Contents

Pre	page ix	
1	Basic concepts	1
	1.1 Current	2
	1.2 Magnetic forces	3
	1.3 The Biot-Savart law	6
	1.4 Divergence of the magnetic field	11
	1.5 Circulation of the magnetic field	12
	1.6 The Ampère law	14
	1.7 Boundary conditions at a current sheet	17
	1.8 Inductance	19
	1.9 Energy stored in the magnetic field	20
2	Magnetic materials	23
	2.1 Magnetization	23
	2.2 Magnetic field intensity	26
	2.3 Permeability and susceptibility	27
	2.4 Types of magnetism	27
	2.5 Magnetic circuits	31
	2.6 Boundary conditions between regions with diffe	erent μ 33
	2.7 Method of images	34
3	Potential theory	39
	3.1 Vector potential	39
	3.2 Vector potential in two dimensions	41
	3.3 Boundary conditions on A	44
	3.4 Vector potential for a localized current distribu	tion 45
	3.5 Force on a localized current distribution	49
	3.6 Magnetic scalar potential	50

vi Contents

	3.7	Scalar potential for a magnetic body	52
	3.8	General solutions to the Laplace equation	53
	3.9	Boundary value problems	59
	3.10	Green's theorem	67
4	Conc	ductor-dominant transverse fields	71
	4.1	General solution to the Laplace equation in	
		two dimensions	71
	4.2	Harmonic expansion for a line current	76
	4.3	Field for a current sheet	80
	4.4	Ideal multipole current sheet	84
	4.5	Multipole dependence on the current distribution	88
	4.6	Approximate multipole configurations	90
	4.7	Field for a block conductor	93
	4.8	Ideal multipole current block	100
	4.9	Field from a magnetized body	102
	4.10	Superconductors	104
	4.11	End fields	105
5	Com	plex analysis of transverse fields	108
	5.1	Complex representation of potentials and fields	108
	5.2	Maxwell's equations in complex conjugate	
		coordinates	111
	5.3	Field from a line current	113
	5.4	Field from a current sheet	115
	5.5	$\cos \phi$ current sheets	120
	5.6	Green's theorems in the complex plane	123
	5.7	Field from a block conductor	124
	5.8	Block conductor examples	126
	5.9	Field from image currents	132
	5.10	Multipole expansion	135
	5.11	Field due to a magnetized body	138
	5.12	Force	140
	5.13	Conformal mapping	141
	5.14	Integrated potentials	147
6	Iron-	dominant transverse fields	150
	6.1	Ideal multipole magnets	150
	6.2	Approximate multipole configurations	153
	6.3	Dipole configurations	154
	6.4	Ouadrupole configurations	159

	Contents	vii
7	Axial field configurations 7.1 Circular current loop 7.2 Radial expansion of the on-axis magnetic field 7.3 Zonal harmonic expansions 7.4 Multiple coil configurations 7.5 Sheet model for the solenoid 7.6 Block model for the solenoid 7.7 Bent solenoid 7.8 Toroid	165 165 170 172 178 182 189 190
8	Periodic magnetic channels 8.1 Field from a helical conductor 8.2 Planar transverse field 8.3 Helical transverse field 8.4 Axial fields	197 197 204 206 209
9	Permanent magnets 9.1 Bar magnets 9.2 Magnetic circuit energized by a permanent magnet 9.3 Material properties 9.4 Model for rare earth materials 9.5 Rare earth model in two dimensions 9.6 Multipole expansion for continuously distributed material 9.7 Segmented multipole magnet assemblies	211 211 214 216 217 219 221 224
10	Time-varying fields 10.1 Faraday's law 10.2 Energy in the magnetic field 10.3 Energy loss in hysteresis cycles 10.4 Eddy currents 10.5 Skin effect 10.6 Displacement current 10.7 Rotating coil measurements	229 229 232 234 235 239 240 241
11	Numerical methods 11.1 Finite difference method 11.2 Example solution using finite differences 11.3 Finite element method 11.4 Integral equation method 11.5 The POISSON code 11.6 Inverse problems and optimization	245 245 251 254 258 265 267

• • •	<i>a</i>
V111	Contents

Appendices		274
A	Symbols and SI units	274
В	Vector analysis	275
C	Bessel functions	279
D	Legendre functions	283
Е	Complex variable analysis	287
F	Complete elliptic integrals	293
Index	c	297