15 and 16 for every H,(r) the function

H,(T\(s)/H,(T\(s) = H,(T(s)e(—(1/n) tr (a,T7(s)))
X (H(T(s)e(—1/n) tr (a,T7(s)H)?

https://doi.org/10.1017/5002776300001597X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001597X

238 YUKIHIKO NAMIKAWA

converges if s — 0. This proves the claim (x) in (6.2) together with
Theorem (2.4), hence the proof of Theorem 4 is complete.

§7. The image by j of points corresponding to planar stable-curves.

(7.1) Let j:%,— &% be the canonical extension of i:.#, — &*
obtained in Corollary of Theorem 4.

Recall the set &2 of points which are limits of points on &* with
representatives in &, whose imaginary parts of normal coordinates are
bounded above (2.5). We have considered it as a subset of &* but we
can also consider it as a subset of &F since S; is normal by virtue of
Theorem (2.5) and Proposition 2 in (2.7).

Let z be a point in s, corresponding to a planar stable curve with
virtual genus ¢’ = g — ¢””. Then by virtue of Proposition 5 in (4.7) the
period map T near x is subject to

2 logt,; (O 0 )
T®) = e =Nl T S(t
2 Z 274/ —1\0 B/ + 50
where B} is contained in the principal cone C,, i.e. the normal coordi-
nates of BY are non-positive, and S(f) is holomorphic on a neighbour-
hood of x. Hence the normal coordinates of Im 7Y/(t) are bounded above

near x where

4 117
T(t) = (T Et) T” (t))
@) T
with 77(t) € ©,... Together with Theorem (2.5) and Proposition 2 we have
obtained the following theorem.

THEOREM 5. Ewery point in &, corresponding to a planar stable
curve is mapped into S° by j. In particular the image point has at
most quotient singularity.

In this case exist limits

o =1lmT'®) = T'(») ,

t—0

=1mT"®) =T"() ,

t—0

and

e lime 1o < [° it BY, %0 forak,
;7 = lIme(— ij) = .
T ! e(—T"(x);;) otherwise
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where T"(t);; (resp. By ;) denotes the (i, 7) coefficient of the normal coordi-

nates of 77(t) (resp. BY). We call (z/,¢, &) the generalized period matrix
of the stable curve corresponding to z (cf. (8.2) and (8.4)).

(7.2) Remark. The simplest example of non-planar stable curve is
a union of 6 non-singular rational curves with genus 4 such as Fig. 1.

A7
///

Fig. 1 Fig. 2

The graph of this curve is Fig. 2. This is known to be the simplest
graph without embedding into plane.
By j the point corresponding to this curve is mapped to the point

4 1 —2 -2

lim v =1t 14 -2 =2 d. Sp(4, Z)
i — . R
P o _g 4 q|moer?

-2 —2 1 4}

in &f. The integral matrix above is equal to ey 55 + €4, in Igusa’s
notation [8] which is not conjugate to any points in C,.

§8. The case of irreducible stable curves.

In this section we shall study the generalized period matrices of
irreducible stable curves. In the moduli space % of stable curves of
genus ¢ those points which correspond to irreducible stable curves form
an open subset %,. Using the results on the period matrices of irreducible
stable curves, we shall show finally that the canonical map j: ¥, — S
is injective on %,.

(8.1) Let C be an irreducible stable curve of genus g with the double
points z,, «++,%,.. Let f: C — C be the normalization of C and 2;, v,
1=1,...,9”, the points in C with f(x) = f(y;) = z;. The genus of 18
is then ¢’ =g — ¢".
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Choose a canonical basis {a;, - -+, @, By - - +5 By} OFf Hl(é, Z) and let
&gy t=1,---,9"”, be small circles in C rounding v, once cunterclockwise
and By, t=1,-.-,9”, paths from =z, to y, meeting «, ,; once but with-

out meeting any other «’s and f’s. Then the homology classes of the
images of @, -, B s Be» Bysrr - »By Dy f (which we denote by
the same letters) form a canonical basis of H,(C,Z). Hence H,(C,Z) has
rank 29’ + 9 =29 — g”.

Next we shall choose a special basis of I'(C,w;). Let of, ---,0) be
¢’ independent holomorphic forms in €, that is, they form a basis of
'€, wo).

LEMMA 17. Let D be a smooth curve of genus § and {z,y} a pair
of two distinct points in D. Then there is a meromorphic form o on
D which is holomorphic except on x and y and which has simple poles at
x and vy.

Proof. Let wp(x + ¥) be the sheaf of meromorphic forms on D except
for simple poles at « and y. Then we claim that
dimg I'(D, o(x + ¥)) — dime I'(D,0p) =1> 0.
If a form o has a simple pole at z, then » must have a simple pole also
at y by virtue of the equality: Res, o + Res, » = 0. Hence the lemma
follows from the above claim.
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If § is greater than 1, we have dim; I'(D, 0p) = §, and deg w, = 2§
— 2. On the other hand by the theorem of Riemann-Roch we have
-dime I'(D, wp(x + ¥))
= —dim¢ I'(D, Op(—% — ¥)) + degwp(x + ¥) + 1 — g
=04+2+1—-g=9+1.
The other cases are similar. q.e.d.
Hence for each pair (x;,¥,) we can choose a meromorphic form o).,
in I'(C,we(x; + ¥)) with Res,@),;=1. Then of, - -,a), .-, ),
defined above are clearly linearly independent, hence form a basis of
I'(C,wg).

(8.2) Let A’,B’,C’" and D’ be the matrices defined by

= (o) iZning = () JZ0i0G
Since A’ is non-degenerate, we put A’™' = (a}}). Put
o =del, 1<i<g,
and

— / 17 7 / . 17
Wgrij = Oy — 2, QpyCyj @y 1<5<9”.
Khi=1

-
=
Then w;, 1 <j < ¢’, form a basis of I'(C, w) and w, ,; is holomorphic
except for simple poles at x; and y; and has its residue 1 at y,. Hence
we can replace the basis {o], ---,0}} of I'(C,w0y) by {w,---,0,}. If we
denote by B and D the matrices

s i=1,---,9
(Iﬁimj> ,j=1,...,9, and (Ipiwg'+j) j=1, _“:Z// s

respectively, then we have B = B’A’~! and D = D’ — B’A’"'C’. Hence we
have obtained

LEMMA 18. We can choose a basis {w, ---,w,} of I'(C,w,) such that
1) w,---,0, are everywhere holomorphic on C and form a basis of
F(é) wﬁ);
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i) foreachi, 1 < i< g”, w,,; s holomorphic except for simple poles
at x; and y; and has residue 1 at y;;

1 ifi=7g
1) I w; = —
ag 0 if i+7.
For later use we put E™ = (E{P)<;cjcpr 41 With

By = o(/n) J. wp), 1<i<isg’,
and
E® =0, j=g" +1.

Remark. i) This basis is determined uniquely.
ii) We have an extension of Riemann’s equality:

J wjzj @; Li=1,---,9,
81 Bj

except for it =7=¢'+1,---,9.

In case of 7,7 < ¢’ this is the usual Riemann’s equality on C. The
other cases are known to be the law of interchange of argument and
parameter (cf. [29] §16).

(8.3) Let e, (resp. €;) be the unit vector in CY (resp. in C?) whose
i-th coefficient is 1 and the others are 0. Let e,,; (resp. &,,;) be the i-th

column vector of the matrix (%) (resp. B). Then the generalized Jacobian

variety of C is defined to be the group variety
8.3.1) e =c/ 5 ze,

and the Jacobian variety of C to be the torus

(8.3.2) 16 =cr/ 3 ze. .

There is a canonical holomorphic group epimorphism J(C) — J(C), whose
kernel is a product of g” copies of the multiplicative group C*.

(8.8.9) 0 —— (C*)7" J(C) J() 0 (exact) .

That is J(C) is a group extension of J(C) by (C*)¢’. Hence J(C) defines
an extension class ¢ in Ext (J(0), (C*)?") = Ext J(©), (C*).

On the other hand it is known (e.g. [23]) that there is a canonical
isomorphism :
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(8.3.4) Ext (J(0), C*) = Pic’ (J(0)) => J(O) .

PROPOSITION 7. Let [d;] denote the points in J(C) corresponding to
the column vectors d;, t=1,---,9”, of D in C respectively. Then through
the isomorphism (8.3.4) the extension class e of (8.3.3) in Ext W6, ()
corresponds to ([dy], - - -,[d,.]) in J(C)*".

Proof. First of all we shall express the (inverse) isomorphism (8.3.4)
explicitely. Denote by Z the additive group > Z&; in C”.

Take a vector d = (d;) in €Y. Then we can define a homomorphism
fa:Z — C* by sending &; to 1 for 1 < i < ¢’ and to e(d,_,) for ¢’ <i<2¢".
By this homomorphism, define the action of Z on C* X C? by

2:C* X CY — C* X C7
(V] ()]
@,0) — (fal®)a,C + 2)
for ze Z. Hence we obtain a principal C*-bundle:
0—>C*—>C*XC"|Z—>C"|Z=JC)—> 0 (exact) .

By corresponding d to the extension class of this C*-bundle, we get a
homomorphism: €9 — Ext (), Cc*). (Clearly this correspondence is
additive.) Moreover if d is contained in Z, i.e. d = > n8; with ;¢ Z,
then by the isomorphism :
C* X CY -=5 C* x C¥
(U] w
(@,2) — (3, .1 n2)0,2,)

transforms the G-action above into the trivial one on C*. (We use the
fact the period matrix (¢, ,,, « -, &,.) is symmetric.) Hence the extension
class corresponding to d in Z is trivial, i.e. the homomorphism above
factors through i: J(C) = C¥ /Z — Ext J(©),c*). This map ¢ gives the
inverse of (8.3.4).

Now we are ready to prove the Proposition 7. If we take a quotient of
C? by the subgroup Z, = 3., Ze,..;, then this is isomorphic to C? X (C*)?”
by corresponding (, -+, {)mod Z, to (&, -+, {pre(yry), oy (E)).
Through the canonical isomorphism > ¥’ Ze,/Z, = Z, an action of Z
on CY X (C*)? is induced canonically as

2:C7 X (C*)9" — C7 x (C*)?”
w

w
(C’ Ay ey ag") —_—> (C + z}fdl(z)afl) tt ,fdgn(z)ag")
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for ze Z, and with the action we have J(C) = C? X (C*)?"/Z, hence the
conclusion follows. q.e.d.
We can define a canonical embedding of C into J(£). Fix a point
q in C. Then the embedding i: C — J(C) is defined by
i:C—> J(0)
(8.3.5) ¢ o o .
D —> (L W, ---,L wg,)mOdZ .

Since the cycle §,..; is the image of a path from z; to y, where z;
and ¥, correspond to a double point z;, in C, and since the 7-th column

vector d; of D is equal to <I mj) , we have
Bg'+1 J=1,000,9"

[d;] = i(y) — i(z,) .
Together with Proposition 7 we have obtained the following theorem.

THEOREM 6. Let C be an irreducible stable curve of genus g with
the double points z;, 1 =1,---,9"”. Let C be the normalization of C with
genus 9" = g — g, and x;,y; the points in ¢ corresponding to z; Denote
by © the canonical embedding of C into the Jacobian variety (8.3.5). Then
the generalized Jacobian variety of C is an extension of J(C) by (C*)”
whose extension class correspond to (i(y) — i(x), ---,iy,.) — i(z,) in
J(C) through the isomorphism (8.8.4).

Remark. The extension class above in J(C)*' is determined up to
changing factors and the isomorphisms of J(O) as a principally polarized
abelian variety.

(8.4) Now we are ready to prove the main result in this section.

THEOREM 7. The canonical map j: &, — &F is injective on the open
set %, of points corresponding to irreducible stable curves.

The rest of this section is devoted to the proof of this theorem.

Take a point # in #, corresponding to an irreducible stable curve
C. Choose a coordinate neighbourhood U of x with centre x satisfying
(8.4). In the same way as (6.2) take a ramified covering V of U. Here
we may assume n = 3. If we define the period map 7 = (T, T, T”) of
the canonical family of stable curves on V by using the canonical basis
of H(C,Z) and that of I'(C, »,) introduced in (8.2) and (8.3), then T is
subject to
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Z logs

(8.4.1) T() = 2 Eﬁ%_gEQ,HS(s)
where E; is the matrix with the (7, ) coefficient 1 and 0 otherwise,
and S(s) is holomorphic on the whole V (cf. Proof of Proposition 5.).
Moreover by Lemma 12 in (4.6) we have T'(0) = A, T"7(0) = D and
lim,_, e((1/3)(—T"(s))) = E®. We denote E® simply by E.

Then as we have seen in the proof of Theorem 4, this period map
T induces a holomorphic map

T*: vV — &*@3) .

Moreover by Theorem (2.5) the image p = T*(0) is a simple point in @;“(3)
and a system of local coordinates with centre p is given by

(T/ —*A,C'—'D,S—“E) .
With this system of coordinates, 7* is expressed in the form
T+:V —> &3)
(O] (O]
(8) —> (T"(s) — A, T""(s) — D,e(—(1/3)T"(s)) — E) .

The point p being simple, we can identify @;“(3) with ©*(3) near p.

Now let z, and x, be two points in s, corresponding to irreducible
stable curves with j(z,) = j5(x,) where j = jop: #, —» ¥, — &% For each
1 =1,2 we can make the argument above and we shall use the same
notations but with subscript or superscript 7. Then we have p, = M.p,
for an element M in Sp(g,Z) by Proposition 2. We shall give an ex-
plicit form of M and its action.

Since j(p,) = j(p,) is contained in the image of the Siegel operator
0:8} —&* where j=p-j: #,—S* > S* M can be expressed in the

form
A’ 0 B B,
A U B, B,
¢ 0 D D

0 0 o0 Uy
A B , ” . .
where M = ( C D’) eSp(g’,Z), Ue GL(g9”,Z) and these matrices satisfy
the equalities: A,'D' — B,!)C’ + U'D, =0, A'B’' — B, A’ + U'B, =0 and
(A!B, + U'B,) — (B, A, + B,'U) = 0.
The action of M on &, is written explicitly as ¢ = (¢/,{,") > M-z
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=M, (=M)NCC+ D) + (AC+ B)'U, M-o)' =(—A + U +
B)CC+ D) + (AL + U + B))!U). Note that (M.2)" = U"tU +
a function of (¢, 0).

Then the assumption: p, = M.p, implies that the imaginary part of
the diagonal elements of (M-z)” tends to infinity when the diagonal
elements of Im r tends to infinity by (8.4.1). Hence observing that (M .z)”
= Uz” ‘U + a function of (z/,¢), we have UU = 1,., i.e. U = (*e,q, ",
+e,,) for a permutation = of g” elements where e; is the unit vector
with i-th coefficient 1 and 0 otherwise.

Hence if we replace the canonical basis of H,(C,, Z) by M{a®, p®},
change the index of z{® to 2%, and for every ¢ with ¢-th column vector
of U, —e,u, change 2%, and y%,, then we may assume that M’ =1, and
U=1,.

Let us sum up our results obtained up to now.

(8.4.2) For an appropriate choice of the canonical basis of H,(C,, Z)
we may assume that p, = M.p, where M is subjects to

1 0 0 =n

t 1 t Q
(+) M=|" !

0 0 1 —m

O 0 o0 1

where m and n are integral ¢’ X ¢” matrices and 3 is an integral ¢” X ¢”
matrix with ‘mn 4 ‘8 = ‘nm + 3. The action on &, by M is written as
r=0C, 0N ->Me=C, 04+ +n, (M) =77 4+ 'm'm + ((m 4+ ¥¢m)
+ (Pmn + !8)). Hence from the condition p, = M-p, we have

A =A4A,=4,
(%) D, =D,+ Am + n,

(B); = (Eye((1/3)('mAm + (‘mD, + *‘D,m) + (fmn) + 8));,) .
If we define J(C,) and J(C, with a basis of H,(C,, Z) above as (8.3.1)
and (8.3.2), then from the above equality we can identify J(C,) and J(C,),
and the extension classes of J(C,) and J(C,) are the same through this

identification. (End of (8.4.2.)).
Hence the following is the claim which should be proved.

(8.4.3) Let C be a non-singular curve of genus g’ and (x,y), i =
1,2, 7=1,.--,9",29" pairs of distinct elements in C such that (@, y)
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#* (2P, y®) for j+ k. Denote by C, (resp.C, the curve obtained by
identifying «® with ¥ (resp. % with ¥$?), which is an irreducible stable
curve of genus g = ¢’ + 9’ with the double points z2* (resp.z®), j =1,
---,-g", each of which corresponds to z$°,yP (resp. xP,y) respectively.
For each i = 1,2 choose a canonical families of 1-cycles in C,; and a basis
of I'(Ci,wp,) such as (8.1) and (8.2) and define the matrices A;, D;, and
E,. If for an element M of Sp (9,Z) of the form (x) in (8.4.2) the above
matrices are subject to (xx) in (8.4.2), then C, and C, are isomorphic.

(8.5) We shall prove (8.4.3) by dividing it into the following four
cases according to the properties of C. In every case if C itself is
non-singular, then Theorem 7 is the usual theorem of Torelli. Hence we
assume that C has at least one double point, i.e. g’ > 0.

A) The case that C is a non-hyperelliptic curve with ¢’ > 2.

The theorem follows from the following proposition and the last claim
of (8.4.2).

PROPOSITION 9. Let C be an irreducible stable curve of genus g whose
normalization is a non-hyperelliptic curve with genus ¢’ > 2. Then C is
uniquely determined by its generalized Jacobian variety J(C).

Proof. By Torelli’s theorem the non-singular model C is uniquely
determind. Let ¢: C — J(C) be the canonical embedding (8.3.5). Denote
by z;, 1 <1 < ¢g”, the double points of C and by =x;,y; the corresponding
points in C. Then by Theorem 6 the set of elements i(y,) — #(x,), 1 =1,
..+, 9", is uniquely determined by J(C) up to isomorphisms of J ($). Hence
the proposition follows from the following lemma.

LEMMA 19. Let C be a non-hyperelliptic curve and J(C) the Jacobian
variety of C. Define a canonical embedding 1: C — J(C) as (8.3.5) Then
the morphism C X C — J(C) defined by sending (x,y) to i(x) — i(y) is n-
jective outside the diagonal of C X C.

Proof. Let (x,,%,) and (x,,%, be two pairs of distinct points in C
with i(x) — i(y) = i(x,) — i(y,). Then we have

Hence by virtue of Abel’s theorem the divisor x, + ¥, is linearly equivalent
to z, + ¥,. Assume that x, + y,# 2z, + 9¥,. Then the above claim im-
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plies that dim¢; H'(C, O(x, + ¥,)) > 0. Hence C has a non-empty linear
system of degree 2, i.e. C is hyperelliptic. This contradicts with the as-
sumption. q.e.d.

B) The case that C is a hyperelliptic curve with g’ > 1.

The proof of Lemma 19 shows in fact the following.

LEMMA 19°s, Let C be a non-singular curve and J(C) the Jacobian
variety of C. Define a canonical embedding i: C — J(C) as (8.3.5). For
two distinct pairs of distinct elements (x,, y,) and (x,, ¥,) in C, the equality :
(x) — i(y) = ilx,) — i(y, does hold if and only if the curve C is hyper-
elliptic and «(x,) = ¥y, and (x,) =y, by the involution ¢ of C.

(We have proved only the “only if” part but the “if” part is clear.)

Now we shall prove (8.4.3) in case of a hyperelliptic curve C by the
induction on ¢”.

In case of ¢” = 1, we have i{(y®) — #(x?) = {(¥®) — i(x®) in J(&) by
(8.4.2). If {xf, ¥} = {«{?, ¥y}, then there is nothing to prove. If they
are different, then Lemma 19" shows that by the involution ¢ of C the
set {z{", ¥{"} is mapped to {x{®,¥®}. Hence this involution induces an
isomorphism between C, and C,.

In case of g’ = 2, we have

Wy — @) = WP — iz, 1=1,2.

If {x®,yP} = {&@,yP®} for i = 1,2 or {2, yP} = ({z?,yP}) for i=1,2
with the involution ¢ of C, then clearly C, and C, are isomorphic. Hence
we shall assume that ({z{, ¥} = {2, ¥{"} and {z{*, y*} = {z?, y?}. In
order to prove the assertion, we must strengthen the assumption (8.4.3).
We add two more assumptions:

(8.4.3)" in the family of 1-cycles on C,a® = a®,p® = ® and o®
=o? for 1 <i< ¢ ;in the form of M we assume moreover m = 0.

Let us show that these assumptions can be satisfied. First of all
note that if we take the same a{® = o, 8’ = g and 0¥ = 0,1 <1< ¢/,
then we have A4, = A,., When we consider the form M,M’' must be
subject to M’-A, = A,. Since there is an automorphism of C which
induces M’, we may assume M’ = 1, by identifying C‘l =C and 52 =C
through this isomorphism (Here we used the condition that ¢ is hyper-
elliptic. In general cases we can reduce M’ = + 1, in the same way.).
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The other reduction of the form of M in (8.4.2) does not concern with
a’s and B;’s for 1 <i< ¢g’. Hence we may assume the a = a@,
=% and o = P for 1 <i < ¢

Moreover if a column vector m; of m is not zero, ie. d{ =dP +
Am; # dP where d{° is the j-th column vector of D,, then y® =+ y®. In
fact if ¥y =y and [d{’] = [d{"], then we have i(x{") = i(x{), hence
2P = 2P and d’ = d. Hence we can move a; = af’ = «{” to a; so
that «, is homologous to «; in H(C — {¥$}, Z) and homologous to «; +
My, ,; iN Hl(é — {¥?},Z). Then replacing «; by «f, we can assume
that m; = 0. Repeating this process for j=1,...,9”, we can assume
that m = 0. Hence we can add the assumption (8.4.3)* to (8.4.3).

Now we shall go back to the proof of (8.4.3). Define multiple valued
holomorphic functions v,(z) on C as

0:2) = e(fa)g;gl) ,  i=1,2.

This function is a so-called multiplicative function, i.e. there is a char-
acter y;: m,(C) — C* of the fundamental group of C such that, for every
closed path I' with base point z, the analytic continuation v,(I"2) of v,(2)
along I is subject to

v,(I'2) = Xz([F])'Uz(z)

where [I'] is the homotopy class of .

Note that the character y, is determined by the values y;([e;]) and
wIs),1<i < g Since nlied = ¢([.. 02.s) = 1, and 1,05, = e([o, o)
=e((D,);) = e((d®);), together with the assumption that d’ = d{® mod. Z”
(cf. (8.4.2)(**) and (8.4.3)"), these characters coincide. Hence the ratio
(@) = v,(2)/v,(2) is a (single-valued) meromorphic function on C. More-
over by the very definition v;(2) has a simple pole at z® and a simple
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zero at ¥ and it has neither poles nor zeros outside. Hence f(z) has
simple poles at z® and ¥® and simple zeros at y® and z{® and it has
neither poles nor zeros outside. Considering f to be a holomorphic map
from C to P!, we see that this map is of degres 2 by the above obser-
vation, hence the non-trivial covering transformation of this covering f
gives the involution ¢ of C.

On the other hand we have ((F;),,)’ = v;(¥{?)/v(x{®) by definition and
(B = (B by (8.4.2) (**) and (8.4.3)**. Hence we have

v (W) _ v(y®)
v, (@) Vy(25?)

Since 2P = z and ¥ = y® by assumption, we have
JWP) = v, () [0,y = v (2) v () = Sf(2f")

i.e. (yP) = x. Hence the involution ¢ induces an isomorphism between
C, and C,.
In case of ¢ > 2 the proof is similar, hence we shall omit it.

C) The case that C is an elliptic curve, i.e. ¢ = 1.

The proof is similar to the case B). In this case we may also as-
sume (8.4.3)** by the same reason as before.

In this case J(C) is isomorphic to C by the canonical embedding ¢
(8.3.5), hence we identify them. The proof is done by induction on g”.

In case of ¢” =1, by Theorem 6 we have y® — 2{ = y® — zP®.
Hence the translation by 2® — z® maps z® to z® and y® to ¥, which
induces an isomorphism between C; and C,.

In case of ¢’ = 2, we also have the equalities: y¥ — & = y® — a@®
for ¢=1,2. By translation we may assume that z{ = z® =0 and
v = =v.

Put v,(2) = e(jz mgi)),i =1,2. Then they are multiple-valued holo-
morphic functions with characters y;: nl(C‘) — C* guch that for any closed
path I" with base point z the analytic continuation v,(I"z) of v,(z) along
I' is subject to

vi(I'2) = 2([I'Dvy(2)

where [I'] is the homotopy class of I" in 7:1(6'). The only pole of v,(2)
is a simple pole at x® and the only zero of v,(z) is a simple zero at y{.
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If the assumptions in (8.4.3) and (8.4.3)"* are satisfied, by the same
argument as the case B), f(z) = v,(2)/v,(2) is a meromorphic function
on C, and considered as a holomorphic map from C to P!, it gives a
two-fold covering with f(z®) = f(¥{®) = oo, f(y®) = f(z{®) = 0 and more-
over f(y) = f(0) since ((F),)* = ((£,).,)°. Hence the non-trivial covering
transformation induces the isomorphism between C, and C,.

To prove the case ¢’ = 3 we note first of all that the above cover-
ing transformation ¢ is given explicitly as

0:C—C
w (O]
1 (2)
p—s —z + L T YT T
2
(Note that 2 + y® = z® 4+ y®.) That is, if (FQ)® = (FQ®)?,
then
P — P = xz()z) — z®

or

2 — af =~ — yp) .

Therefore if (E))’ = (Ef)* for 1 < 4,7 < 3,9+ 37 (we put E;; = E;
if ¢ < 7 for the sake of convenience), then for each (¢,7) we have one
of the following equalities:

1 2 2
(A @ P =ap —ap ,

(B“) x;}) —x® = _(ygz) — y®) .

Clearly if (4;;) and (4,,) hold, then (A4, holds, and if (B;;) and (B;;)
hold, then (B;;) holds. Hence for all (¢, ) either (4,;) or (B;;) does hold.
If the equalities (4;;) hold for all (¢,7), then the translation of C‘z by
2P — 2® induces an isomorphism between C, and C,;if the equalities
(B;;y) hold for all (4,7), then the involution above of C‘Z induces an iso-
morphism between C, and C..

In case of g”” > 3 the proof is the same as the case of ¢” = 3.

Remark (Ueno). We can also give these functions appeared above
explicitly.

First of all we shall give the form of o’s explicitly. For simplicity
we assume that ¢” =1 and write z and y instead of z, and ¥,. The

~

curve C is given as an elliptic curve C/Z + Zr with Imz > 0. We shall
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denote by z a uniformizing parameter of C, i.e. a coordinate of C above.
Put o) = dz and o) = (1/2zv/ =1z — ¥) — L(z — 2))dz where (2) is
the so-called zeta function of an elliptic curve defined as

1 < 1 P 1 )
g) = —
@ 2 +<n,m§<oo> z2—mr—n + (mz + n)? + mr + n

Then it is easy to see that & is a meromorphic form on C with simple
poles at » and ¥ and with Res, o} = 1. Define aj,a, p,p as in (8.1).
Then we have

S
Il
-

-

al

ag

S
Il
L]

) e
D—\e\
Il
(=]

) Be

and by using the equality ¢(2) = ¢’(z)/0s(2) where o(z) is the o-function
defined as

9 0 ) (e + A )
o(@) (m,ng(0,0)< mr + n P mz+n+2 mc + n

and using the quasi-periodicity of ¢(z), i.e. the formula
)|

oG + me + ) = (=D+me| exp (@, + zmz)(

where 5, = {(1/2) and 5, = {(z/2), we have

J.
J..«

I

— (-,

https://doi.org/10.1017/5002776300001597X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001597X

MODULI SPACE OF STABLE CURVES 253

=T __(x—1).
Iﬂxw2 211'\/_1( y)

Hence if we put o, = of,0, = o) — (p( — ¥ /nv —Dei, then with the
Legendre relation: »z — 7, = zv/—1/2 we can see that they form the
basis introduced in Lemma 18, and we have J W, =Y — T.

b1
Then the multiplicative function we have introduced above is written

explicitly as
v(z) = e(J.z wz)

= exp (2ev =T [[(ot — -2 (x—y)cui>)

v/ —1
) exp 2,y — ©)2) .
oz — x)

Hence E%; is given explicitly as

3 oy, — yj)o'(xi - xj)
U oy — wom; — y,)

exp 2n,(y; — 2)(y; — ;) .

About the formulae used above we refer the reader to [7] 2.
Abschnitt, 1. Kapital for example.

D) The case that C is rational, i.e. g =0.
Then clearly g” = g > 1. The form of M in (8.4.2) (*) is very simply

M= (10 5)
0 1,
with an integral symmetric matrix 8 of degree ¢ and only the matrix
E appears.

First of all we shall give w, and E explicitly. Let C be a stable
curve obtained by identifying z; and ¥;,1 << g, in a projective line
C = P'. Denote by z; the double point corresponding to x; and y,;. Let
z be an inhomogeneous coordinate of €. Then the meromorphic forms:
w; = (1/2x/ =D(A/(z — ) — A/(z — x))dz,1 < i< g, form a basis of
I'(C,w;) in Lemma 18, and by integrating them we have

1 (y; — y) (@, — ;)
L= 1 g 7,
J 6T T =T F (@ — )W — 2,

hence
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iJ
(@, — Y)Wy — xy)

By (8.4.2) we have (E{})*= (E()® for all 1<¢<j<g. Hence it
is sufficient to prove that

*) the family of values (E3),cicj<, delermines the isomorphism
class of C uniquely.

We use the induction on g.

In case of g =2. we may assume that 2, =0,y, = and y,=1
by changing z with a projective linear transformation. Then with the
equality above we have

(00 — DO — )

E?z =
(0 — D(co — ;)

= Xy .

Hence the claim (*) is true for g = 2.
In case of ¢ = 3, we may also assume that z, = 0,y, = co and ¥, =
1 as above. Then we have

E:ilz =X,
E%a = xa/ys s

B = =@ —x)
A — @)@, — o)

Solving these equations, we have the unique solution for =z, and two
pairs of solutions (x{?, y{),7 = 1,2, for (x,,¥,). However a linear trans-
formation p:z — 2,/z preserves the sets {z,,y,} and {x,,¥,}. If we put
x, = p(y) = x,/y, and ¥, = p(xy) = x,/x;, then it is easy to see that the
transformation (x,, ¥, — («},¥;) sends a set of solution for (x;, v, to
another. By an elementary calculation we can see that z, = x5 if and
only if the above pairs of solutions coincide. Hence the isomorphism
class of C is uniquely determined by the data, E3,, E3, and E&5..

In case of g > 3 the proof is similar, hence we omit it.

Thus we have proved (8.4.2) in every case A), B), C) and D), hence
the proof of Theorem 7 is now complete.

(8.6) Remark. Assume that g > 2. Let .4/ be the union of divisors
A1, 1 <t < [g/2] whose general points correspond to stable curves with
two non-singular irreducible components C;,7 = 1,2, with genus ¢ and

https://doi.org/10.1017/5002776300001597X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001597X

MODULI SPACE OF STABLE CURVES 255

g — © meeting at one point. Then j is not injective on 4. In fact by
the upper semicontinuity of the dimension of fibres, we have only to
prove it for general points £ on .4, Hence the image by 7 is contained
in &%, so it is sufficient to show that j is not injective. Let C be the
corresponding stable curve with the irreducible components C, and C,.
Let z,y be the points on C, and C, respectively which coincide on C.
Since g > 2, we have g — ¢ > 1, i.e. the automorphism group of C, is
finite. On the other hand if two such curves C® and C® are isomorphic,
then it induces an isomorphism between C{ and C{ which maps y® to
y®. (In case of 7 = ¢g/2 we may need to change factors.) Hence the
curves C with different y’s are not isomorphic in general. However,
their generalized Jacobians are both J(C) = J(C,) X J(C,), hence the
images by Jj coincide. This proves the assertion.

It is naturally expected that ;7 is injective outside of 4, but we
have no proof.

§9. The case of g = 2.

(9.1) In this section we shall prove the following theorem.

THEOREM 8. In case of g = 2 the canonical morphism §:%,— SF
(Corollary of Theorem 4) is an isomorphism.

Since these two varieties are normal and complete, and since j is
birational, we have only to prove that j has no fibres with positive
dimension by virtue of Zariski’s main theorem.

(9.2) The explicit structure of &F (or &¥(n)) is known ([8],[18]).
In fact this was the first compactification of &} constructed by Satake
(ibid.).

So we must study the structure of the moduli space %, of stable
curves of genus 2.

PRrROPOSITION 10. FEwery stable curve of genus two is of one of the
following types. Any curves of the same type are homeomorphic to each
other. Those points in &, which correspond to each type of stable
curves form a locally closed algebraic subset in &, hence making them
strata, we can define a stratification in &,.

Type  The corresponding stable curve rank H(C,Z) Stratum
1 a non-singular curve of genus 2 4 M
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11 a join of two mon-singlar elliptic 4 N
curves meeting at one point trans-
versally.

111, an elliptic curve with an ordinary 3 B,
double point.

111, a join of a mnon-singular elliptic 3 B,

curve and a rational curve with an
ordinary double point meeting at
one point transversally.

1V, a rational curve with two ordinary 2 €.,
double points.
v, a join of two rational curves with 2 s,

an ordinary double point meeting
at one point transversally.

v a join of two non-singular rational 2 9
curves meeting at three points
transversally.

The proof is straightforward, and we omit it (cf. [14] or [15]).

It is also easy to see that the holomorphic map j = poj: ¥, — &¥
- B =Cf UGF U CSF maps & and 4 to &, %, and %, to S¥, and
C oy €y, and 2 to Sf.

(9.3) Now we shall prove Theorem 8 by reductio ad absurdum.
Assume that for a point » in SF the fibre F = j~'(y) has a positive
dimension.

The open set %, in Theorem 7 is a union of strata .#,%,, and %,,.
Hence by virtue of Theorem 7 no generic points in F correspond to
stable curves of types I, III,,, and IV,,.

It is easy to see that the isomorphism classes of curves of types
IV,, and V are unique, i.e. ¥, and 2 consist of only one point respec-
tively. Hence the generic point of F is contained in A4 or %,,.

First assume that the generic point & is in 4. Let C be a stable
curve corresponding to &, Then C is a union of two elliptic curves C,
and C,. By translation on each component we may assume that the
origins of C, and C, meet together. Hence C is determined uniquely by
C, and C,. On the other hand since 7 is in ©§, we can identify j and
J near 5. Therefore 5 corresponds to the isomorphism class of J(C) =
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J(C) x J(C,). Clearly it determines C, and C,, hence C. Hence the as-
sumption is impossible.

C

Now assume that the generic point & of F is in %,. Let C be a
stable curve corresponding to & Then C is a union of an elliptic curve
C, and a rational curve C, with one double point. Since only one point
in C, is specified and only three points in the normalization of C, are
specified, the isomorphism class of C is determined only by that of C,.
On the other hand since J(C) = C,, 5 corresponds to the isomorphism class
of C, in &F, hence ¢ is uniquely determined by 7, which again con-
tradicts the assumption. g.e.d. of Theorem 8.

(9.4) We shall also give the explicit correspondence of j in case of
g = 2 with the generalized period matrices (7.1). The proof is already
done or easy, so we omit it. We shall use the notations in (8.2).

A) The case of type 1. ¢’ =2, g” = 0. In this case j maps the iso-
morphism class of C to the residue class of the period matrix 2, of C
in &F.

B) The case of type II. ¢ =2, g7 = 0. Let C be a stable curve
with the irreducible components C; and C,. Let z; and 7, be the respec-
tive periods of C, and C,. Then 7 maps the point in &, corresponding

to C to (6‘ 2) mod. Sp(2, Z) in S,

C) The case of type III,,. ¢ =1, 97 = 1. Let C be a stable curve
of type II1,, with normalization C which is an elliptic curve with period
r. Let z,y be the points in C corresponding to the unique double point
of C. Then j maps the point in &%, corresponding to C to the point
A4,D,E) = (r,y — 2,0) mod. Sp(2, Z).

D) The case of type 111,,. ¢ =1, g =1. Let C be a stable curve
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of type III,,. It is a union of an elliptic curve C, with period « and
a rational curve with a double point. Then 7 maps the point in %, cor-
responding to C to the point (4,D,FE) = (¢, 0,0) mod. Sp(2, Z).

E) The case of type IV,. ¢ =0, g’ =2. Let C be a stable curve
of type IV,, with double points z, and z,. Denote by z;,¥; the points in
the normalization ¢ of C corresponding to 2;. With a uniformizing
parameter z in C, we may assume z(z,) = 0, 2(y,) = co and 2(y,) = 1. Then
7 maps the point in %, corresponding to C to the point F = (F,,, F;, E,)
= (2(x,), 0, 0) mod. Sp(2, Z).

F) The case of type IV,,. ¢’ =0, g’ =2. As we have remarked
in the proof of Theorem 8, the isomorphism class of type IV,, is unique.
The point in &, corresponding to it is mapped by ;7 to the point E =
(E,, E, Ey) = (1,0,0) mod. Sp(2, Z).

G) The case of type V. ¢’ =10, g” = 2. The isomorphism class of
curves of type V is also unique, and the point in ., corresponding to it
is mapped by j to the point £ = (¥, E,,, E,;) = (0,0, 0) mod. Sp(2, Z).

Addendum

The proof of Theorem 4 is not complete. We need the following claim :

(%) for every point scS, when we express the period map of =
near s as (4.8.2), there is a central cone C, in 9,. containing “all” B,,
where B, = (b;,.)4 <..ecqr (L. (6.5)).

In case of g < 6 this claim holds for all families of stable curves.
(It can be seen by direct calculation.) It seems true that it does hold
in general.

The above claim being local, Theorem 4 is true for families of planar
stable curves, for example. Hence the incompleteness of the proof of
Theorem 4 gives no effect to the other theorems.

The author wishes to thank Professor P. Deligne who kindly pointed
out my mistake of proof.
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