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Algorithms for Measurement Invariance Testing 1

1 Algorithms for Measurement Invariance Testing: Contrasts
and Connections

There are many reasonable places to start in an introduction to the study of
measurement invariance and differential item functioning (DIF). Though it may
seem overly broad, we can start by stating the goal of measurement in general.
If we administer a set of items, it is typically because we assume that they indi-
rectly assess some underlying quality which cannot be easily observed. These
quantities are typically referred to as latent variables, and they represent some
of the constructs in which developmental scientists are often most interested.

The study of measurement invariance and differential item functioning con-
cerns the question of whether this measurement process unfolds equally well
for all participants. If features of individual participants — which often include
demographic variables such as age, sex, gender, or race, but can be any person-
or context-specific quantity — are associated with different relations between
latent variables and their observable measures, our inferences about this latent
variable will be biased. Moreover, when we aim to compare participants who
differ in these dimensions, we may make erroneous conclusions.

An example of a recent analysis of DIF helps to understand the issues at hand.
Anxious symptoms are quite common among children on the autism spectrum,
and it is therefore critical to have measures of anxiety that function well in
this population. One recent study (Schiltz & Magnus, 2021) analyzed how
well a parent-report measure, the Screen for Child Anxiety Related Disorders
(SCARED; Birmaher et al., 1997), measures symptoms of anxiety disorders
in a sample of N = 198 children on the autism spectrum (mean age = 11.18
years). Among other covariates, the authors examined the effects of children’s
social functioning, as measured by the Social Communication Questionnaire
(SCQ; Rutter et al., 2003), on the link between SCARED scores and the
latent variables they aim to represent, in this case five dimensions of anx-
iety (panic disorder, generalized anxiety disorder, separation anxiety, social
anxiety, school avoidance). They found that certain social anxiety items — par-
ticularly “feels shy with people he/she does not know well” and “is shy” —
were less commonly endorsed among parents whose children showed high
SCQ scores, regardless of the child’s level of social anxiety. This last portion
of the findings is critical: the fact that SCQ score was negatively related to
endorsement of these items even after controlling for the latent variable, social
anxiety, means that children’s social functioning may have a negatively biasing
effect on their parents’ reports of their social anxiety. In other words, if a par-
ent rates their child highly in these social anxiety symptoms on the SCARED,
this may reflect deficits in the child’s social functioning, rather than the child’s


https://doi.org/10.1017/9781009303408

https://doi.org/10.1017/9781009303408 Published online by Cambridge University Press

2 Research Methods for Developmental Science

experience of anxiety. Studying measurement invariance and DIF in these items
is one way to avoid making such an error.

1.0.1 Terminology and History

The study of measurement bias has a rich intellectual history, with many dif-
ferent researchers addressing these issues at many different times in the past
century (Millsap, 2011). The complexity of this landscape has led to a some-
what challenging terminological issue: the terms measurement invariance and
differential item functioning effectively refer to the same concept in different
ways. In general, researchers using structural equation modeling (SEM), par-
ticularly confirmatory factor analysis (CFA), developed the term measurement
invariance to describe an assumption: that the items in a given test measure
the latent variable equally for all individuals (Meredith, 1993; Millsap, 2011;
Putnick et al., 2016). At the same time, research arising mostly from the item
response theory (IRT) tradition uses the term differential item functioning, often
abbreviated DIF, to describe cases in which this assumption is violated: that is,
items or sets thereof in which measurement parameters differ across partic-
ipants (Holland & Thayer, 1986; Osterlind & Everson, 2009; Thissen et al.,
1993). For readers interested in the long history of the study of measurement
invariance and DIF, which extends back over a century, are referred to one
historical review (Millsap & Meredith, 2007), which provides a fascinating
overview of this literature.

However, for the purposes of this Element, there are two important things
to note. First is that the study of DIF and measurement invariance have largely
come together in the past two decades, perhaps due to the wider adoption of
models (e.g., nonlinear factor models, discussed in the next section) which
can be extended to accommodate many models within SEM and IRT (Bauer,
2017; Knott & Bartholomew, 1999; Millsap, 2011; Skrondal & Rabe-Hesketh,
2004). The concordance between these two traditions’ treatment of the same
phenomenon has been noted many times before (Reise et al., 1993; Stark et al.,
2004, 2006), and contemporary modeling tools have been useful in helping
researchers to unify these two perspectives. The second thing to note is that the
terms will be used interchangeably throughout this Element. In general, meas-
urement invariance will mostly be referred to when discussing an assumption
(e.g., ensuring that different types of measurement invariance are satisfied),
whereas DIF will be used to describe an effect (e.g., DIF effects were found
for some items in this test). However, some slippage between the terms is una-
voidable, given that — as we will see shortly — the two refer to virtually identical

concepts.
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Algorithms for Measurement Invariance Testing 3

For more information about the terminology used in this Element, readers
are referred to the Glossary in Table 1.

1.0.2 Organization of This Element

The main goals of this Element are to give developmental scientists as compre-
hensive a summary of measurement invariance and DIF research as possible,
with the goal of helping them to incorporate the theory and practice of this
research area into their own work. We begin with as complete a description of
latent variable models as possible. The Element aims to provide a mathematical
framework for the specific discussion of exactly what measurement invari-
ance and DIF are. We will then mathematically define the types of DIF effects
one might encounter, as well as different fields’ frameworks for studying DIF
in general. Readers already familiar with the different types of measurement
invariance (e.g., configural, metric, scalar) and DIF (e.g., uniform, nonuni-
form) may wish to skip this portion, particularly if they are already familiar
with nonlinear latent variable models.

The second portion of this Element concerns the different extensions of the
nonlinear factor model which can be used to test the assumption of measure-
ment invariance, or detect and account for DIF. First, we discuss the two main
modeling frameworks for addressing these questions, with an eye toward com-
paring and contrasting different fields’ and models’ definitions of DIF. We then
move on to an exploration of different algorithms used to locate DIF, with a
similar goal of examining differences and similarities between different fields.
We will end with a set of recommendations for how to incorporate the study of
DIF into one’s measurement-related research.

2 Latent Variable Models

In order to formulate what measurement invariance is, we must first introduce
latent variable models. Most of the models in which measurement invariance
is considered fall under the heading of nonlinear factor analysis (Bauer & Hus-
song, 2009; Knott & Bartholomew, 1999; Skrondal & Rabe-Hesketh, 2004),
a broad framework which encompasses most CFA and IRT models. Critically,
although this section aims to comprehensively introduce latent variable mod-
els, including the nonlinear factor model, it should not be the reader’s first
introduction to either latent variable models or the generalized linear model-
ing framework. If either of those are new to the reader, it is suggested that they
review a tutorial on factor analysis (e.g., Hoyle, 1995) or logistic regression and
the generalized linear model in general (e.g., Hosmer Jretal., 2013; McCullagh
& Nelder, 2019). Those wishing for a comprehensive introduction to nonlinear
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Table 1 Glossary of terms used throughout the Element

Term

Definition

alignment

approximate methods

configural invariance

differential item functioning (DIF)
effect size

factor scores

focal group

likelihood ratio test

An approximate method of estimating DIF effects which aims to minimize differences between groups
in intercept and slope parameters in the context of a multiple-groups model.

A set of methods, encompassing alignment and regularization, which use penalized estimation to
minimize the number of small DIF effects found.

The most basic form of measurement invariance, which requires that the number of factors and patterns
of loadings is the same across groups.

Differences between participants in the measurement parameters for a particular item. Essentially
the relational opposite of measurement invariance — that is, a model with DIF lacks measurement
invariance.

For the purposes of this Element, the magnitude of a DIF effect either in terms of the differences in
parameters or implied scores.

Estimates generated from a factor model of each individual participant’s level of the latent variable.
In a multiple-groups model, the group for which differences in measurement parameters are of inter-
est; compared to a reference group. Note that, absent substantive hypotheses, “focal” and “reference”
groups can just be referred to by number (e.g., groups 1, 2, and 3).

An inferential test which compares the fit of one model to another, nested model. For the purposes of
this Element, to test the hypothesis that a model with certain DIF or impact parameters fits better than
one without them.
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measurement invariance

metric invariance

multiple-groups model

nonuniform DIF

pre-estimation approaches

reference group

regression-based

regularization

Equality between participants in measurement parameters, either for a single item or an entire test.
Essentially the relational opposite of DIF — that is, a model with DIF lacks measurement invariance.
A form of measurement invariance which requires that factor loadings are equal across participants.
Sometimes referred to as “weak metric invariance.”

For the purposes of this Element, a way to formulate DIF which treats DIF as between-group differences
in parameter values.

Differences across participants in an item which are not constant across all levels of the latent variable.
Typically codified as differences between item loadings.

For the purposes of this Element, methods of determining the presence and magnitude of DIF effects
which do not require a model to be estimated.

In a multiple-groups model, the group to which the focal group is compared in terms of measure-
ment parameters. Note that, absent substantive hypotheses, “focal” and “reference” groups can just be
referred to by number (e.g., groups 1, 2, and 3).

For the purposes of this Element, a way to formulate DIF which treats measurement parameters as
outcomes in a regression. Contrasted with multiple-groups model.

An approximate method of estimating DIF effects which penalizes DIF effects in the estimation of a
factor model, with the goal of retaining only those effects that are meaningful.
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factor analysis are referred to other work which covers this topic extensively
(Knott & Bartholomew, 1999; Skrondal & Rabe-Hesketh, 2004).

Although we aim to present measurement invariance in an accessible way,
a substantial number of equations in this section are unavoidable. Our hope is
that, with some exposure to latent variable models and the generalized linear
modeling framework, readers will be able to follow along with this section. The
equations themselves do not require more than the above prerequisites (at least
some prior exposure to latent variables and regression models outside of linear
regression) to understand. Readers familiar with the contents of this section
may wish to skim it to get the notation which will be used later on.

2.1 The Common Factor Model

Assume that we have a sample of N participants, to whom we administer a set
of J items. The response of the ith participant (i = 1,...,N) to the jth item
(j=1,...,J) is denoted y;. Note that we will refer to y; as an “item” or
a “response variable” interchangeably throughout this text. We assume that
the items are measures of a set of M latent variables (m = 1,...,M). Each
individual has an implicit value of each latent variable, denoted 7;,,. In a typ-
ical common factor model, we assume that the items are related to the latent
variables as follows:

M
Yy =vi+ Z M Tim + €. (1)

m=1

For each item, v; is the intercept; this represents the predicted value of y;; for
an individual whose value on the latent variable(s) which load on y;; is 0. As
with intercepts in linear regression, we can effectively think of it as the overall
“level” of the item — we predict that participants will, on average, have high
overall levels of v; regardless of their level of the latent variable. The effect of
the latent variable is conveyed by A, the factor loading. As with a slope in a
linear regression, for each one-unit shift in the mth latent variable we predict a
Apj-unit shift in the item. Finally, €; represents the error term, which is subject
i’s deviation from their predicted value of item ;. These error terms are assumed
to have a mean of 0, and a variance of a'jz. Error terms are generally considered
to be uncorrelated across items — that is o7;, which represents the covariance
between the error terms for items /4 and j, is assumed to be 0.

Latent variables may covary with one another, with an M X M covariance
matrix ®. Each diagonal element of @, here denoted ¢2,, represents the vari-
ance of the mth latent variable; off-diagonal elements of the matrix, denoted
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dum, represent the covariance between the mth and nth latent variables. Latent
variables may also have their own means; the mean of the mth latent variable
is denoted «a,,.

Some constraints must be imposed on these parameters in order for the model
to be identified. There are two common options. First, we can fix one item’s
value of v; to 0 and its value of A, to 1 for each latent variable. This item is
often referred to as the reference variable and, when this approach is used, the
latent variable is on the same scale as this item. Alternatively, we could set the
variances ¢2, to 1 and the mean a,, to 0 for all latent variables. In this case, the
loading A,,; may now be considered the predicted change in y;; associated with
a one-standard deviation shift in the latent variable 7;,; the intercept v; may
now be considered the predicted value of y; when all latent variables are at
their means. As we will see shortly, assessing measurement invariance involves
adding a number of new parameters to the model, which will complicate model
identification; this is discussed in detail below.

2.2 Nonlinear Factor Models

The common factor model presented above is the foundation of most psycho-
logical researchers’ understanding of latent variable models. However, in order
for us to understand the relations among different latent variable models, it is
necessary to extend it. In particular, the above model assumes that items y;; meet
the same general assumptions as the dependent variable in a linear regression.
For our purpose, the most problematic of these assumptions is that the residuals
of the items are normally distributed. This assumption requires, among other
things, that our outcome be continuous, which we know many psychological
outcomes are not (even if we erroneously treat them that way). In particular, it
is common for us to be working with ordinal items resulting from a Likert scale
(e.g., responses ranging from 1 to 5 assessing a participant’s agreement with a
given statement) or even binary items (e.g., a yes—no response to a question
about psychiatric symptoms).

Thus, our discussion of DIF will use a nonlinear factor analysis formulation.
Although we will attempt to describe the nonlinear factor analysis formulation,
we suggest that this not be the reader’s first introduction to nonlinear factor
models and generalized linear models more generally, as mentioned above.
However, for review, a brief description follows.

The major advantage of nonlinear factor models is that they allow the relation
between items and latent variables (i.e., the one expressed in Equation 1) to
take a nonlinear form, corresponding to items y;; of different scales. The shift
to nonlinear variables requires two major innovations on the model presented
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above. The first is what is known as a linear predictor, which we denote wy;,
and which is formulated as follows:

M
wij = Vi + Z M Tlim - )
m=1
Note that this is basically the exact same equation as Equation 1, except
without the error term. The purpose of the linear predictor becomes a bit clearer
when we introduce the second component of nonlinear factor models, known
as the link function. In order to get to our expected value of y;;, we must take our
linear predictor w;; and place it inside the inverse link function. Let us unpack
each term in this statement. The expected value of y;; is whatever value we
would predict for subject 7 on item j. For binary items, this is the probability
that that particular subject will give a response of 1 (e.g., say “yes” to a yes—no
question, get a question correct on a test of ability, endorse a given symptom
on a symptom inventory) based on their level of the latent variable. We will
denote this u;; (following the notation of Bauer and Hussong (2009)).
As for the inverse link function, let us first define the link function, g (¢):

g (k) = wy. 3)

To put Equation 3 colloquially, we can define the link function g (x) as “what-
ever function we apply to the expected value of y;; to get to w;;.”” Being that the
inverse link function, denoted g~! (¢), is the inverse of g (x), it can be collo-
quially defined as “whatever function we apply to w;; to get to the expected
value of y;;.”” Note that the function g (x) must be bijective in order to have an
inverse.

Mathematically, it is defined as follows:

g (wy) = ny. S

Thus, in order to get to u;;, our expected value for y;;, our model is implicitly
estimating the linear predictor w;; and applying the inverse link function. As
far as our choices of link and inverse link functions, they depend on the type
of data we are interested in modeling. One reasonable choice for binary data
is the logit link function, whose inverse will yield a number between 0 and 1,
making it well-suited to modeling a probability. As noted above, when we are
working with binary data, the expected value of y;; () is the probability that
a given individual endorses item y;; — that is, P (v; = 1). Thus, we will use the
logit function to translate y; to w;;, and the inverse of that function to translate
wj; to p;. The logit link function is defined as follows:

(1)

j) =In ——— = wy, 5
g(ru]) n 1— (:ui/) Wij ( )
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where In denotes the natural logarithm. Conversely, the inverse logit link
function is defined as follows:
B exp (wy)

g (wy) = Trop(wy) M (6)
where exp (g) is shorthand for e9. If the reader wishes to see that Equation 6 is
indeed the inverse of Equation 5, they may choose a value of 1;;, which can be
any number between 0 and 1, and plug it into Equation 5. Then take the value of
w;; obtained from Equation 5 and plug it into Equation 6. This transformation
should yield the originally chosen value of ;.

Putting it all together, we can now finally formulate how the latent variable
itself is related to the expected value of a binary item under a nonlinear fac-
tor analysis. Combining the original linear formulation in Equation 2 and the
inverse link function in Equation 4 we get the following:

exp (Vi + Y 7~mﬂ7im)

Hij = (7

1 +exp (vj + 21’:1/1:1 kmjnim)

Note that we have the same exact parameters linking the latent variable 7;,,
to the item y;;: intercept v; and loading A,,;. The difference is that now yj; is
related by these parameters to the latent variable through a nonlinear function
as opposed to a linear one. If the reader wishes to test this out, an example is
given in Table 2, in which we have each individual’s values of 77;, w;;, u;;, and
yjj for pre-set values of },,; and v;.

There is one more step to understanding nonlinear factor analysis, and that
is defining the probability function. Note that the inverse link function does not
give us y;; but its expected value — that is, for a binary item it will not give us a
value of y;; (which can only take a value of 0 or 1) but rather u;;, the probability
that y; will be 1. Notice also that our linear predictor has no error term in it — we
have not accounted for any source of randomness or error. Thus, the probability
function is what links the expected value y;; to the value of y; we ultimately
obtain. In the case of binary response variables, we generally assume that y;;
follows a Bernoulli distribution with probability ;.

Colloquially, this means the following. The variable y;; is random and we
don’t know whether it will be 0 or 1, but we do know the probability with
which it will be 1, and that probability is u;;. A person with g;; = 0.9 will most
likely give a value of 1, a person with y;; = 0.2 will most likely give a value of
0, and a person with y; = 0.5 is just as likely to give a value of 0 or 1, but any
one of these people could theoretically give a value of 0 or 1. Note, for instance,
in Table 2, that the observed values of y;; take values of 0 or 1, and may even
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Table 2 Example values of latent variables (7;), linear predictors (w;),
endorsement probabilities (), and outcomes (y;;), for a nonlinear factor
analysis with A = 1.5 and v = 0.25

ID i wjj Hij Yij
1 0.5723 1.1084 0.2482 0
2 —0.0034 0.245 0.4391 1
3 -2.7187 -3.828 0.9787 1
4 -0.6953 -0.793 0.6885 0
5 1.3079 22118 0.0987 0
6 -0.9547 -1.182 0.7653 1
7 -1.7034 -2.3051 0.9093 1
8 0.204 0.5559 0.3645 0
9 0.3321 0.7482 0.3212 0
10 0.7218 1.3326 0.2087 0

(as in the case of the 8th observation) take a value of 0 if the probability of
endorsing the item is over 0.5.

Once we combine all three of these things — the linear predictor, the link
function, and the probability function — we have all the information we need
to think about factor analysis, and thus DIF, in a way that encompasses many
different types of models across disciplines. For instance, the formulation pro-
vided above for binary variables, using an inverse logit function to link the
linear predictor to the probability of endorsing an item, is actually the same
as the two-parameter logistic model in IRT (Birnbaum, 1969). This model is
frequently applied to binary data in an IRT setting.

2.2.1 Extensions to Ordinal Data

The above model will suffice for binary data, but ordinal data requires a slightly
more complicated extension of this formulation. A model arising from IRT for
ordinal data is known as the graded response model (Samejima, 1997). Like the
formulation given in Equation 6, we are modeling probabilities. Given an ordi-
nal item with K categories (k = 1,. . ., K), we model the probability of endorsing
category k or lower. For instance, in a three-level item, rather than modeling the
probability that a participant endorses option 1, 2, or 3, we model the probabil-
ity that the participant endorses option 1; option 2 or 1; or option 3, 2, or 1. Note
that the probability of endorsing option 3, 2, or 1 is exactly 1 — the participant
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must endorse one of these three options. So we only model K— 1 probabilities —
in this case, the probability of endorsing option 2 or lower, and the probability
of endorsing option 1. Note also that the case of binary data is actually a special
case of this model — that is, it is a model with K = 2 categories.

Whereas in binary data we used u;; to represent the probability of endorsing
a given item, here we use E (y;) to represent the cumulative probability of
endorsing category k or lower. In the three-level example just given, thus, every
participant would have an implied value of £ (y;;), the probability of endorsing
response option 1, and E (y»;), the probability of endorsing response option 2
or response option 1. Each value of E (yy;) has its own linear predictor, which
we will denote wy;;. This linear predictor is given by:

M
Wk = Ty = (vj £ xmjmm) : ®)
m=1

The new parameter in this equation, 7y, is the threshold parameter. This
parameter represents the value of the latent variable a participant must exceed
in order to get a score exceeding k. One critical note is that all possible val-
ues of 7;; and the intercept v; cannot all be identified; one of these values must
be fixed. The typical solution is to set the intercept v; to zero in the event that
individual thresholds are estimated. Readers who would like a comprehensive
description of the 7;; parameter are referred to the original formulation of the
model (Bauer & Hussong, 2009), where it is explained more completely.

2.2.2 A Note about Matrices and Vectors

In many cases it is useful to consider all of the above parameters in terms of
matrices or vectors, which contain all of the relevant parameters (e.g., all of the
loadings, all of the intercepts) for a given model. It is not critical to understand
matrix algebra fully to make this distinction; the important thing to know is
that, when we designate a matrix or vector of parameters as invariant or non-
invariant, that generally means that we are applying the distinction to all of the
relevant parameters. For instance, we can consider the factor loadings, each
indexed A;;,, as part of a matrix of dimension J X M, A.

If we say that we are testing the invariance of A, we mean that we are testing
the hypothesis that al// of the loadings, for all items measuring all factors, are
invariant across groups. Similarly, we can place all of the intercepts, individu-
ally denoted v;, into a J-length vector, which we will denote v. If we are using
a model for ordinal data with individual thresholds for each response category,
we can put these into a J X K matrix 7. With respect to the distribution of the
latent variable itself, we can think of the means of each factor as being stored
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in the M-length vector a, and the covariance matrix of the latent variables as
fitting into the M X M covariance matrix ®. We can also refer to the error terms
as aJ x J matrix Z.

Finally, we can even refer to the data itself as a matrix. The entire collection
of all of the items for all of the participants, individually denoted y;; for partic-
ipant 7 on item j, can simply be referred to as a N X J matrix Y. Similarly, if
we believe that subjects each have their own (unobserved) values of the latent
variables, we could consider the N X M matrix of these latent variable values,
individually denoted 7;,, for participant i on latent variable m, 5.

Though all of these quantities are different from one another, with some con-
sisting of measurement parameters (i.e., A, v, T), others consisting of latent
variable parameters (i.e., @ and @), and others not being parameters at all
(i.e., Y, i), the point is the same: when we refer to a given condition apply-
ing to a matrix or a vector, we mean that the condition applies to all of the
individual elements within that matrix or vector. This way of referring to the
elements of a matrix or vector will become an important one when we distin-
guish two different ways of thinking about measurement invariance and DIF,
as some methods consider individual parameters, whereas others consider the
entire matrix thereof.

3 What is Measurement Invariance? What is DIF?

With the nonlinear factor model defined, we are now able to provide for-
mal definitions of measurement invariance within it. Recall that measurement
invariance is thought of as the assumption that the relation between the latent
variable and the item is constant across all values of other covariates — these
can be demographic variables, such as age, or theory-specific variables, such as
SDQ score in our first example. We can define the assumption of measurement
invariance mathematically as follows.

S Wiilnim.xi) = f Visl1im)- 9)

Here the items and latent variable are referred to as y;; and 1;,, just as before;
the new addition is x;, which represents participant i’s value of some variable
x;. Note that we use the term covariate to refer to this variable. Other terms
which are sometimes used are background variable or predictor. This covari-
ate can be anything about the participant — gender, age, race, location, and so
on. What f'(v;|n:m) refers to is the probability distribution of y;;, conditional
on n;,; that is, it represents the value of the j”’ item the i subject will get,

based on their value of the latent variable. Similarly, f (y,»j|n,-m,x,-) refers to the
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i subject’s value on the item given their value of both the latent variable and
the covariate x;.

What this effectively means is: in the absence of measurement bias on the
basis of covariate x;, there will be no more information about y;; that x; can
give us over and above the latent variable itself. Suppose, for example, that
we are trying to determine whether an item (y;;) measuring children’s math
ability (77;,,) is free of measurement bias on the basis of gender (x;). If there is
no measurement bias, then a girl and a boy who each have the same value of
Nim» or the same level of math ability, should get the same exact score on y;;.
Their score is entirely dependent on the latent variable and nothing else. The
challenge, of course, is that we never know someone’s value of 7,,, because
it is latent — we must infer whether measurement bias is present using a few
modifications of the latent variable models shown above.

The condition shown in Equation 9 is described as full invariance (Millsap,
2011). Though it describes the ideal situation, in reality it is difficult to achieve
— it is generally improbable that there will be absolutely no differences on the
basis of some extraneous covariates on any of a test’s items. It is also very dif-
ficult to test this condition mathematically. Usually, we are testing a somewhat
weaker condition, which is referred to as first-order invariance (Millsap, 2011).
The equation corresponding to first-order invariance is as follows:

E (vij|nim:xi) = E (vij|nim)- (10)

What this means is that the expected value of y;;, conditional on the latent
variable 1, does not depend on the covariate x;. The formulation in Equation
10 is subtly but powerfully different from the one offered earlier. Put another
way, it means: even if we cannot guarantee that everything about y;; is the same
across all levels of x;,, we can guarantee that our predictions for values of y;;
does not depend on levels of x;,. Using the example above, this formulation
essentially means: an item measuring children’s math ability is free of bias on
the basis of gender if, given information about a child’s math ability, knowing
their gender would not cause us to make a different prediction about their score
on this item. There may be subtle differences in sources of error, which cause
actual scores on the item to deviate from predicted scores, but the predicted
score would be the same across gender.

In addition to representing a less stringent condition for the data to meet, this
formulation of first-order invariance also allows us to define measurement bias
mathematically using the terms we have already presented. Note that, in Equa-
tions 3-8, the expected value of y;; (there denoted ;) is entirely a function of
the latent variable 7, and the measurement parameters, A;,,, v;, and, if thresh-
olds are being modeled, 7. Thus, since we are dealing with expected values,
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looking for measurement bias means looking for differences across values of
X; in these parameters. So we can mathematically define measurement bias as:
any differences on the basis of any covariate x; in the values of the measurement
parameters.

We will now formally define the different types of measurement noninvari-
ance in terms of the different parameters they affect, and the corresponding
effects they have on the expected values of items. Using this formulation, we
are now ready to distinguish between the different types of DIF we can observe.
For this, we refer to Figures 1 and 2, in which the relation between 7;, and y;;
are shown based on different values of the parameters introduced in the pre-
vious section. Plots such as these are termed trace line plots, and they can be
useful tools for understanding the differences between groups in measurement.

We are presenting differences in these parameters in the context of a
multiple-groups scenario with two groups. The grouping variable will be
denoted G, and it will have two levels, Group 0 (G = 0) and Group 1 (G = 1).
Assume that group membership is a known variable (e.g., treatment group vs.
control group, or groupings based on self-reported gender and age) rather than
an unobserved subgroup. We will refer to the groups in this case as the refer-
ence group for G = 0 and the focal group for G = 1. This terminology stems
from the case in which there is one group with known measurement parameters
(the reference group: G = 0), and one in which measurement bias is a concern
(the focal group; G = 1): but we can apply it to any two-group case. After this
section we will describe the actual model formulation for measurement models
which allow DIF. As will be shown, we can model DIF on the basis of many
different types of variables, not just grouping variables. However, because it
is easier to present differences in terms of a simple comparison, we will first
present the types of DIF in the two-group case, without loss of generality.

3.1 Differences in the Overall Level of the Item: v;

As noted earlier, the intercept parameter v; denotes the intercept for item ;. This
parameter represents the predicted value of the item for a subject with a value
of 0 for all of the latent variables. If there is measurement bias in this param-
eter for grouping variable g, this means that one of the groups gives higher or
lower predicted values of the items than the other, controlling for the latent
variable.

The interpretation of this parameter depends on the type of item y;;. If y;;
is a continuous item, then the intercept represents the actual value we predict
someone with n;,, = 0 for all 5, to endorse. So if members of Group | have
a higher value of v; than members of Group 0, then members of Group 1 are
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Figure 1 Examples of uniform DIF in continuous, binary, and ordinal items
Note. Figures plot the expected value of y;; against the latent variable 7;. Note
the different intercept values for continuous and binary items, and different
threshold values for ordinal items, in the upper left-hand corner of the graphs.

predicted to give higher overall responses to y;;, even if they have the same
value of the latent variable 7;,,. For instance, suppose that we are measuring
a single latent variable, responsive parenting, and y;; is the amount of time a
parent spends playing with their child during a free-play task. Further suppose
that parents in Group 1 (which could be any grouping variable — older parents
relative to younger ones, male parents relative to non-male ones, parents in a
treatment condition relative to the control group) have higher values of v; than
those in Group 0. In this case, if we took two parents who had the exact same
level of responsiveness, but one parent was from Group 1 and the other was
from Group 0, we would predict that the parent from Group 1 plays with their
child more than the one from Group 0, even though in reality they are equally
responsive. One possible relation between the item and the latent variable is
shown in the top left portion of Figure 1. Notice that the lines are parallel: it is
only their intercept, representing their overall level of responsiveness, that has
changed.
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If y;; is binary or ordinal, the interpretation of v; changes. If y;; is binary, v;
represents the probability of endorsing the item. Suppose we are still measuring
responsive parenting, but the item y;; in this case is a binary response variable
of whether the parent endorses the item: “I try to take my child’s moods into
account when interacting with them.” In this case, if members of Group 1 had
a higher value of v; than those in Group 0, then we would predict that a par-
ent from Group 1 who has the same level of responsiveness as another parent
in Group 0, would nevertheless be more likely to endorse this item than their
counterpart in Group 0. The interpretation is only slightly different for ordinal
items. If the item were instead a five-level ordinal one, a higher value of v; in
Group 1 would be interpreted as a higher probability of endorsing any cate-
gory k, relative to category k— 1 (i.e., the next category down). In this case, we
would predict that a parent in Group 1 is more likely than a parent in Group 0 to
endorse a higher category, even at the same level of responsiveness. Note that
this difference is the exact same across all categories — that is, if Group 1 has
a higher value of v;, then they are more likely to endorse category 4 relative to
category 3, category 3 versus 2, category 2 versus 1, and category 1 versus 0.
A possible relation between the item and the latent variable is shown in Figure
1, both for the binary and the ordinal cases. Note that, just as in the case of
continuous variables, the difference between the trace lines is best described
as a horizontal shift, whereby one trace line is associated with higher values of
E (y;jln) than the other at every value of n;;. That is, while the expected value
of y;; may change, it does so uniformly.

3.2 Differences in the Relation Between the Latent Variable
and the Item: &,

If v; can be considered as the intercept for a given item, the loading A;,, repre-
sents the regression coefficient that conveys the effect of the latent variable 7,,
on this item. Thus, if there are differences on the basis of grouping variable g in
Ajm, that means that there are differences in the nature of the relation between
the latent variable and the items. As with v;, the interpretation of between-group
differences in A, differs based on the scale of the item. However, in both cases
it can be interpreted as a regression coefficient, with 7;,, as the predictor and y;;
as the outcome. The type of regression coefficient is simply a matter of which
type of item we are using — if y;; is continuous, A;, is essentially a linear regres-
sion coefticient, but if y;; is binary, A;, will be a logistic regression coefficient,
and so on.

One possible set of relations between 7;, and y; with different values of
Mnj is shown in Figure 2. Notice a critical difference between the lines shown
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Figure 2 Examples of nonuniform DIF in continuous, binary, and ordinal
items
Note. Figures plot the expected value of y;; against the latent variable ;. Note
the different loading values for all items in the upper left-hand corners of the
graph.

here and those shown for between-group differences in v;: here the lines are
not parallel, both for continuous and binary values of y;;. The relation between
nim and y;; is stronger in one group than another. Notice that this is the case
for all types of items (i.e., continuous, binary, and ordinal). In one group, the
predicted value of y;; increases more quickly with corresponding increases in
Nim than the other group — that is, the relation between 7;,, and y;; is stronger in
this group.

Consider our responsive parenting example from earlier. Suppose that item
vjj here is the parent’s recall of the number of times they drove their children to
school. (Note that, this being a count variable, it would likely be better mod-
eled using a Poisson or negative binomial regression than the linear regression
we are proposing here. This example is just an illustration; we will treat it as
normally distributed for the purpose of argument.) Further suppose that g is a
grouping variable based on whether the family lived in an urban, suburban, or


https://doi.org/10.1017/9781009303408

https://doi.org/10.1017/9781009303408 Published online by Cambridge University Press

18 Research Methods for Developmental Science

rural location. In this case, the number of times the parent drove their child to
school may not be a particularly good measure of responsiveness, as it would
likely show a weaker relation to responsiveness among urban parents. Parents
in urban locations may be very responsive but just not have occasion to drive
their children to school, opting instead to accompany them on public transit
or walk them to school. In this case, the slope linking 7;, to y;, Aj,, would
be smaller among urban parents than rural or suburban ones, indicating that as
responsiveness increased we would not expect a corresponding increase in y;;.
Similarly, if y;; were a binary item asking a parent to recall the last time they
drove their child to school, taking a value of 0 if the occasion was over a week
ago and a value of 1 if it was within the past week, A;,, would also be smaller.
In this case, it would simply mean that, relative to rural or suburban parents,
urban parents’ probability of driving their children to school does not increase
with corresponding increases in responsiveness.

3.3 Differences in the Probability of Endorsing Specific Levels of
each Item: 7;

In an item with multiple possible categories a participant could endorse, recall
that there are category-specific threshold parameters, denoted 7, for category
k of item j measuring latent variable m. A difference between groups may mean
many different things, depending on the nature of the item and the differences
found therein. In general, such differences occur only if one group is more or
less likely to endorse a specific category than the other group, over and above
differences in the latent variable.

For instance, suppose we have a four-level ordinal item, and one group has
a lower threshold for £ = 4. What this means is that members of this group
are more likely to endorse category 4 than the other group. A between-groups
difference such as this one may happen, for instance, if category 4 refers to
an event which is extremely common in one group due to factors which are
unrelated to the latent variable. Suppose that in our responsive parenting exam-
ple we had a four-level ordinal item which asked the parent how frequently in
the past week they had helped their child get dressed, with response options
including never (1), occasionally (2), often (3), and always (4). If we created a
grouping variable on the basis of the child’s age, putting children under three
years in the younger group and children over three years in the older group,
we might predict that parents with children in the younger group are more
likely to endorse the “always” option than those with children in the younger
group. Though many children under three years can do some dressing-related
tasks, the majority are not able to complete all of the tasks involved in dressing
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themselves. Perhaps parents of children in the older group would have more
latitude to interpret the question — interpreting it, for instance, as the frequency
with which they engaged in age-normative tasks relating to dressing oneself
such as helping to pick out a matching outfit or helping the child to tie their
shoes. But the parents of children in the younger group would be much more
likely to say “always.”

As one might intuit from the very specific nature of this example that differ-
ences in individual thresholds are often difficult to hypothesize a priori. As will
be seen shortly, they can also be computationally challenging to model, which
leads to some methodological researchers recommending that such differences
be modeled sparingly (Gottfredson et al., 2019).

3.4 Differences That Do Not Represent Measurement Bias

We have stated that measurement bias is present if there are differences between
groups in the measurement parameters. However, there is another reason that
we may observe differences between groups in the latent variables: it may be the
case that there actually are differences in the latent variable. In particular, the
latent variable mean «,,, as well as latent variable variances wi and covariances
Vi, may differ between groups. We will use the term impact to describe such
differences.

Differences between groups in a,,, which we will refer to as mean impact,
are some of the between-group differences in which researchers are often most
interested. Consider our responsive parenting example. In this case, we may be
interested in whether one group is actually more responsive on average than
the other group. For instance, there is evidence that chaotic home environ-
ments (i.e., environments lacking in routine and structure) are conducive to
less responsive parenting (Vernon-Feagans et al., 2016; Wachs et al., 2013). If
we separated our sample into groups according to household chaos level, we
may well find that the mean of responsive parenting was higher among parents
who reported living in less chaotic homes, relative to their high-chaos coun-
terparts. Similarly, if we were conducting an intervention trial and measuring
postintervention levels of responsiveness, perhaps we would find mean differ-
ences on the basis of condition, with those in the treatment condition showing
higher means than those in the control condition.

Differences between groups in the variance components, which we refer to
as variance impact, is also common. It may be the case, for instance, that cer-
tain groups of parents show more variability in their responsiveness than others.
For instance, it may be the case that, in addition to being more responsive over-
all, parents in less-chaotic homes are more uniformly responsive than those in
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highly chaotic homes. That is, though we do not have evidence to cite here
as in the case of latent variable means, we might speculate that parents living
in highly predictable environments are generally all highly responsive, which
would mean that the variance of responsiveness in that group would be low
since all parents show the same high level of responsiveness. By contrast, par-
ents living in chaotic environments could be more variable in their overall level
of responsiveness.

We will now map the above-mentioned differences in the parameters, as
defined in this section, onto terminologies and conventions from the SEM and
IRT traditions of latent variable modeling.

4 Codifying Measurement Noninvariance and Differential
Item Functioning in Different Latent Variable Frameworks

Though measurement invariance and DIF refer to the same fundamental con-
cept, SEM and IRT have different ways of thinking about it. As noted earlier,
questions of measurement invariance are typically explored in the SEM frame-
work, particularly within the common factor model; by contrast, the study of
DIF has arisen largely from the IRT literature. Critically, field-specific distinc-
tions have faded in recent decades, with both fields’ methods generally being
united under the heading of nonlinear factor analysis (Wirth & Edwards, 2007).
However, the historical differences between the fields matter, because the pro-
cedures, goals, and types of items associated with these two modeling traditions
have given rise to a number of differences which the reader is likely to hear as
they study measurement-related questions. So we will make a few generaliza-
tions about the differences between the two fields, recognizing that they are
oversimplified, in the interest of providing a broad summary of a complicated
distinction.

The broadest distinction comes down to differences in the patterns of meas-
urement bias that are interpreted, as well as what these patterns are called. We
explore these patterns now.

4.1 Types of Invariance in SEM

In general, within SEM the question of invariance is considered at the level
of the test, with increasingly stringent invariance conditions which must be
met for the results to be interpreted (Meredith, 1993). These levels are shown
in Figure 3. There are a few things to note about the depiction of invariance
in Figure 3, some of which reflect broader points about measurement invari-
ance in SEM. First, we are considering a two-group case. The path diagram on
the left is for our first group (here denoted Group 0) and the path diagram on
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the right is our second group (here denoted Group 1). We will discuss multiple-
group analysis shortly (“Multiple-groups formulation”). In the meantime, note
that the depiction here includes two types of parameters: intercepts v;; and load-
ings Aj,ue. This g subscript, which is simply the last number in the subscript of
parameters that are allowed to vary across groups, represents group member-
ship. Second, notice that there are no threshold parameters 7;; here. In general,
the original formulation of measurement invariance within an SEM context
focuses more on differences in items’ overall levels (i.e., intercepts) and rela-
tions to the latent variable (i.e., loadings). Thus, testing for DIF in individual
thresholds does not correspond to any of the types of invariance we will name
in this section. We will see shortly, however, that it certainly possible to model
differences in thresholds at this stage.

The most fundamental form of invariance, shown in the top panel, is con-
figural invariance, which holds if the same factors account for the same items
across groups (Horn & McArdle, 1992). The assumption of configural invari-
ance would be violated if, for instance, there are three factors in one group and
two factors in the other. In general, absent configural invariance no inferences
can be drawn about differences between groups. Having established configural
invariance, we then examine metric, scalar, and strict measurement invariance
(Steenkamp & Baumgartner, 1998; Vandenberg & Lance, 2000). Note that met-
ric invariance is sometimes referred to as “weak metric invariance,” and scalar
invariance is sometimes referred to as “strong metric invariance.”

The first two of these conditions are shown in Figure 3. Under metric invar-
iance, the factor loadings A must be equal across all values of G. That is, we
assume that the strength of the relations between the latent variable and the out-
comes are the same across groups. Under scalar invariance, metric invariance
must hold and, additionally, measurement intercepts v must be equal across all
values of G. In other words, scalar invariance means that the overall level of
the items, over and above the latent variable itself, is the same across groups —
members of one group are no more or less likely to endorse the items than the
other.

Finally, under strict measurement invariance, both metric and scalar meas-
urement invariance must hold, but the error covariance matrix X must also be
equal across all values of G. Note that strict invariance, thus, is required to fulfill
the definition of full invariance offered above in Equation 9. The ramifications
of violations of these assumptions are discussed below.

The concept of partial invariance was introduced into the CFA tradition
to refer to the case in which some, but not all, measurement parameters are
invariant (Byrne et al., 1989; Cheung & Rensvold, 2002a). In such a case, for
instance, two loadings could be noninvariant, along with three intercepts. The


https://doi.org/10.1017/9781009303408

https://doi.org/10.1017/9781009303408 Published online by Cambridge University Press

22 Research Methods for Developmental Science

A A A A A AN AN A A A A

Ly Mg By i |:.l I'rs 1 Js| My Fe| by PRIV I & &1 J"‘aa
‘E— ﬁi]ﬂ E3lEajea ey

A Am Mv’)ﬂ.’l Az ¥ ]

A.g. Al o A, s - J-m P

. ﬁ
ujb
COMNFIGURAL INVARIANCE

A AN AN AN A A ANA AN AN A AN

| mn oEm| o M e Jre g bm| vge| e ey | by :V‘gg
EE &3 I [ea(Fa[ealEs[es
Aur Az Mg, "u )m. fAned har < Naa A ;‘13 )-lx A\u. -‘ﬂs,. )\a}f}\

) L?“ QQ

METRIC INVARIANCE

%E@ @33- %E%“?é
AN

A g s’ Ao }-asl,"'lwg J\r; A J*1| /\1.: Arzt A L 4"/“\38

!

AN

&}@ %j

SCALAR INVARIANCE

Figure 3 Different types of measurement invariance under the SEM
framework
Note. Path diagrams for two-group latent variable models under configural
invariance (top), metric invariance (middle), and scalar invariance (bottom).
The 1’s in triangles are standard notation for intercepts; the path between the
1 and the indicator, given by vje, represents the intercept. Different colored
arrows indicate differences across the two groups. Note that both loadings and
intercepts differ in configural invariance; only intercepts differ in metric
invariance; and neither loadings nor intercepts differ for scalar invariance.

case of partial invariance leads to an important question: How much invariance
is “enough” for the groups to be truly comparable in terms of the latent varia-
ble? Broadly, there is no one right answer to this question. For one thing, there
are many ways in which to measure the overall amount of DIF on an item or a
set of items. With respect to partial invariance, however, there are many ways to
even consider the question of how much DIF is too much. Should we consider
it in terms of the number of items with DIF, the number of unique effects, the
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magnitude of each DIF effect, or some other way? Though these questions do
not have a single answer, some evidence can be drawn from empirical studies
of the consequences of DIF. We discuss these studies in the section “Empirical
findings: Does DIF actually matter?”.

4.2 Types of DIF in IRT

By contrast to SEM, in IRT DIF is typically explored at the level of individual
items. That is, whereas SEM starts from the question of whether all items are
invariant and proceeds to test partial invariance only after that omnibus condi-
tion has been tested, IRT starts from the question of whether each individual
item is invariant (Mellenbergh, 1989). Consequently, within IRT DIF is typ-
ically tested at the level of each item. Uniform DIF refers to differences in
the predicted value of y;; that are the same across all levels of the latent varia-
ble. In binary or continuous items, this typically corresponds to differences in
the v; parameter. Recall that, as we noted earlier, the trace lines of two groups
who differ in v; do not cross — predicted values are simply higher for one group
than another. By contrast, nonuniform DIF refers to differences in the predicted
values of y;; that differ across levels of the latent variable. Nonuniform DIF typ-
ically corresponds to differences across groups in A;,, indicating a differential
relation between the latent variable and the outcome. Note that, as before, this
essentially refers to an interaction — as the latent variable’s value changes, dif-
ferences across groups may be exacerbated or attenuated. Each of these trace
lines are depicted with respect to binary and continuous items in Figures 1 and
2, as discussed earlier.

There are a few issues of which readers will want to take note with this
terminology. First, though uniform and nonuniform DIF are terms which are
typically applied to differences in intercepts v; and loadings A, respectively,
the broadest definition of nonuniform DIF also includes differences across
groups in 7j. That is, because the predicted value of the item may change across
groups to a different extent at different values of 7;,, this type of DIF is still
nonuniform. Another issue with this terminology is that some authors use the
terms uniform and nonuniform to refer to differences in the direction of DIF
effects across items within a given test (Chen, 2007; Yoon & Millsap, 2007).
That is, if a test has two items with DIF on v; and both are in the same direction
(i.e., the differences both favor the same group), that is referred to as uniform
DIF. By contrast, if the DIF on v; is nonuniform, it may be the case that the
difference on one item has a higher value of v; in one group, and the other has
a higher value of v, in the other group, # # j. We will not use this terminology
here, but readers should know that it is present.
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4.3 A Further Note about Similarities and Differences Between
SEM- and IRT-Based Methods

Though the terms used by SEM and IRT to describe DIF are different, it is
also important to note that they are in many ways the same. Uniform DIF maps
relatively well onto a lack of scalar measurement invariance — that is, a uni-
form difference across groups in the average predicted value of y;;. By contrast,
nonuniform DIF maps onto the idea of metric invariance; it represents a differ-
ence across groups in the predicted increment in y;; associated with a one-unit
shift in 7;,,. The main difference between the frameworks, as we have reviewed
them so far, is in the unit of analysis. Whereas SEM generally treats the whole
set of items as potentially noninvariant in terms of all items’ overall endorse-
ment levels and relations to the latent variable (scalar and metric noninvariance,
respectively), IRT most often considers whether individual items themselves
vary across groups in terms of their overall endorsement levels and relationsips
to the latent variable (uniform and nonuniform DIF, respectively). Neverthe-
less, despite the similarities between them, SEM and IRT have historically
been motivated by different considerations, and procedures for testing for
measurement noninvariance/DIF vary accordingly.

An important set of distinctions arises from the types of items which SEM
and IRT typically consider, as well as the nature of the latent variables they are
assumed to measure. Historically, the modal use of IRT has been to measure a
single latent variable with a relatively large number (e.g., >8) of items, which
are often binary or ordinal. There are many exceptions to this, with a number
of IRT models for more than one latent variable, as well as contexts in which
items are continuous (e.g., Ferrando, 2002; Reckase, 1997). By contrast, SEM
is typically applied when it is presumed that there are multiple latent variables,
with the nature of these variables and the relations among them being of pri-
mary interest. Additionally, SEM has historically applied the assumption of
multivariate normality to items, making it well suited to cases in which items
are truly continuous.

The first reason this matters is that, with items of different scales, different
sorts of invariance are possible, Notice that, though invariance of parameters v;
(codified at the single-item level as uniform DIF on v; in IRT, at the test level as
scalar invariance in v in CFA) and J;;,, (nonuniform DIF on A, in IRT, metric
invariance in A in CFA) are described by both frameworks, equivalence of error
terms is described only in CFA, as strict invariance. In CFA with continuous
items, strict invariance is required to fulfill the definition of full invariance
shown in Equation 9. In IRT with dichotomous variables, first-order invariance
is equivalent to the full definition of measurement invariance from Equation 9;
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this is because a conditional variance of y;; is not defined. Given polytomous
variables, first-order invariance and full invariance may differ, but under most
commonly used IRT models they are the same (Chang & Mazzeo, 1994).

The second reason it matters is that, as we will see, the types of models and
testing procedures used to find measurement noninvariance/DIF are informed
by the types of items and latent variables being considered. Though there are
many exceptions to this distinction, in general procedures arising from the CFA
tradition focus on establishing the structure of factors across groups, whereas
those arising from IRT focus on finding the optimal set of items to measure a
construct (Stark et al., 2004, 2006; Wirth & Edwards, 2007). We discuss this
broadly in the section “Consequences of Measurement Noninvariance and Dif-
ferential Item Functioning” and specifically when reviewing procedures for
locating DIF (“Detecting Measurement Noninvariance and Differential Item
Functioning”).

5 Models for Measurement Noninvariance and Differential
Item Functioning

If we are thinking of measurement bias in terms of differences between individ-
uals in parameter values, the next question becomes: How do we model such
differences in parameters? There are extensions of both SEM and IRT which
allow for parameters to differ across a grouping variable —i.e., multiple-groups
SEM (Joreskog, 1971) and multiple-groups IRT (Bock & Zimowski, 1997).
It is in the context of multiple-groups models that many tests for measure-
ment bias have been developed. In recent decades a new set of models, which
allow differences in parameters to be modeled according to a wider range of
variables, have entered the fray, including multiple-indicator/multiple-cause
(MIMIC; Finch, 2005; Muthén, 1989) and moderated nonlinear factor anal-
ysis (MNLFA) models (Bauer, 2017; Bauer & Hussong, 2009); we refer to
these as “regression-based” formulations. We introduce DIF first in the context
of a multiple-groups formulation, and end with the regression-based formula-
tion. We will demonstrate these in the context of a worked example, which we
introduce briefly first.

5.1 Data Example: Longitudinal Study of Australian Children

From this point on, we will be demonstrating each model we discuss using real
data arising from the Longitudinal Study of Australian Children (LSAC; San-
son et al., 2002). Data access must be requested from the Australian Institute of
Family Studies, but all study scripts are available in the Supplemental Materials
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Table 3 Items in the parental warmth scale

Item  Question

Item 1 How often do you express affection by hugging, kissing, and holding
this child?

Item 2 How often do you hug or hold this child for no particular reason?

Item 3 How often do you tell this child how happy he/she makes you?

Item 4 How often do you have warm, close times together with this child?

Item 5 How often do you enjoy doing things with this child?

Item 6 How often do you feel close to this child both when he/she is happy
and when he/she is upset?

of this report, as well as this Git repository: https://github.com/vtcole/
element.

Though the data are described completely elsewhere (Gray & Sanson, 2005;
Zubrick et al., 2014), we summarize the dataset briefly here. The data (N =
4.359; 51% male) come from a nationally representative longitudinal study of
children in Australia, whose parents participated in the first wave of the study in
2004. In two-parent households, both parents answered the survey when pos-
sible; for each participant, one parent was sampled randomly. There are two
cohorts of LSAC, one which started shortly after the child was born and one
which started when the child was in kindergarten; we use exclusively the birth
cohort here. Data come from the first wave of assessment, when most children
were in their first year of life (Mg, = 39.90 weeks; range = 14-103 weeks).
Note that the study used complex sampling, and we will use sampling weights
in our analyses for demonstration purposes. However, when using only a sub-
set of the sample that has been sampled in this way (as we are here), there are
generally a few more data management steps to take; we forego these here as
they are not the focus on the current demonstration.

For this analysis, we are interested in parental warmth, which was meas-
ured using the six items shown in Table 3 (Cohen et al., 1977). Responses
were on a five-point scale, with response options of never/almost never (1),
rarely (2), sometimes (3), often (4), and always/almost always (5). Internal
consistency for this scale was strong, with @ = 0.838. We will examine the
effects of three covariates: child sex (male vs. female), parent gender (male vs.
female), and child age in weeks. Note that we use child sex and parent gender,
because parents reported their gender identity but we only have information
about biological sex for children. We consider age in two ways: as a grouping
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variable with four levels corresponding to the four quartiles of age, and as a
continuous variable in its original metric (i.e., weeks).

The bulk of this section will introduce two main formulations of models
which can be used to answer questions about noninvariance and DIF. Impor-
tantly, the purpose of these models is twofold. First, they can be used to assess
whether noninvariance or DIF are present. Second, given that noninvariance
or DIF are found, they can be used to model those effects, with the goal of
eliminating their biasing effects on estimates of the latent variable parameters.
However, just as in any analysis, we must conduct a series of exploratory steps
before proceeding with the modeling process. We discuss these now.

5.2 A Preliminary Step: Data Visualization and Data
Management

As in just about any modeling context, it is critical in the study of measurement
invariance to visualize the data before conducting any analyses. We conducted
a series of data visualization and management steps with the example data in
R, which are given in the Supplemental Materials.

There are two goals of data visualization. The first is to determine which
items require further data management before proceeding. In particular, it is
critical to make sure that y;; has enough variation, ideally both in the aggregate
and at specific levels of the covariate, for us to model. For ordinal items, this
means determining whether the endorsement rates of each level are sufficient to
keep all levels, or whether we must collapse sparsely endorsed item categories.
This decision does entail some loss of information. However, in many cases
collapsing across sparsely endorsed categories yields more stable results and
greater convergence rates, relative to retaining a level of the item which few
subjects endorse (DiStefano et al., 2021).

In the example data, we find the endorsement rates shown in Figure 4. We
notice that for all items except Item 3, the lower two categories (rarely and
sometimes) were seldom endorsed. Thus, we collapse all items except Item 3
to a three-level variable, retaining all five levels for Item 3.

The second reason to visualize the data is that it may give us some clues
about what to expect in our analyses, and give us a sense of what those results
will mean in practical terms. Though there are many analyses which may be
useful (in addition to the checks for sufficient variance described above), we
suggest two. The first is to plot the means (or endorsement probabilities) of
each item by levels of the covariates. This step helps us to see whether one or
more items does not appear to show the same general behavior as others.
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Figure 4 Endorsement rates for each response option for all six items in our
data example from the Longitudinal Study of Australian Children (LSAC;
N =4,359)

Note. The number in each cell represents the number of participants who
endorsed the corresponding response option for the corresponding item.

We have done this for the example data in Figure 5. Note that, to get all the
item means onto comparable scales, we centered each item’s mean so that the
middle response option is zero. There are a few differences between groups,
most noticeably that male parents show lower means of all items than female
parents. However, here we are looking for items which deviate from the pattern
shown by all others. The only potentially suspicious items are Item 3 and, to
a lesser extent, Item 5, which appear to be higher among parents of younger
children, by contrast to most of the others, which are lower. These may be
items on which we can expect to see DIF.

We also recommend looking at correlation matrices by levels of each covari-
ate. This step helps to give a sense of whether some relations are weaker or
stronger at certain levels of the covariate, which may Lewis as nonuniform
DIF later on. We have depicted the correlation matrices in the example data
according to each level of age quartile in Figure 6. Corresponding plots for
different levels of child sex and parent gender can be obtained using the code
in the Supplemental Materials. (Note that researchers do not have to depict
each correlation coefficient graphically — merely examining the matrix may
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Figure 5 Mean item responses at each level of child age, child sex, and
parent gender in our data example from the Longitudinal Study of Australian
Children (LSAC; N = 4,359)

Note. The number in each cell represents the number of participants who
endorsed the corresponding response option for the corresponding item.

be sufficient.) We do not see anything too troubling with the example data,
although there may be subtle DIF effects that do not manifest here.

We are now ready to fit our models to the example data. We articulate the
two broad classes of models — multiple-groups and regression-based models —
and demonstrate them in the context of this example.

5.3 Multiple-groups Formulation

Multiple-groups models are particularly useful in that they allow the same
model —in our case, the model outlined in Equations 2—8 — to be fit in multiple
different groups, with parameters that may differ across the groups (Joreskog,
1971). If we use the same formulation as before, we have measured J items
(j=1,...,J) for N participants (i = 1,...,N); each item for each participant
is denoted y;;. These items measure M latent variables (m=1,...,M); each
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Figure 6 Polychoric correlation matrix for each age quartile in our data
example from the Longitudinal Study of Australian Children (LSAC;
N =4,359)
Note. Correlations ranged from 7 = 0.4 to » = 0.9. The relation between color
and correlation coefficients is shown in the bottom of the figure.

participant’s value of the latent variable is denoted 7;,. If we extend this to a
multiple-groups case, we assume that the participants fall into one of N groups
(g=1,...,Ng).

The multiple groups nonlinear factor model allows us to model Ng sets of
parameters. That is, there could be N sets of measurement parameters for each
group; the parameters for group g are subscripted with g, so that we have item
intercepts Vjg, Ajmg, Tjkg, and so on. Similarly, the latent variable means, vari-
ances, and covariances can vary across groups, with the parameters for group g
including mean g, variance t//,%lg, and latent variable covariances ¥4, q # m.
Taken together, this means that the groups may potentially differ in terms of
both the latent variables and the measurement parameters; in other words, they
could have completely different relations between the latent variable and the
items. The caveat, of course, is that the model must be identified, which pre-
cludes all of the item parameters varying across groups. Typically at least one
item’s parameters must be the same across groups, and potentially further con-
strained (e.g., its factor loading set to 1 and its intercept set to 0). However, there
are a number of ways to identify the model, as described in greater detail below.
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In the multiple-groups context, we would say that there is first-order meas-
urement invariance across the Ng groups if values of the measurement param-
eters Ajpg, Vjg, and Ty, (if estimated) are equal for all values of g. In other
words, measurement invariance is codified as the lack of differences in the
values of measurement parameters between groups. Similarly, we can test for
differences across groups in the mean a,,, variance a//,%lg, and latent varia-
ble covariances Y,,40,q9 # m. These are often the parameter differences that
correspond to a researcher’s substantive questions — for example, are there dif-
ferences in depressive symptoms between subjects of different genders? Are
the relation between internalizing and externalizing psychopathology the same
across age groups? — and distinguishing these differences from measurement
bias is one of the key tasks of measurement invariance analysis.

How exactly do we test whether there are differences across groups? We
can use a likelihood ratio test, which assesses whether the fit of one model,
which we denote the constrained model, is inferior to that of a more compli-
cated model, which we denote the full model. The log-likelihoods are obtained
and a test statistic, equal to -2 times the difference in the log-likelihoods, is com-
puted; this test statistic is roughly y? distributed with df equal to the difference
between the models in the number of parameters.

The logic of likelihood ratio tests within multiple-groups models is explained
fully elsewhere (Satorra & Saris, 1985). However, the basic premise is that a
model with no differences between groups in parameters is a simpler version
of the model which allows these differences. For example, suppose we have
two groups, and we are interested in whether the factor loading of the j item
for the m™ latent variable is invariant across the groups. If we set all values
of Ajmo = Ajm1 for groups 0 and 1, we are estimating fewer parameters than a
model in which these parameters are allowed to differ across the two groups.
So the model with measurement invariance in A;, is our constrained model;
the model without measurement invariance, which allows A, to differ across
groups, is our full model.

There are a number of points of which researchers should be aware when
using likelihood ratio tests. First, it is necessary to note that when certain
estimators are used (e.g., maximum likelihood estimation for categorical or
non-normal continuous response variables, which we use here), a correction
factor is applied to the loglikelihoods. Thus, rather than a “standard” likeli-
hood ratio test, we must incorporate these correction factors into the likelihood
ratio test statistic (Satorra & Bentler, 2001). If we denote the loglikelihoods of
the more restricted and less restricted models LLg and LL;, respectively; the
number of parameters in each as po and pi, respectively; and the correction
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factor for each as ¢y and ¢, respectively; we compute the likelihood ratio test
statistic as:

—2(LL; —LL
LRT = M (11)
cd
where
od = Poco—picr (12)
Po—P1

Note that this correction applies to any loglikelihood calculated using robust
maximum likelihood, which we use as a default when estimating nonlinear
factor models. Thus, it is our standard approach.

The second major point is a caveat about the potential usefulness of like-
lihood ratio tests. It has been noted that likelihood ratio tests depend on
sample size, with so much statistical power at large sample sizes that even
trivial differences between models may be significant (Brannick, 1995). To
get around this issue, some have proposed comparing fit indices commonly
used in SEM, between more and less constrained models (Cheung & Rensvold,
2002a). Among others, this includes the comparative fit index (CFI; Bentler,
1990), Tucker—Lewis Index (TLI; Tucker & Lewis, 1973) and the root mean
squared error of approximation (RMSEA; Steiger, 1998). A researcher might,
for instance, note that the CFI values (which takes values between 0 and 1,
with values closer to 1 indicating better model fit) are 0.95 and 0.98 for a sca-
lar and metric invariance model, respectively, and favor the model with metric
invariance because it improves the CFI substantially. Results from a number
of simulation studies have indicated that differences in these fit indices are in
many cases more sensitive to noninvariance than likelihood ratio tests (Meade
et al., 2008).

The final major point to note is that likelihood ratio tests (and the fit sta-
tistics based on them) are not appropriate for all model testing situations. In
particular, the y? distribution of likelihood ratio test statistics depends on the
less restrictive model being correctly specified (Maydeu-Olivares & Cai, 2006;
Yuan & Bentler, 2004). As such, if neither of the models being compared
is the true model, a likelihood ratio test is not suitable for making measure-
ment invariance comparisons (Schneider et al., 2020). Another distributional
assumption of likelihood ratio tests is that the more restricted model is not on
the boundary of the parameter space of the less restricted model. Though a
more complete discussion of this phenomenon is available elsewhere (Savalei
& Kolenikov, 2008; Stoel et al., 2006), one example arises when a researcher
is testing whether a variance component is nonzero by comparing a model with
the latent variable’s variance set to zero (the restricted model) to one in which
this variance is freely estimated. Because all variances must be equal to or
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greater than zero, the restricted model has fixed the variance to the “boundary”
of permissible values such a parameter can take. A more complete and tech-
nical presentation of this issue is available at the above-noted references, but
researchers should at least be aware that there are some models which cannot
be compared (Savalei & Kolenikov, 2008; Stoel et al., 2000).

5.3.1 Data Example

We tested the levels of invariance shown in Figure 3 in our example data. Mplus
code for fitting all models is available in the Supplemental Materials.

Conducting these tests involved expanding a bit on the series of models
shown in Figure 3. First, the classification of measurement invariance shown
in Figure 3 does not explicitly refer to measurement invariance in individ-
ual thresholds for different categories (74;,) when using ordinal data. Thus,
for models in which intercepts are allowed to vary (i.e., configural and met-
ric invariance) we tested two versions: one in which differences in intercepts
were tested, and one in which differences in individual thresholds were tested.
We tested models for three grouping variables: child sex (0 = female; 1 = male),
parent gender (0 = female; 1 = male), and child age quartile (0 = first quartile; 1
= second quartile; 2 = third quartile; 4 = fourth quartile). Thus, for each of these
grouping variables we tested a multiple-group version of the models outlined
in Equations 6-8, with the following set of constraints:

1. Configural with thresholds: A model with configural invariance, in which
loadings (M) and individual thresholds (74,) are allowed to vary across
groups; the intercept parameter (vj,) is constrained to zero in all groups.

2. Configural with intercepts: A model with configural invariance, in which
loadings (A.e) and intercepts (vj) are allowed to vary across groups but
individual thresholds are not.

3. Metric with thresholds: A model with metric invariance, in which loadings
(Mmjg) are constrained to equality across all groups but individual thresholds
(T4j¢) are allowed to vary across groups; the intercept parameter (vj¢) is set
to zero in all groups.

4. Metric with intercepts: A model with metric invariance, in which loadings
(Mmjg) are constrained to equality across all groups but intercepts (vj) are
allowed to vary across groups.

5. Scalar: A model with scalar invariance, in which loadings (A,,), intercepts
(vj¢), and thresholds (7,) are constrained to equality across groups.

Model identification is discussed formally below (“Model identification and
anchor items”). However, we note here that each set of models imposed a
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number of constraints for identification purposes. First, each model in which
loadings and/or intercepts were allowed to vary across classes, we used Item
1 as our anchor item. We chose Item 1 on the basis of it appearing to behave
similarly across groups in the data visualization step (described in the previ-
ous section). However, the importance of anchor items is discussed at greater
length below, both by way of a formal definition (“Model identification and
anchor items”) and an empirical review of the literature on anchor item selec-
tion (“Consequences of measurement noninvariance”). Second, we estimated
differences across groups in the latent variable by constraining the latent vari-
able’s mean «, and variance lﬂé to 0 and 1, respectively, and freely estimating
these parameters in other groups.

We conducted likelihood ratio tests comparing each successive level of
invariance to the next. For each grouping variable, this entailed four tests: one
comparing Models 1 (configural with thresholds) and 3 (metric with thresh-
olds), one comparing Models 2 (configural with intercepts) and 4 (metric with
intercepts), one comparing Models 3 (metric with thresholds) and 5 (scalar),
and one comparing Models 4 (metric with intercepts) and 5. Note that, as writ-
ten, models with differences across groups in intercepts (e.g., Models 2 and
4) are not nested within models with differences across groups in individual
thresholds (e.g., Models 1 and 3); thus, we do not compare these models in our
tables. However, a model with intercept differences can be re-parameterized to
show that it is nested within a model with threshold differences; indeed, this is
how we parameterize it in the Mplus code in the Supplemental Material. For
simplicity’s sake, we do not demonstrate here why this is the case, although it
will come up in a few special cases shortly.

Loglikelihoods and model comparisons for each model are shown in Table
4. Note that, due to our use of ordinal response variables with maximum
likelihood, we are unable to get the fit indices (e.g., Comparative Fit Index,
Tucker—Lewis Index) mentioned earlier. As a reminder, Models 1 and 2 were
configural invariance models, allowing between-group differences in loadings
and either item thresholds (Model 1) or item intercepts (Model 2); Models 3 and
4 were metric invariance models which constrained Model 1 and 2 respectively
by holding loadings equal across groups; and Model 5 was a scalar invariance
model which held loadings, intercepts, and thresholds equal across groups.

For child sex, scalar invariance was supported by all model comparisons. In
other words, fit was not improved by removing constraints on intercepts (Model
4 vs. Model 5) or thresholds (Model 3 vs. Model 5), nor by removing constraints
on factor loadings (Model 1 vs. Model 3; Model 2 vs. Model 4). In other words,
we have evidence that Model 5, the simplest model, essentially fits just as well
as the more complex models we fit. Thus, Model 5 is the final model; it is shown
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Table 4 Model fit and model comparisons for all multiple-groups models testing successive levels of invairance in our data example from

the Longitudinal Study of Australian Children (LSAC; N = 4,359)

Child sex

Model 1
Model 2
Model 3
Model 4
Model 5

Parent gender

Model 1
Model 2
Model 3
Model 4
Model 5

Child age

Model 1
Model 2
Model 3
Model 4
Model 5

Model comparison

Model fit

Npwr  LL CF

40 21627803 1.140
33 -21629.616  1.143
35 -21631.339  1.133
28 -21632.437 1139
23 -21633.364 1161
Noww  LL CF

40 21292550 1.166
33 -21312.932 1156
35 -21297.636 1161
28 -21324.891  1.168
23 -21345.598  1.168
Npwr  LL CF

78 24544744 1.155
57 -24555.844  1.135
63 ~24555.595  1.144
44 ~24567.457  1.147
29 ~24584.835  1.187

More restricted model A (Npar) X’ CF P Comparison

Model 3 5 5.936 1.191 0.313 Metric vs. configural
Model 4 5 4.859 1.151 0.433 Metric vs. configural
Model 5 12 3.752 1.080 0.988 Scalar vs. metric
Model 5 5 1.782 1.041 0.878 Scalar vs. metric
More restricted model A (Npar) X’ CF D Comparison

Model 3 5 8.492 1.198 0.131 Metric vs. configural
Model 4 5 21914 1.091 <0.001 Metric vs. configural
Model 5 12 83.609 1.147 <0.001 Scalar vs. metric
Model 5 5 35.499 1.167 <0.001 Scalar vs. metric
More restricted model A (Npar) % CF P Comparison

Model 3 15 18.047 1.203 0.260 Metric vs. configural
Model 4 15 22.149 1.114 0.104 Metric vs. configural
Model 5 34 52.830 1.107 0.021 Scalar vs. metric
Model 5 15 32.501 1.069 0.006 Scalar vs. metric

Note. Npqr denotes the number of parameters in a given model; LL denotes the loglikelihood; CF denotes the correction factor; A (Npar) denotes the change in the number of
parameters from the more restricted model to the less restricted model.
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Female children Male children

Figure 7 Final multiple-groups model based on child sex in our data example
from the Longitudinal Study of Australian Children (LSAC; N = 4,359)
Note. No between-group differences in latent variable means and variances
were significant at the @ = 0.05 level. Parameter values are given next to the
corresponding arrows for loadings, factor means, and factor variances. [tem
thresholds are given next to the triangle for each item; for instance, the
thresholds for endorsing the second and third response options for Item 1 are
—7.44 and -2.58, respectively, in both groups.

in Figure 7. In this model, we freely estimate the mean and variance for boys
but constrain the mean and variance to 0 and 1 for girls to set the scale of the
latent variable. The mean for boys, @; = —.005, is not significantly different
from zero, from which we infer that there are no differences in the mean level
of parent responsiveness based on child sex.

For parent gender a very different story emerges. Here, scalar invariance is
not supported in any comparison (Model 3 vs. Model 5 or Model 4 vs. Model
5). Moreover, metric invariance is only supported when we allow thresholds to
vary across groups (Model 2 vs. Model 4), not when we only estimate intercept
differences (Model 1 vs. Model 3). That is, the nonsignificant LRT comparing
Model 2 to Model 4 indicates that allowing thresholds to vary across groups
does not improve model fit, whereas the significant LRT comparing Model 1
to Model 3 suggests that allowing intercepts does improve model fit. Taken
together, we take these results as a rejection of metric invariance, albeit an
equivocal one. Thus, either Model 1 or Model 2 should be our final model.
As mentioned earlier, it can be demonstrated that models with between-group
differences in thresholds (i.e., Models 1 and 3) can be reparameterized to be
nested within models with between-group differences in only intercepts (i.e.,
Models 2 and 4). Thus, we tested the fit of Model 1 against Model 2, finding
that Model 1 fit significantly better, x> (7) = 33.702,p < 0.001.

Model 1 is, therefore, our final model for parent gender. It is shown in Figure
8. We see that loadings are considerably higher for fathers, relative to mothers,
for a number of items. This difference in loadings suggests that these items
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Figure 8 Final multiple-groups model based on parent gender in our data
example from the Longitudinal Study of Australian Children (LSAC;
N =4,359)

Note. Asterisks denote significant between-group differences in latent
variable means. **p < 0.01. *p < 0.05. fp < 0.10. Parameter values are
given next to the corresponding arrows for loadings, factor means, and factor
variances. Item thresholds are given next to the triangle for each item; for
instance, the thresholds for endorsing the second and third response options
for Item 1 are —8.48 and —3.66, respectively, in both groups.

are more closely related to parental responsiveness among fathers than among
mothers. There is less of a consistent pattern among thresholds, with some items
(e.g., Item 2) showing lower thresholds (meaning an overall higher likelihood
of endorsement) among fathers, and others (e.g., [tem 3) showing lower thresh-
olds among mothers. With respect to the latent variable, we see that the mean
for fathers is alpha; = —.818 and that it is significantly different from zero.
We thus conclude that fathers show lower overall levels of responsiveness than
mothers.

Finally, with respect to age grouping, we see that metric invariance is sup-
ported by both relevant comparisons (Model 1 vs. Model 3, Model 2 vs. Model
4), and scalar invariance is rejected by both relevant comparisons (Model 3
vs. Model 5, Model 4 vs. Model 5). That is, both sets of LRT’s informing our
conclusions about metric invariance were nonsignificant, and both sets of tests
informing our conclusions about scalar invariance were significant. Here too,
as with parent gender, we are left to interpret either Model 3 or Model 4 — and
here too, we can test a reparameterization of Model 4 against Model 3. When
we do so, we find that Model 3 does not provide significant improvement in fit
over Model 4, y? (19) = 20.8724,p = 0.344.

Thus, we move forward with Model 4 for age. It is shown in Figure 9.
Interestingly, the parameters in Figure 9 give us some insight into the relation
between intercept and threshold parameters, as well as why we can reparame-
terize models with intercept DIF to be nested within those for threshold DIF.
Notice that the thresholds differ across age groups, but that they do so uniformly
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Figure 9 Final multiple-groups model based on child age in our data example
from the Longitudinal Study of Australian Children (LSAC; N = 4,359)
Note. No between-group differences in latent variable means and variances
were significant at the @ = 0.05 level. Parameter values are given next to the
corresponding arrows for loadings, factor means, and factor variances. Item
thresholds are given next to the triangle for each item; for instance, the
thresholds for endorsing the second and third response options for Item 1 are
—7.57 and —2.67, respectively, in all groups.

across item categories. For instance, the threshold for choosing the second
response option for Item 2 in the youngest quartile, -4.424, is lower than the
corresponding threshold in the second-youngest quartile, -4.691. The differ-
ence between these groups’ thresholds is -4.424 - (-4.691) = 0.267. That is,
the threshold for choosing the second response option is 0.267 units higher in
the youngest quartile than in the second-youngest quartile. Now notice these
groups’ thresholds for choosing the first response options: -0.024 in the young-
est quartile, and -0.291 in the second-youngest quartile. The difference between
these two groups’ thresholds is -0.024 - (-0.291) = 0.267. In other words,
thresholds for all of the response options for a given item must increase or
decrease by the same amount. This formulation is mathematically identical to
between-group differences in intercepts.

Looking at the thresholds, we do not see a clear pattern across ages. Thresh-
olds are generally the lowest in the oldest group, but this pattern is not constant
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across ages (as thresholds are actually the highest in the second-oldest group).
We also see no mean differences across age groups — that is, parents do not
show more responsive behavior overall across age groups. Findings like these
ones are a great example of why interpreting DIF effects substantively is often
a bad idea: there is no particular reason why thresholds should vary in this way
(i.e., they do not increase or decrease monotonically across ages), and trying
to intuit such a reason is often a fool’s errand that may lead us to an erroneous
conclusion. Thus, in a case like this one we would typically include the DIF
effects of age on threshold when generating estimates of factor scores, with-
out interpreting what such effects mean. We elaborate on this reasoning below
(“Recommendations for best practices”).

5.4 Regression-Based Models

Regression-based models take a different approach to modeling between-group
differences in parameters, and just about any multiple-groups model can be
reparameterized using a regression-based formulation. However, as will be
shown momentarily, their real strength is that they can accommodate types of
measurement noninvariance/DIF that multiple-groups models cannot. Rather
than testing the null hypothesis that parameter values differ between groups,
regression-based formulations model parameters as outcomes in a regression
equation with group membership — along with any other person-level variable
— as a covariate (Bauer & Hussong, 2009; Finch, 2005).

We start with the formulation of the item response under the nonlinear factor
model shown in Equations 2 and 3. As before, A;,, represents the loading linking

the m™ factor to the j

item, v; represents the intercept of item /, and, if the data
are ordinal, 7y; represents the threshold for the k™" category for the j item. We

can alter Equation 2 as follows:

M
wjj = v+ Z 7\,'/‘,,177,',”. (13)
m=1

For ordinal items, we can alter Equation 8§ as follows:

M
Wij = Tikj — (V;‘j + Z )\ijmnim) . (14)
m=1

Note that in both cases the only alteration is the addition of the subscript
i to the parameters Ay, v, and 7. The addition of this subscript may seem
minor, but it represents the crucial modification that defines a regression-based
approach: each individual 7 has their own person-specific value of the measure-
ment parameters. Each of the regression parameters is potentially a function of
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individual i’s value on any number of covariates, which can include potentially
DIF-generating factors such as age, gender, race, and so on.

Two differences from the multiple-groups approach emerge here. Unlike the
multiple-groups approach, these variables may be of any scale; though we could
consider group membership as a covariate, we can also consider continuous or
ordinal variables. Additionally, we can consider each measurement parameter
as a function of multiple covariates at a given time. Note of course that we could
combine covariates to create groupings in the multiple-groups approach — for
instance, in our data example, we could create a grouping variable that sum-
marizes each combination of child sex, parent gender, and child age quartile.
This formulation may be preferable in some cases, such as when we would like
to make comparisons across specific levels of these variables (e.g., comparing
boys in the first quartile of age to girls in the first quartile of age). However,
it would create a large number of groups (in our data example, it would create
2% 2 x4 = 16). One of the approximate methods described below (“Detecting
measurement noninvariance”), alignment, is well suited to this case.

We denote the p” covariate for the i participant Xip, where P refers to the
number of covariates (p = 1,...,P). The regression equation for each of the
measurement parameters in Equations 13 and, if relevant, 14 are as follows:

P
Vi = Vot ) Vipkip (15)
p=1
P
)\ijm = }\'ij + Z }\'jmpxip’ (16)
p=1
P
Tij = Thjo + kajpxl'p- 7)
p=1

Just as in any regression, there is an intercept to each of these equations.
These parameters, denoted vjo, A0, and Tz represent the predicted values of
intercepts, loadings, and thresholds, respectively, when all covariates are equal
to 0. The parameters v;,, A, and 7y, represent the predicted increment in the
intercept, loading, and threshold parameters associated with a one-unit increase
in covariate x;,.

Just as between-person differences in the measurement parameters can be
modeled, so too can between-person differences in the latent variable’s param-
eters itself — that is, latent variable mean and impact. Specifically, we can think
of the mean as a function of covariates as follows:

P
A = Qom + Z ApmXip- (18)
p=1
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Although it may be counterintuitive to think of each individual being char-
acterized by their own mean (which is suggested by the presence of a subscript
i for each value of «;;,), we can instead think of @, as the predicted value for
individual 7 on latent variable m, given all their values of the covariates x;,. We
typically set aq,, to O for identification. If x;, were a single grouping variable
and there were no additional covariates, @,,, would be equivalent to the differ-
ence between groups in means. The difference here is that grouping variables
represent just one of the types of covariates we can have. We refer to effects like
this one as mean impact, as discussed above (“Differences that do not represent
measurement bias”).

Finally, we can also allow the variance of the latent variable to differ over
levels of x;, — that is, variance impact. This relation is parameterized in the
same way as the other parameters, with one exception: because the variance
must always be positive, we apply an exponential function as follows:

P
l//lzm = | Yom + Z‘/’pmxip . (19)

p=1

Because the exponential function yields a positive number in all cases, this
alteration allows us to consistently model permissible values of l//izm. As with
aom, we typically set ¢, to zero for identification.

Note that regression-based models offer a major advantage over the multiple-
groups formulation: they explicitly allow the incorporation of multiple covari-
ates. Moreover, these covariates may be of any scale; they need not be grouping
variables. Thus, in addition to the likelihood ratio test strategy outlined above,
we can also simply test the significance of a given parameter. For instance, if
there is a significant DIF effect of gender (which, for illustrative purposes, we
will say is our first covariate; i.e., p = 1) on the intercept of Item 5, then the
parameter vs; will be significant.

A version of this model, the multiple indicator multiple cause (MIMIC;
Finch, 2005; Muthén, 1989) model, introduced as the first major alternative to
the multiple-groups formulation. In the MIMIC model, loading DIF (i.e., the
equation for A;,) is not allowed; nor is impact on the latent variable’s variance
(i.e., Equation 19). Thus, the MIMIC model generally models only uniform
DIF and mean impact, and the model is best applied to cases where only differ-
ences in the overall levels of individual items are hypothesized. The full model,
with all of the above equations, is typically referred to as moderated nonlin-
ear factor analysis (MNLFA; Bauer, 2017; Bauer & Hussong, 2009). Because
this is the most general instance of the model, we will move forward with this
parameterization.
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5.4.1 Data Example

We fit a series of moderated nonlinear factor analyses to our example data
using a specification search approach which is similar to the automated moder-
ated nonlinear factor analysis (aMNLFA) algorithm described in greater detail
later on (“Model-based approaches: specification searches”; Gottfredson et al.,
2019). In our specification search, we fit one model for each item. In each of
these models, all of the other items’ measurement parameters (i.e., Ay, v, and
7 if estimated) are assumed noninvariant — that is, no between-participant
differences are modeled for these items. For the focal item, the effects of all
three covariates (parent gender, child sex, and child age) were modeled simul-
taneously. Note that, to offset the complexity of adding in multiple variables at
once, we did not test between-person differences in thresholds 7 here, only
differences between intercepts v;;. As discussed below (“Model identification
and anchor items”), a few additional constraints needed to be imposed to ensure
model identification. In these models, we estimated each item’s DIF model con-
straining the mean and variance of the latent variable to 0 and 1, respectively.
This approach is not, however, the only identification strategy, as discussed
below.

After fitting a series of item-wise models using the approach described
above, we tallied all the DIF effects which were significant. We then combined
these into a combined model, which contained (1) all of the DIF effects that
were significant in the itemwise models, and (2) between-person differences
in latent variable means and variances. In this penultimate model, the baseline
value of the latent variable mean (ag) and variance (o) were set to zero for
identification purposes; the effects of all the covariates (i.e., @, and ¥, for all
g > 0) were estimated. Note that we do retain some nonsignificant intercept
effects in this model — for each loading we retain the corresponding intercept
effect, as is standard to do whenever a loading effect is included. Further note
that failing to include an intercept DIF effect in the presence of loading DIF
would be much like including an interaction term without the corresponding
main effect.

Finally, because the above model combines all the significant effects across
items, a number of effects were rendered nonsignificant. Our final model
removes any of the effects which were rendered nonsignificant in this penulti-
mate model. Figure 10 shows this final model. When interpreting this figure,
note that age was divided by 100 to facilitate model convergence. Because
the model contains an exponential parameter (for the variance term), values
of age in their original scale (weeks) caused estimation problems. In partic-
ular, because the number of weeks could often take the form of a relatively
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Figure 10 Final moderated nonlinear factor analysis model in our data
example from the Longitudinal Study of Australian Children (LSAC;
N =4,359)
Note. To simplify presentation, the model is split into two diagrams: the
baseline values of parameters, and the covariate effects. In the model for
baseline measurement parameters, values of measurement parameters are
shown for the case in which all covariates are equal to zero. Item thresholds
are given next to the triangle for each item; for instance, the baseline
threshold for endorsing the second and third response options for Item 1 is
—8.52 and —3.73, respectively, in both groups. In the model for covariate
effects, all effects for a given covariate-item pair are the same color; for
instance, both the intercept and the loading effect for age on item y4 are
orange. Loading DIF is shown as a dotted line; intercept DIF is shown as a
solid line. Finally, mean and variance impact are shown as bold black arrows.
For all parameters, **p < 0.01, *p < 0.05, and fp < 0.10.

large number (e.g., 60), the parameters associated with this form of age were
often small enough (e.g., a 0.0001-unit shift in the variance of parental respon-
siveness, per week of age) that the covariance matrix of the parameters was
difficult for the model to estimate. Dividing age by 100 put it on a similar scale
to the other predictors, allowing us to circumvent issues with the parameter
covariance matrix.

As shown in Figure 10, there were a number of DIF effects on intercepts
v;;. These are represented by arrows pointing from a covariate directly to an
item. These effects represent the increment in log-odds in the probability of
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endorsing one category (i.e., category k) over the next category down (i.e., cat-
egory k—1). For instance, the log-odds of endorsing a higher category (category
3 over category 2; category 2 over category 1) on Item 1 are 0.96 units lower
among fathers than mothers. Parent gender shows a similar pattern of nega-
tive intercept effects on Items 3 and 4, indicating that fathers are less likely
to endorse these items than mothers, even at the same level of responsiveness.
Child age showed a less interpretable pattern of intercept effects, with a positive
effect on the intercept of Item 2 but negative effects on Item 3; note that some
nonsignificant effects of age are included, corresponding to loading effects on
the same items.

Figure 10 also shows a number of DIF effects on loadings A, depicted as
arrows pointing to other arrows. They represent the increment in log-odds in
the value of A;; associated with a one-unit shift in the variable. For instance,
the loading for Item 4 decreases by 1.46 units for every 100-week increase in
child age (or 0.0146 units for every week increase), indicating a weaker relation
between this item and responsive parenting among parents of older children. A
similar effect was seen for Item 5, which was also more weakly related to the
latent variable among parents of older children. A negative loading effect was
seen for parent gender on Item 2, which showed a weaker relation to responsive
parenting among fathers than mothers.

Finally, with respect to the latent variable, Figure 10 shows that fathers were
both less responsive overall and more variable in their responsiveness than
mothers. The lower overall level of responsive parenting among fathers is indi-
cated by the negative mean impact effect. Note that it is challenging to interpret
the magnitude of this effect given that the variance impact parameter is also sig-
nificant; there is no unit in which the coefficient of -0.655 can be placed. Thus,
we cannot say that fathers are, for instance, -0.655 standard deviations lower
in responsiveness than mothers — we simply know that they are significantly
lower. The positive variance effect indicates that fathers showed higher levels
of variability in their responsiveness. It represents the increment in log-odds
of the variance associated with being a father, relative to being a mother. Fol-
lowing Equation 19, we say that the variance of responsive parenting was 1 in
mothers and %% = 1.21 in fathers.

5.5 Model Identification and Anchor ltems

As noted when we first introduced the common factor model in Equation 1,
a number of constraints typically need to be imposed on parameters for a
latent variable model to be identified. Ensuring model identification becomes
even more complicated when we allow for between-person differences in
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measurement parameters (i.e., DIF) and latent variable means and variances
(i.e., impact).

One possibility is to constrain the latent variable’s mean and variance to 0 and
1 respectively, across all participants. In the multiple-groups formulation, this
would be equivalent to setting @, to zero and zﬁig to 1 for all values of g and
m. In a regression-based formulation, it would be equivalent to simply setting
@ to 0 and wizm to 1 for all participants —that is, not estimating any regression
effects (i.e., apy or ¥,,) and simply constraining a,, and lpgm to 0 and 1. The
disadvantages of this approach are clear: if there are in fact differences between
participants in the means and variances (which, in practice, is often both true
and of primary interest), this model will not capture them.

Another possibility is to constrain one item’s loading A;,, and intercept v; to
1 and 0 across all individuals. As with the case of latent variable means and
variances discussed above, the parameters associated with this strategy differ
between multiple-groups and regression-based approaches. However, in both
cases, this is essentially the same as the “reference item” approach in factor
analysis more generally, but now it carries an additional implication: this item’s
measurement parameters are also assumed to be equal across groups.

Alternatively, there are a number of options which combine the features
of these two strategies. One possible approach combines the following two
constraints.

1. First, the value of the latent variable’s mean and variance are set to 0 and
1 for some baseline value of a DIF-generating covariate. In the multiple-
groups case, the factor means and variances for the reference group, @, and
wio, are set to 0 and 1, and the corresponding values in the other groups are
estimated freely. In regression-based approaches, baseline values «ag,, and
l//ém are set to 0 (with a value of 0 for lffgm corresponding to a variance of 1,
given the exponential term in Equation 19), while all regression coefficients
@pm and l/f,fm, p # 0 are estimated freely. This strategy allows the researcher
to estimate impact, while setting a common scale for the latent variable.

2. Second, set one item on which is invariant across levels of each DIF-
generating covariate. In multiple-groups models this means that there must
be an item whose measurement parameters (including loadings, intercepts,
and thresholds, if included) do not vary across groups. In regression-based
formulations, this means that, for each covariate x;,, there must be at least
one item on which x;, has no DIF effect (loading, intercept, or threshold).

When the above two conditions are met, the multiple-groups and regression-
based models are generally identified. This approach is the model identification
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strategy we have used with the example data in multiple-group formulation
discussed earlier in the Element.

Note that, like the reference item strategy mentioned above, this set of con-
straints does require at least one item to be invariant across all participants. This
item is called the anchor item. Though the terms “reference item” and “anchor
item” are sometimes used interchangeably, here we will use the former term to
refer to any item whose loading and intercept are set to 0 and 1 respectively, and
the latter term to refer to any item whose parameters are constrained to equality
across participants. In other words, an anchor item’s measurement parameters
are estimated freely, with the only requirement being that they do not vary
across participants.

A few considerations are important to note. First, recall that all of these dif-
ferent identification strategies result in the same model fit. Neither is “better”
than the other; any one of these may be preferable depending on the researcher’s
goals and interests. Second, note that a few different constraints must be applied
in the case of nonlinear models (see Millsap & Yun-Tein, 2004 for details). For
example, if thresholds 7j; are being estimated, all of the thresholds 7, and inter-
cepts v; are not jointly identified, as noted above; at least one threshold, or v;,
must be set to zero.

Finally, note that in general, unless we set all latent variable parameters to be
equal across participants (which, again, is generally an untenable assumption),
there must always be at least one anchor item. However, this raises an obvious
issue: what happens if the researcher chooses an anchor item (or, if the loading
and intercept are set to 0 and 1, reference item) which is actually noninvari-
ant? In the context of specification searches (discussed below: “Model-based
methods: specification searches”), there is substantial evidence that choosing
an anchor item which is actually noninvariant may cause both type I and type
II errors, leading the researcher to erroneously find DIF and miss DIF which is
actually present (Cheung & Rensvold, 1999; Meade & Wright, 2012; Raykov
et al., 2020).

Researchers have proposed a number of ways to get around this issue. First,
before testing alternate models (as was done in both the data examples above),
we could perform a preliminary specification search to find an appropriate
anchor item before proceeding to further tests. One proposed solution is an
iterative factor ratio testing procedure, which essentially tests every possible
combination of anchor and DIF-generating items (Cheung & Rensvold, 1999).
Although this strategy is comprehensive, it does become more challenging to
find DIF as the number of noninvariant items increases; this is particularly the
case if all of the DIF effects are in the same direction (Meade & Lautenschlager,
2004; Yoon & Millsap, 2007). A less time-consuming and computationally
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intensive approach is to test itemwise models, as was done in the regression-
based modeling example above, and rank items in order of their likelihood
ratio test statistic, choosing the one with the smallest value as the anchor item
(Woods, 2009a). These are only a few of the strategies we could use to identify
anchor items, and readers are referred to two comprehensive reviews (Kopf
et al., 2015a, 2015b) for greater detail. We also discuss a new class of mod-
eling approaches which do not require anchor items below (“Approximate
approaches”).

6 Consequences of Measurement Noninvariance
and Differential Iltem Functioning

Having established all of the ways we can model noninvariance or DIF, it makes
sense to revisit the question of why we would want to do so in the first place.
Although we of course understand that bias from person-level background
covariates is undesirable, we can understand at a more granular level what the
specific consequences of each type of measurement noninvariance will be in
terms of the inferences that can be drawn. As it turns out, different fields also
have different ideas about the consequences of DIF, and the recourse we have
if DIF is found. Moreover, there are a few issues which may have somewhat
different ramifications in theory than in practice.

6.1 Ramifications for the Interpretations of Between-Groups
Comparisons

Within the SEM framework, the question of measurement invariance has his-
torically been framed in terms of the validity of between-group comparisons:
at a given level of invariance, what between-group comparisons can be made?
Absent configural invariance, no comparisons can be made at all; a lack of con-
figural invariance implies that entirely different constructs are being measured
in the two groups. Thus, to attempt to compare the groups in terms of any of
the latent variables would be incoherent.

If metric invariance — equivalence across all items in A, — is not satisfied,
between-group comparisons in the covariance structure of the latent varia-
ble cannot be made. The inability to compare covariance structures between
groups means that any inferences about relations among variables — including
structural equation model results but also regression coefficients — cannot be
compared across groups. Of course, the issue of partial invariance — the idea
that some, but not all, measurement parameters may be invariant — complicates
this rule.
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One argument (Byrne et al., 1989) holds that even in the case of some factor
loadings being noninvariant, thus causing the researcher to reject the hypothesis
of complete metric invariance across all items in Y, some cross-group com-
parisons may be made as long as noninvariant items are in the minority. The
authors, as well as others in later work (Steenkamp and Baumgartner, 1998),
further argue that if cross-validation work supports the tests’ validity, a lack of
metric invariance can often be considered an artifact of the sample.

If scalar invariance — equivalence across groups in v; — is not satisfied,
between-group comparisons in latent variable means cannot be made (Bollen,
1989). This finding was particularly important one in the original context in
which measurement invariance analyses were first conducted, because errone-
ous conclusions of differences between group means (e.g., differences in mean
intelligence among members of different races) were often based on findings
of differences between groups in mean scores (Millsap, 1998). In many ways,
such conclusions were the raison d’etre of measurement invariance analysis
— by showing that a scale lacked scalar invariance, researchers could show
that between group means in this scale were a function of differences in item
intercepts (i.e., v;) as opposed to differences in the latent variable.

Implicit in these prohibitions on cross-group comparisons are equally strin-
gent prohibitions on cross-group generalization: findings cannot be generalized
from one group to another in the absence of measurement invariance. For
instance, suppose that a regression links one variable to another in a given
group, but the metric invariance assumption is not satisfied for at least one
of the variables. Then these regression findings cannot be generalized to the
other group.

6.2 Ramifications for the Accuracy of Factor Scores

In many applications, the principal goal of applying IRT or factor analysis is
to obtain some estimate of a subject’s overall level of the latent variable. Per-
haps the most common method is obtaining a sum score for each individual by
summing their responses to each item. There are a number of issues associated
with sum scores, including their failure to take into account measurement error
and implicit assumption that all items load equally onto the factor (McNeish &
Wolf, 2020). However, with respect to the question of measurement invariance
specifically, one issue becomes obvious: if there is DIF in any item, this DIF
will be directly incorporated into the sum score. For instance, suppose that we
are working with continuous items, and all but one item, item j, are invariant
across groups. For this item the value of v; is 1.5 units higher in group 1, relative
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to group 2. If we create sum scores, these sum scores will be on average 1.5
units higher in group 1 than group 2.

For this and many other reasons, it is preferable to obtain estimates of the
latent variable for each participant that incorporate information from the model.
These estimates, which we can denote 7;,, are referred to as factor scores
(Grice, 2001). After the latent variable model is estimated, the parameters are
then used to generate estimates of 7;,,, which can then be used in subsequent
analyses. Importantly, while it may intuitively seem as though there is only one
possible value for each person which fits in the model laid out above, in actual-
ity there are an infinite number of sets ofr;,, values for all N participants which
work in a given model. Accordingly, there are many ways in which to calcu-
late factor scores 17;,,. While a full review of factor score calculation methods
is beyond the scope of this Element, we note that modal a posteriori (MAP),
expected a posteriori (EAP), and plausible value-based scores are three com-
mon types of scores arising from the IRT literature (Fischer & Rose, 2019;
Muraki & Engelhard Jr, 1985). There are a number of equivalencies between
these methods of calculating factor scores and methods arising from the fac-
tor analysis literature which work with continuous indicators, such as Bartlett
scores and regression factor scores (DiStefano et al., 2009; Skrondal & Laake,
2001), but we do not review them here.

Because estimates of 7j;,, are obtained from estimates of the parameters, it
stands to reason that bias in the parameters will lead to biases in factor scores.
As discussed earlier, strict invariance is often untenable in practice — but in the
case of continuous items, it is theoretically necessary if we want to obtain com-
pletely unbiased estimates of 7j;,, (Millsap, 1997, 1998). In practice, however,
the effects of measurement noninvariance/DIF on factor scores are much less
certain than this.

6.3 Empirical Findings: Does DIF Actually Matter?

We can make a variety of predictions about the consequences of DIF, based
on the known mathematical relations among different model parameters as
discussed above. However, even though it is in theory a mathematically demon-
strable fact that, for instance, higher values of v; in one group will lead to
overestimated values of the latent variable means in that group, the actual con-
sequences in real data are unknown. Thus, a large and growing body of research
focuses on establishing whether and to what extent DIF biases estimates of
between-group differences, as well as scores on the latent variable itself.

With respect to differences between groups, it has been demonstrated that
differences across groups in factor loadings and intercepts may indeed lead
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to erroneous findings of between-group differences in means and covariance
structures (Chen, 2007; French & Finch, 2006; Millsap, 1997). As we might
expect, such differences are generally in proportion to the magnitude of the
DIF observed, in terms of both the proportion of items with DIF and the size of
the DIF effects themselves. Additionally, in the case of multiple groups, sample
size differences can lead to less severe bias in the larger group and more severe
bias in the smaller group (Chen, 2008; Millsap & Kwok, 2004). However, it is
critical to note that such biases are generally observed only in cases in which the
estimated model does not account for DIF. That is to say, when models which
model partial noninvariance such as the multiple groups and regression-based
models shown above are fit, and the DIF effects which are truly present are
accounted for by the model, estimates of differences between groups in latent
variable means, variances, and covariances are generally unbiased (French &
Finch, 2006; Millsap & Kwok, 2004).

Although it is clear that sum scores for each individual will not be correct in
the presence of measurement noninvariance, the magnitude of the issues caused
by sum scores in subsequent analyses is more difficult to quantify, as the accu-
racy of any score must be considered relative to the context in which it is being
used (Millsap & Kwok, 2004). Selection represents one context in which sum
scores arising from noninvariant items can cause a substantial problem. That is,
when researchers create sum scores and use some cut point as a selection crite-
rion, the sensitivity and specificity of such criteria may be reduced substantially
by measurement noninvariance (Lai et al., 2021; Lai et al., 2022; Millsap &
Kwok, 2004). Additionally, when sum scores are used in mean comparisons,
Type I error rates (e.g., of t-tests) are inflated in the presence of noninvari-
ance (Li & Zumbo, 2009). This bias has been shown to be more pronounced if
intercepts are noninvariant, relative to loadings (Steinmetz, 2013).

Findings are considerably more complicated when it comes to the accuracy
of individual factor scores, 7j;,. A growing body of research investigates this
question by simulating data with DIF, fitting a model which fails to account
for DIF or accounts for it incompletely, and examining the relation between
the true and estimated values of the latent variable for each participant. Under
some circumstances, failing to model DIF may be problematic. With binary
items, simulation work has shown that failing to account for DIF in estimating
factor scores could yield biased estimates of the relations between these factor
scores and covariates in subsequent analyses (Curran et al., 2018). However,
misspecifying the nature of DIF in the model which is used to estimate factor
scores may be less of a problem — in other words, as long as some covariate
effects on items are estimated, it is not always critical to get the location of
these effects correct. Evidence for this is provided by simulation studies which
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find correlations in excess of 7 = 0.9 between factor scores from misspecified
models and their true values (Chalmers et al., 2016; Curran et al., 2016). Addi-
tionally, some work using empirical data has shown that models which specify
different DIF effects often yield factor scores which are very similar (Cole et al.,
2022). However, as noted above, the context in which factor scores are to be
used is critical. In some high-stakes settings such as state and federal educa-
tional testing, two sets of factor scores which are correlated at » = 0.95 are not
sufficiently similar to be interchangeable.

7 Detecting Measurement Noninvariance and Differential
Item Functioning

The entirety of our discussion thus far has sidestepped one major issue: the pat-
tern of DIF effects is rarely known in advance. We often have many items, many
covariates, and few substantive hypotheses about where and even whether DIF
exists in our dataset. Even with a standard number of items and covariates, the
number of possible covariate-item pairs that need to be investigated for DIF
may become unmanageable. For example, with four covariates and ten items,
there are 40 possible covariate-item DIF pairs. Add to this the fact that DIF must
be estimated on a specific parameter (e.g., loadings, thresholds, intercepts) and
that all possible DIF effects may be combined into any number of models, and
the number of choices becomes orders of magnitude larger. The rest of this
Element focuses on different ways for determining the location and magnitude
of DIF effects in our sample.

As we will see shortly, there are many such methods. Recent work (Lai et al.,
2021) distinguishes between two different types of methods for locating DIF:
specification search approaches and approximate invariance approaches. The
former approach involves testing a set of models with different DIF effects in
a prespecified order, conducting repeated model comparisons with the goal of
finding the model with the best fit. These models are akin to stepwise regression
algorithms, in that they entail repeated applications of models which them-
selves are estimated in the “typical” way, typically full information maximum
likelihood. That is, there is nothing in the estimation algorithm which max-
imizes simplicity; the standard algorithm is simply applied repeatedly with
different constraints. By contrast, approximate invariance methods seek to min-
imize the overall number of meaningfully large DIF effects in the model. They
constrain the complexity using a penalty parameter, which may be incorporated
in a variety of different ways. We review specific subtypes of these meth-
ods, drawing comparisons and contrasts both within and between these broad
classifications.
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Table 5 Decision-making guide for all of the DIF detection methods in the Element

Indicator type Unit of Type of model Software availability Other considerations
analysis
Method Binary Ordinal ~ Continuous Multiple Regression-  Mplus R Amos
groups based
Pre-estimation
Mantel-Haenszel Yes Yes No — have Item Yes No No Yes No Higher Type I error rate than
to bin SIBTEST.

Logistic regression Yes Yes No Item No Yes No Yes No Higher Type I error rate than
SIBTEST.

SIBTEST Yes Yes No — have Item Yes No No Yes No Multiple different adaptations of

to bin SIBTEST, including crossing and

non-crossing (see, e.g., Chalmers,
2018).

Specification searches

CFA-based methods Possible  Possible  Typical Test Yes No Yes Yes  Yes Note that to consider configural
invariance, multiple groups are
required.

IRT-LR-DIF Typical ~ Typical  Possible Item Yes Yes Yes Yes No Parameterized in Mplus through
MODEL CONSTRAINT.

aMNLFA Typical ~ Typical  Possible Item Possible Yes Yes Yes No Parameterized in Mplus through
MODEL CONSTRAINT.

Wald-adjusted method — Typical ~— Typical  Possible Item Yes No Yes Yes No Parameterized in Mplus through

of Woods et al. (2013) MODEL CONSTRAINT.
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Approximate

approaches

Regularization Typical Typical Typical Item  Yes No No Yes No Currently only able to accommo-
date listwise deletion of missing
data.

Alignment Typical Typical Typical Item No Yes Yes No No Multiple different loss functions

to choose from, as well as Bayes-
ian and frequentist versions; deci-
sions not reviewed here.

Effect sizes

DTFR Yes Yes Yes Test  Yes No No Yes No

dMACS No No Yes Item  Yes No No Yes No

Signed dMACS No No Yes Item Yes No No Yes No

Indices summarized Yes Yes No Item  Yes No No Yes No

by Chalmers (2023)

Adjusted indices in  No No Yes Item Yes No No Yes  No These adjust for differences in
Gunn et al. (2020) latent variable distributions.

wABC Yes Yes No Item  Yes No No Yes No
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We also include a set of measures which seek to detect DIF outside the esti-
mation of the DIF model itself. In particular, these testing procedures obtain
approximate indicators of the location of DIF effects without actually estimat-
ing a latent variable model; these are typically employed for the purpose of
finding unsuitable items before fitting a model in the first place. We denote
these methods pre-estimation approaches to finding DIF.

7.1 Organization of This Section

Asnoted above, the majority of this section will focus on three broad groupings
of DIF detection strategies: premodel approaches, specification searches, and
approximate invariance methods. We will also briefly discuss effect size mea-
sures as a supplement to DIF detection procedures. At the end of each section
we will review the evidence for all the different subtypes of each method and
provide recommendations. All methods are summarized in Table 5, to which
we will refer throughout each section. Finally, many of these methods were
developed for cases in which there is only one latent variable, and are suffi-
ciently computationally intensive that they are often not run on multiple latent
variables at once. Thus, we will consider only the univariate case throughout
the section, revisiting the case of multiple latent variables at the end of the
section. Thus, the subscript m, which had previously been used to index latent
variables, will be dropped.

7.2 Pre-estimation Approaches

There are a number of testing procedures for finding DIF which do not depend
on the estimation of a model itself. That is, given only participants’ observed
responses, we can calculate a number of effect size indices, and in some cases
conduct inferential tests, which give insight into whether and where DIF may
be present. We refer to these as pre-estimation approaches. In general, they use
a proxy for the latent variable 7; to assess each item for DIF in advance of
running the model. The methods we will review are summarized in the top few
rows of Table 5.

If pre-estimation approaches have not yet estimated a model for 7;, how are
they able to detect DIF or determine whether the scale measuring 7; is invari-
ant? Most of these tests instead work with a sum-score of items, S;. The basic
premise of a sum score test for DIF is that S; may serve as a proxy for n; and
the relation between S; and an item y;; should be invariant across groups —1i.e.,
P(yijlSi-g) = P(yijlS:)-

One of the first of these tests is the Mantel-Haenszel (Holland & Thayer,
1986; Zwick, 1990). The sum score variable S; is stratified into Q levels,
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with each group being defined as s,. Then the M—H tests the following null
hypothesis:

Pl =181 =34:G=1)[p(y,, = 0Is; = 5,,G = 1)

HO :

—a=1 (20)

Py = 118 = 53 G = 0)fpy, = 018, = 5,, G = 0)

for all K groups. Here, a represents the ratio of the probability of a “correct”
response (i.e., y; = 1) at a given level of the sum score in Group 1, to the same
quantity in Group 0. The estimate of this quantity & can be obtained by:

2 (AgDg)/ Ny
2k (B4Cq)/Ng

where 4, and B, are the number of subjects in group g = 1 who answer item

a =

21)

yij correctly and incorrectly respectively, and C, and D, are the number of
subjects in group g = 0 who answer item y;; correctly and incorrectly respec-
tively. In testing the null hypothesis that the odds of a correct response do not
differ on the basis of group membership across all levels of S,, the M—H test
only considers uniform DIF. Additionally, by stratifying the sum score S; into
groups s, the M—H procedure obscures information about continuous varia-
tion in the data. A sum-score procedure which corrects these deficiencies is
logistic regression procedure (Swaminathan & Rogers, 1990). Like the M—H
procedure, the logistic regression procedure uses S; as a stand-in for 7;, but it
does so without grouping values of S;, and treating values of S; as a regressor
in a logistic regression equation as follows:

logit(yy) = 10 + T1S; + T2g + 135:g. (22)

The logic of this test is that, should there be no DIF between items based on
groupings g, there should be no association between y;; and g, or the interaction
between S; and g, after controlling for S;. A significant main effect of g indicates
uniform DIF, whereas a significant interaction effect indicates nonuniform
DIF.

The simultaneous item bias test (SIBTEST) procedure is based on logic sim-
ilar to the logistic regression and Mantel-Haenszel procedures, developing on
these approaches in a number of ways (Shealy & Stout, 1993). As noted above,
sum score methods such as M—H and logistic regression assume that sum scores
are a suitable proxy for the latent variable. Using sum scores as a proxy for
the latent variable makes sense by many reasonable arguments. In particular,
because a sum score is simply an unweighted sum, a method which uses sum
scores implicitly assumes that items all load equally onto the latent variable
(i.e., A; = Ay for all j and #). In this way sum score methods map very well
onto a type of model called a Rasch model (Bond et al., 2020). These models
do actually hold all loadings constant, modeling all differences between items
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using a variety of other parameters (including, but not limited to, the intercept
and threshold parameters we have discussed so far). Thus, in a setting in which
a Rasch model is appropriate, we may find sum score methods totally adequate.

However, the use of sum scores entails many assumptions that may not be
satisfied. First, in many cases the assumption of equal loadings just mentioned
simply is not true (e.g., McNeish & Wolf, 2020). Although Rasch models may
be totally appropriate for a number of cases, developmental scientists often
find ourselves in research scenarios in which there is plenty of reason to assume
loadings differ across items. Second, sum score methods also implicitly assume
that the sum score itself contains no DIF, because the very items in which we
are testing DIF are incorporated into the sum score — but of course, we would
not be testing for DIF if we thought this assumption were satisfied.

Finally, though this is not an assumption of all sum score methods, the simul-
taneous item bias test (SIBTEST) improves on earlier “standardization”-based
methods (Dorans & Kulick, 1986), which did not take into account the possi-
bility that there were differences between groups in the distribution of the latent
variables. SIBTEST estimates a measure of DIF across the entire distribution
of the latent variable, [?, as follows:

b= 30 (%- 1), (23)
=

Here, p; is the proportion of participants providing a given answer to item
J — for example, the proportion of participants providing a response of 0 or 1

to a binary item. For the reference and focal groups, respectively, f’;‘ej and f’*Fj
are essentially an adjusted value of a participant’s entire scale score given their
value of j. We do not explain how this adjustment works here, directing readers
to elsewhere for more detail (DeMars, 2009; Jiang & Stout, 1998), but this
adjustment is sometimes referred to as a “regression adjustment” or “regression
correction,” which estimates the reliability of each item to obtain an estimate
of the true score for a participant at that level of the item. This estimate of the
true score is then used in a Taylor series approximation to obtain the predicted
score on Y at that value of the true score (Jiang & Stout, 1998).

A full description of this computation will not be given here, but the reader
is referred elsewhere for a comprehensive, accessible explanation of the equa-
tions (DeMars, 2009). For our purposes, the point is that the simultaneous item
bias (SIBTEST) approach allows comparisons between the focal and reference
group on each item, conditional on an estimate of participants’ true scores.
The adjustments made by the SIBTEST approach allow for greater precision,
including decreased Type 1 error rates (Jodoin & Gierl, 2001; Roussos & Stout,
1996), relative to observed-score methods such as M—H and logistic regression.


https://doi.org/10.1017/9781009303408

https://doi.org/10.1017/9781009303408 Published online by Cambridge University Press

Algorithms for Measurement Invariance Testing 57

Additionally, there are methods of calculating the standard error of 3, allowing
researchers to test the null hypothesis that DIF is absent.

7.2.1 Findings and Recommendations

In general, with respect to pre-estimation approaches, findings from Monte
Carlo simulations indicate that the “regression adjustment” employed by the
simultaneous item bias (SIBTEST) strategy yields less inflated Type I error
rates than the logistic regression and Mantel-Haenszel procedures (Jiang &
Stout, 1998; Li & Stout, 1996; Roussos & Stout, 1996). However, even within
SIBTEST there are multiple different methods of computing 3. Some, for
instance, are better suited to “crossing” DIF, or nonuniform DIF as discussed
earlier. Two of the most substantial determinants of SIBTEST’s outperfor-
mance of logistic regression and Mantel-Haenszel are (1) the degree to which
factor loadings differ across items, and (2) the extent of the differences between
groups in their latent means (DeMars, 2009). This caveat is important to note
because, for many research contexts, SIBTEST will not be possible: because it
can only be applied to multiple-groups formulations and not continuous covari-
ates, there will be cases in which SIBTEST cannot be used. When multiple
covariates, or a continuous covariate, are under consideration, we must use the
logistic regression formulation; this is the only one of the pretest methods which
can accommodate regression-based models.

7.3 Model-Based Methods: Specification Searches

In the multiple-groups and regression-based approaches discussed above
(“Models for measurement invariance and DIF”), DIF is incorporated directly
into the model. For both multiple groups and regression-based approaches,
specification search methods test a series of models against one another in order
to determine the pattern of DIF effects. In multiple-groups methods, models
which include DIF on some items on the basis of a given grouping variable
are tested against some baseline model. This general strategy raises two main
issues. First, there is the question of what constitutes an appropriate baseline
model to which to compare a model which includes DIF. Second, as discussed
above (“Model identification and anchor items”), there is a need to hold some
items invariant across groups, in order to connect the metric of 7; across groups.
Differences both within and between IRT and SEM in conventions around
choosing anchor items have been well-established (e.g., Stark et al., 2006).
Most regression-based formulations follow a similar logic to this multiple-
groups approach. Instead of testing differences in model fit, regression-based
specification searches generally involve testing the significance of parameter
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estimates. Thus, because there is no baseline model per se, the two issues raised
in the previous paragraph are one and the same in a regression-based approach:
we must simply decide which DIF effects to estimate and which to constrain.

The methods outlined below, thus, can involve either a multiple-groups or
a regression-based parameterization. For brevity and ease of presentation, we
present them according to a multiple-groups parameterization, without loss of
generality. The methods we will review are summarized in the middle section
of Table 5.

7.3.1 Starting from a Maximally Constrained Model: IRT-LR-DIF

The most prominent specification search procedure arising from IRT is the like-
lihood ratio test (IRT-LR-DIF; Thissen, 2001), which is formulated as follows
Although the LR in IRT-LR-DIF stands for “logistic regression,” the entire
acronym itself does not have a name. As such, we will continue to refer to it
as the “likelihood ratio test” throughout this Element, always putting IRT-LR-
DIF in parentheses afterward to avoid confusion with the general likelihood
ratio testing approach mentioned earlier. The steps are as follows:

1. Set the mean and variance of 7;; in the one group to 0 and 1 respectively;
allow the corresponding mean and variance in all other groups.

2. Allow the loading and intercept for item j to differ between groups — that is,
Set)yjo i)\j] ... #ijandl{jO FVji1#F ... VG-

3. Set item parameters equal between groups for all other items — that is, set
Mo =M1 = ... = Mg and vy = Vi1 = vig, h #J.

In other words, this model has DIF on only one item, on the basis of all
groups; the parameters A; and v; (and, if present, 7y;) are constrained across
groups. This model is then compared to a model with no DIF on any of the
items, using the likelihood ratio test strategy described above. A significant
test statistic indicates that a model with item j’s item parameters allowed to
freely vary across groups is a better fit to the data than a model in which item
J’s parameters are invariant — that is, a significant result indicates that item j
shows DIF. This test is repeated for all items, which necessitates controlling for
multiple comparisons; this may be done using the Benjamini-Hochberg proce-
dure (Thissen et al., 2002). Additionally, if DIF is found for a given item at
the omnibus level (i.e., either A; or v; differs across groups) post-hoc compar-
isons may be conducted to determine which parameter shows DIF. A number
of extensions of this procedure exist, including modifications which allow n;
to be non-normal in one or both groups (Woods, 2008).
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7.3.2 Starting from a Minimally Constrained Model: Multiple-Group CFA

Within the SEM framework, multiple groups testing for MI, as expressed
through invariance across groups of elements of A, 7, and X, follows a very
different order, both starting from a different baseline model and proceeding
through the testing of parameters differently. Whereas DIF testing procedures
tend to start from the most restrictive model, MI testing procedures more often
start from the least restrictive model, allowing a maximum of items to vary
across levels of G. The baseline model may be constrained so that all elements
of A1 # Ay # ... # Ang and 11 # T3 # ... # TG, With the only exception of
a constraint to guarantee model identification. As in a single-group factor anal-
ysis, perhaps most common is the solution referent item having its value of A;
or 7; set to 1 in both groups for identification of the metric (i.e., the “reference
item” strategy noted above; Reise et al., 1993).

With respect to parameter types, many (e.g., Steenkamp & Baumgartner,
1998; Vandenberg & Lance, 2000) propose testing the invariance of factor load-
ings before intercepts, and only testing the invariance of intercepts for which
factor loadings are equivalent. In fact, the canonical way to apply this procedure
tests the models in the order in which they are shown in Figure 3: configural
invariance, then metric invariance, then scalar invariance, and then (if possible)
strict invariance (not shown in Figure 3). The logic here is that, because metric
invariance is a precursor to scalar invariance, an item with noninvariant factor
loadings is problematic regardless of whether its intercept parameter is invar-
iant. Note the stark contrast between this method and the likelihood ratio test
(IRT-LR-DIF) procedure reviewed in the previous section, in which invariance
of A; and v; are tested simultaneously.

In general, we would typically test these models against one another using
the likelihood ratio tests described above. However, given that these models
are generally fit with standard SEM software, a plethora of fit indices may
be consulted, with the CFI, RMSEA, and SRMR suggested as highly sen-
sitive fit indices (Cheung & Rensvold, 2002b); however, the SRMR might
be more sensitive to differences in factor loadings than intercepts or residual
covariance matrices (Chen, 2007). We may also theoretically consult mod-
ification indices to determine which items are noninvariant (Reise et al.,
1993; Yoon & Kim, 2014). However, problems with modification indices are
well-documented, including potential capitalization on chance, as well as the
subjectivity of whether a given modification index qualifies as sufficiently large
to be problematic.
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7.3.3 Other Specification Search Approaches

A number of specification search approaches seek to find a middle ground
between these approaches, typically by imposing slightly different combina-
tions of parameter constraints to ensure that no DIF is erroneously found or
missed due to model misspecification. For instance, in the two-group case,
one adjusted model implements a Wald test, which estimates first (1) a con-
strained model with no DIF, with group 1’s mean and variance constrained to
0 and 1 respectively, and group 2’s mean and variance are freely estimated;
and then (2) a model with group 2’s mean and variance constrained to their
estimated value from step (1) and all item parameters allowed to vary freely
(Woods et al., 2013). This sequence of steps helps to ensure that the results are
robust to potential misspecification of between-group differences in the latent
variable distribution.

Another method arises from regression-based approaches to nonlinear fac-
tor analyses, particularly moderated nonlinear factor analysis (MNLFA). As
MNLFA has become more widely used, algorithms for determining the location
of impact and DIF have evolved to match the complexity of MNLFA models
and the questions they aim to answer. Perhaps the best-known is the set of
steps instantiated in the automated MNLFA (aMNLFA) procedure and accom-
panying R package aMNLFA (Curran et al., 2014; Gottfredson et al., 2019).
Given P covariates and J items measuring a single latent variable (assuming
the same covariates are used for DIF and impact for simplicity), the procedure
is summarized as follows.

1. The likelihood ratio test (IRT-LR-DIF) procedure is followed, with all
covariates being added to the model at once using a regression formula-
tion (i.e., each item is regressed on multiple covariates). Mean and variance
impact on covariates are also included at this stage.

2. All significant (p < 0.05) DIF and impact effects are then collected into a
single model to estimate simultaneously.

3. A Benjamini-Hochberg correction for multiple comparisons is then per-
formed, and any DIF and impact effects which remain are retained (Thissen
et al., 2002).

Note that this procedure is explicitly designed to incorporate multiple covari-
ates, unlike most of the procedures we have discussed thus far. The potential
benefits and challenges of this approach are discussed in the next section. We
used a procedure very similar to this one in the preceding example, resulting in
the model shown in Figure 10.
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7.3.4 Findings and Recommendations

There are a number of considerations which inform a researcher’s choice when
conducting specification searches. First, the probability of both type I and type
IT errors must be considered. One might expect significant effects to be found
by the likelihood ratio test (IRT-LR-DIF) at much smaller sample sizes than
the minimally constrained configural invariance model, as the large number of
parameters in the latter approach can reduce one’s power to find DIF effects (Xu
& Green, 2016). Indeed, the IRT-LR-DIF procedure has shown adequate power
and adequate control of type I error rates even under small sample sizes. In the
two-group setting, performance has been relatively strong with group sizes of
roughly N = 300 in the case of equally sized groups (Woods, 2009b). There
is some evidence from simulation studies that when using the minimally con-
strained approach sample sizes of N = 200 or N = 300 in each group can yield
acceptable power, but only under certain conditions such as when outcomes are
normally distributed, there are many response variables, or the overall level of
DIF is high. The wide-ranging nature of these conditions underscores an impor-
tant point when comparing specification search approaches, which is that the
statistical power of DIF tests depends on many factors aside from sample size,
often in combination with one another. In particular, DIF effects will gener-
ally be easier to find when there are more items and DIF effects are large (e.g.,
French & Finch, 2006; Meade et al., 2008; Woods, 2009b). Additionally, power
to detect DIF with normally distributed items is often greater than that to detect
DIF with binary or ordinal items (French & Finch, 2006).

One issue a researcher will almost definitely confront when choosing a
specification search approach is model misspecification. Given that each of
these specification searches involves fitting multiple models, at least one of
the models fit under these procedures is likely to be misspecified. The max-
imally constrained model, which is the starting point for the likelihood ratio
test (IRT-LR-DIF), is misspecified if even one item aside from the focal item
is noninvariant. There is substantial evidence that this can be problematic, par-
ticularly given that the y? test will yield biased results if the baseline model is
not correct (Maydeu-Olivares & Cai, 2006) — which, of course, it likely will be
given how stringent its constraints are. However, although the minimally con-
strained configural model with which SEM-based approaches typically start
will almost by definition provide a closer fit to the data than the maximally con-
strained model used in IRT-LR-DIF, even in the maximally constrained model,
model misspecification is still a major concern.
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In this spirit, based on the sensitivity and specificity of each of these spec-
ification searches, as well as the possibility that they may disagree, it is
recommended that researchers try at least two different types of specification
search methods and assess the agreement between them before proceeding.
There is no one procedure which is definitively superior to the others based on
prior evidence. It is well-known that, when they are applied carelessly, purely
data-driven searches can lead to nonsensical results in SEM; thus, researchers
must be thoughtful and retain only effects which are consistent with theory and
hold up across multiple different testing methods (MacCallum et al., 1992).
Moreover, specification searches arguably incur more researcher degrees of
freedom than any other method, given the number of choices each specific
procedure entails. Results from multiverse analyses (Cole et al., 2022) indi-
cate that even small data-management decisions can substantially impact the
results of these searches, further underscoring the importance of taking care
when applying these methods.

7.4 Approximate Approaches

Finally, approximate approaches attempt to arrive at a solution which balances
fit and parsimony by altering standard estimation algorithms to penalize an
excess of DIF parameters. These are in general the newest and most com-
putationally intensive approaches, but they show great promise in helping
researchers to find DIF effects in a maximally data-driven way without incur-
ring many of the problems of specification searches. The methods we will
review are summarized in Table 5.

7.4.1 Regularization

When fitting regression models, it is frequently the case that there are many
possible covariates and the researcher has no a priori hypotheses about which
effects are truly meaningful. Regularization may be employed in these cases. In
regularization the likelihood function of the regression model is penalized for
each effect modeled, thereby favoring a model with only a few effects (Efron
et al., 2004). The penalty term in the function causes the coefficients to be
shrunken toward zero, so that even if every single regression effect is modeled,
only a few will be nonzero and thus retained in the final model.
Regularization can be used in the fitting of moderated nonlinear factor
analysis (MNLFA) with a similar goal: to find only the DIF effects that are
meaningful, in the absence of any a priori hypotheses about which effects are
present (Bauer et al., 2020; Belzak & Bauer, 2020). If the unpenalized loglike-
lihood of the model is denoted LL and the vectors of intercept and loading DIF
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effects are denoted v and A respectively, the penalized likelihood LL; 4550 can
be obtained as follows:

LLpgsso = LL -7 (|[v|li + |IAll1) . (24)

Here, 7 is a tuning parameter which controls the extent to which parameters
are shrunken toward zero, and ||x||; represents the L1-norm of x. With non-
zero values of 7, the loglikelihood function decreases when the absolute value
of intercept and loading parameters increase. Thus, nonzero values of the DIF
parameters will penalize the loglikelihood function. When the L1-norm is used,
the penalty function is known as the least absolute shrinkage and selection oper-
ator (LASSO; Tibshirani, 1997). Other penalty functions can be used, including
the L2-norm; this case is known as ridge regression. A flexible option is the
elastic net penalty, which allows a combination of the L1-norm and L2-norm
to be used as a penalty (Zou & Hastie, 2005); the relative weight of each norm
is determined by a weighting parameter, typically denoted «.

Regularization-based methods solve some of the problems associated with
specification search methods such as the ones described above. In particular,
they eliminate the possibility that the order in which models are tested will
affect the results of the final model. However, they are associated with a number
of decisions. First, one must decide which penalty function to use, with options
including LASSO, ridge regression, and elastic net, among others. If one uses
elastic net, one must set the value of «, thereby deciding whether the L1- or L2-
norm should be more heavily weighted. Note that LASSO and ridge regression
are special cases of elastic net, which essentially applies both penalties in an
adjustable proportion. Setting these values may lead to more or less sensitive
tests, and therefore more or fewer DIF parameters retained. In all cases, one
must set the value of 7, which sets the magnitude of the penalty function. Larger
values of 7 will lead to a greater penalty for additional effects, and therefore
fewer DIF effects identified.

7.4.2 Alignment

Another approximate invariance method is alignment. This method, which has
both frequentist and Bayesian implementations (Asparouhov & Muthén, 2014;
Laietal., 2021; Muthén & Asparouhov, 2018), takes advantage of the fact that
there are infinitely many factor models with the same number of parameter con-
straints and the same level of fit. The algorithmm is mathematically complex,
and the reader is encouraged to consult the work which introduced the align-
ment method (Asparouhov & Muthén, 2014; Muthén & Asparouhov, 2018) if
they are interested in these details. However, the concept is explained here, with


https://doi.org/10.1017/9781009303408

https://doi.org/10.1017/9781009303408 Published online by Cambridge University Press

64 Research Methods for Developmental Science

the hope that the benefits and general logic of the practice make sense even if
the equations might require more context to fully understand.

Much like regularization, alignment provides estimates of DIF parame-
ters without the analyst specifying any constraints a priori. The logic of this
algorithm, which is quite similar to that of rotation within exploratory factor
analysis, is to impose a simplicity constraint on the models which minimizes
the number of measurement parameters that differ across groups (Asparouhov
& Muthén, 2014). The first step of the algorithm is to estimate a configu-
rally invariant model — that is, one in which all measurement parameters are
allowed to vary freely even though the overall structure is the same — fixing
factor means to 0 and factor variances to 1 for all factors, in all groups. Note
that these constraints on the means and variances are required to identify the
model. However, alignment takes advantage of the fact that there are infinitely
many other constraints that we could use. So, after estimating the configural
model, the alignment algorithm aims to fit a model with the exact same amount
of constraints, and therefore the exact same fit, as the configural model. How-
ever, instead of constraining the means and variances of the factors, it estimates
them freely, imposing the following constraints:

A .configural
Mg.aligned = —m (25)
Jeatane VWg.aligned
)Yig-con.ﬁguml (26)

Vig.aligned = Vjg.configural — Xg.aligned = .
W g.aligned

It then chooses values of latent variable means @ iignes and ¥g. ajignea Which
yield values of kg atigned and Vjg aiignes that minimize the following function:

F= Z Z Wg,hf()\'jg.aligned - Ljh.aligned) +Z Z Wg,hf(‘{jg.aligned - th.aligned)’

P g<h P g<h
27)

where w, ;, is a weighting function based on the sizes of groups g and /.
Additionally, f(x) is a loss function. There are many values of this loss function
we could use, and in general f(x) is directly proportional to x (Asparouhov &
Muthén, 2014). What the above simplicity constraint essentially implies is that,
for each pair of groups g and 4, alignment aims to choose values of latent vari-
able means and variances which minimize the differences between the groups’
loadings Ajg.aligned and intercepts vjg aiigned- Thus, the goal of alignment is to
retain a relatively small number of large invariance effects, minimizing most
differences in parameters. One noted advantage of alignment is that it can be
used with large numbers of groups (e.g., as many as 60; Marsh et al., 2018),
because the simplicity function is a weighted combination of the pairwise
differences between all groups.
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7.4.3 Findings and Recommendations

Empirical findings about the robustness of regularization and alignment meth-
ods are fewer and further between than the other methods, given the relative
novelty of these strategies. Here too, however, one must be guided first by
the type of data and model with which one is working: whereas regulariza-
tion can accommodate multiple covariates of any scale, alignment is to our
knowledge only for groups. Because of the method’s strong performance with
large numbers of groups, one could simply make many groups from combina-
tions of continuous variables; however, this method has not been tried to our
knowledge.

Given the relative novelty of these methods, there are fewer concrete guide-
lines (relative to model-based methods) as to how best to employ them.
Recommendations about the sample size required for both methods are tenta-
tive. The performance of alignment differs based on whether the latent variable
mean « is estimated freely (currently parameterized as FREE in Mplus) or fixed
to zero (currently parameterized as FIXED in Mplus), with the latter perform-
ing adequately with within-group sample sizes as low as N = 100, as long
as the number of groups is small (Asparouhov & Muthén, 2014; Marsh et al.,
2018). For regularization, there is some evidence that adequate performance
can be achieved a total sample size as low as N = 500, provided DIF is large
and relatively few items have DIF (Bauer et al., 2020).

In general, the success of the alignment method appears to be at least partially
related to the number of groups and the proportion of noninvariant items (Flake
& McCoach, 2018; Kim et al., 2017; Marsh et al., 2018). Alignment appears to
yield the most accurate parameter estimates when the percentage of noninvari-
ant items is relatively low (20-30%), consistent with some suggesting the use of
the method when 25 percent or fewer of the items are noninvariant (Asparouhov
& Muthén, 2014). By contrast, regularization appears to be particularly useful
when the number of noninvariant items is large, showing considerably lower
Type I error rates than standard model comparison approaches under high lev-
els of noninvariance (Belzak & Bauer, 2020). However, these approximate
invariance methods have not been compared to one another, and more work is
needed to compare either method to pre-estimation methods and specification
searches.

7.5 Effect Size Measures

All of the methods considered thus far are methods for determining whether
DIF is present. A separate but related question is how large these DIF effects
are. Some of the methods discussed in the preceding section, regularization and
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alignment, are premised on the idea that not all DIF effects are large enough to
be meaningful and thus worthy of inclusion in the model. To this end, we need
effect size measures for DIF, which are not necessarily DIF-locating strategies,
per se. Rather, they are indices of the magnitude of DIF, which help us to deter-
mine the extent of its effect on individual items or the test as a whole. The last
part of this section focuses on these measures. Although we have aimed to be
comprehensive, note that there are a number of reviews which consider this
topic in more detail (Chalmers, 2023; Gunn et al., 2020; Steinberg & Thissen,
2006). However, we include some discussion of effect sizes here because such
measures are critical to our understanding of how to quantify the extent to
which measurement invariance truly matters (Putnick et al., 2016).

As noted above, DIF is generally modeled as differences between measure-
ment parameters such as };, v;, and 7j. It is important to note that differences
between groups in these parameter estimates are, in a sense, effect sizes: we can
get a sense of the magnitude of DIF on each item simply by comparing parame-
ter values. However, the magnitude of such measures do not tell the whole story
about differences in measurement. In combination, certain values of A;, v;, and
7, even though they might be large numerically, may imply trace lines that are
not far apart. Moreover, in the case of trace lines that cross, it is often the case
that differences between groups at either end of the latent variable effectively
cancel one another out — so although the response functions for each group
diverge from one another, they do not consistently favor or disfavor either
group. A quantity which captures this phenomenon is sometimes referred to as
compensatory DIF. Following one recent review (Chalmers, 2023), we could
term the magnitude of compensatory DIF on an item S¢, which is calculated
as:

Be = / IE (vl G = 0) — E (gl G = 1) | f (o) . (28)

This is essentially the sum of all differences across 7;, both positive and neg-
ative, in the predicted response to y;;. We can contrast this equation with the
one for noncompensatory DIF, which is essentially the equation for all of the
distance between the groups’ trace lines, regardless of its direction. We can cal-
culate an index of noncompensatory DIF, which we will term Byc (Chalmers,
2023):

B = / (E (il G = 0) = E (vl G = 1) | £ n) . (29)

We can take the square root of the entire expression (i.e., ﬁzzvc)’ to get Bc-
To understand what these two equations capture, we first notice that they
consist of two main ingredients. The first is the difference between trace lines of
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the items — that is, £ (y;|n;, G = 0) —E (v;|mi, G = 0). The second is information
about the distribution of the latent variable — that is, f(1;). The inclusion of f(17;)
is important because, in some cases, large differences between trace lines may
occur at portions of the latent variable distribution where very few respondents
actually are. Consider, for instance, the possibility of two trace lines which
diverge at values of 7; that are 3 standard deviations from the mean. Although
there may be a divergence, and it may be a large one, it is likely not to be a
particularly consequential one because it applies to very few individuals in the
sample.

We now notice the way in which the two equations differ from one another:
whereas the equation for B¢ permits both positive and negative values, corre-
sponding to either positive or negative differences between the trace lines, ﬁzzvc
does not because the difference term is squared. Thus, B¢ can be referred to as
a signed measure, and Syc can be referred to as an unsigned measure.

In addition to item-level statistics, we can capture the overall burden of DIF
on an entire test. The overall amount of difference in measurement parameters
across all of a test’s items is sometimes referred to as differential test function-
ing (DTF). Rather than dealing with item-level expected values, we can instead
calculate the expected value of the score of the test, termed S; for participant i
at each value of the latent variable n; (Stark et al., 2004). The trace line for this
value is referred to as the test characteristic curve. We can calculate DTF as:

DITF = / [E(Sin.G = 0) - E(Sn.G = 1) | () d. (30)

Here E(Si|n;,G =0) and E(S;|n;, G = 1) represent the test characteristic
curves for groups 0 and 1, respectively. As mentioned earlier, we incorporate
the distribution function for the latent variable, f(7;), which serves to weight the
different portions of the test characteristic curve so that differences occurring
at more frequent values of the latent variable receive more weight.

There are a wide variety of effect size measures that all aim to capture some
estimate of the DIF and DTF measures given in Equations 28—-30. They differ
from one another in how they do so. Interestingly, the value of ,@ given by
Equation 23 when describing the SIBTEST procedure is one such estimate;
that is, we could directly interpret the magnitude of §3 itself as an effect size
measure.

Other measures approach the problem of finding S¢ and Byc by actually
obtaining estimates of measurement parameters (i.e., X, v, and, where rele-
vant, 7) and plug these values into Equations 28-29 to obtain values of the
expected values of y;; under each group. One such measure is the weighted
area between the curves (WABC) measure, which uses numerical integration
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to calculate the distance between trace lines for binary and ordinal variables
(Edelen et al., 2015). However, there are a variety of other ways to do this, as
well as a variety of other ways to approximate the distribution of 7;, as well
as different ways of scaling the effect size. These differences affect the inter-
pretation of these indices, as well as benchmark values to which they must be
compared; for instance, whereas wABC values between 0.3 and 0.4 have been
suggested as minimum criteria for considering removing an item due to DIF,
other traceline-based measures have different numerical ranges and scales.

For continuous items, there is an added issue of how to scale estimates of
Bc and Byc, in order to obtain comparable estimates of the level of nonin-
variance across items of different scales (e.g., comparing a 12-point item to a
100-point one). One frequently used statistic is the IMACS (Nye & Drasgow,
2011), which is frequently used for continuous items. There are a number of
similar measures for different types of items which make a variety of adjust-
ments; though we will not write out the equations for these, we will compare
and contrast them as well.

The dMACS is calculated as follows:

1
dMACS = STJP\// [E (ylni: G = 1) = E (yy|ni. G = 2) ]2f(77i)d77i~ (31

Here, SD,p is the standard deviation of item y;;, pooled across the two groups
as follows:

_ (N =1)SD; + (N> = 1)SD;
TN D 2

where Ny, Ny, SDy, and SD; are the sample sizes and standard deviations of
groups 1 and 2, respectively.

Note that this is an unsigned version of the dMACS, as squaring the dif-
ferences between groups means that AIMACS will always be positive. In other
words, it is an estimate of Syc. Additionally, recent work (Nye et al., 2019)
proposes a signed version of the AMACS, termed dMACS;gpeq, which is given
by:

1 .
dMACSyigneq = @/ [E (vijlmi- G = 1) = E (vijlni. G = 2) | f(n) dmi. (33)

Finally, as mentioned above, all of the possible effect sizes discussed here
contain some way to incorporate information about the distribution of the latent
variable, f(n;). However, the choice of how to approximate this distribution
is a challenging one, because it is unclear which group’s distribution to use.
For instance, we could use the entire distribution across both groups, f(1;),
by averaging the distribution functions of the groups. More often, however,
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there is a “focal” group — that is, a group whose potential noninvariance is of
interest — which is being compared to a “reference” group. In this case, one
chooses the distribution of 7; under either of these groups — either f(1;|G = 0)
or f(n;|G = 1) — based on our questions (Gunn et al., 2020). Additionally, par-
ticularly with indices for binary and ordinal variables, there are a number of
different ways to numerically approximate the distribution f(7;) — for example,
by presuming a normal distribution, or by semiparametrically approximating
the distribution based on the observed scores. Two recent reviews (Chalmers,
2023; Gunn et al., 2020) provide a number of alternative indices which are nor-
malized with respect to different groups, and which use different methods of
estimating f(7;), and give the rationale behind using each of them.

7.5.1 Findings and Recommendations

All of these effect sizes share at least one drawback: because they are based on
differences between groups, they are incompatible with anything other than a
multiple-groups formulation. If one is using a regression-based approach with
continuous response variables, the only choice is to pick values of the covariates
x;p on which to form groups. Once groups have been formed, the consideration
of which effect size measure to use comes down to the type of items one is con-
sidering. As noted above and in Table 5, continuous and binary/ordinal items
are best served by different indices; the reader is referred to comprehensive
overviews of measures for continuous (Gunn et al., 2020) and binary or ordi-
nal (Chalmers, 2023) items. Beyond this, the results suggest that the choice of
which index to use may come down to the predicted difference between groups
in the latent variable means (Chalmers, 2023; Gunn et al., 2020). Because indi-
ces differ from one another in how the distribution of f(7;) is estimated, one
must choose an index which is appropriately sensitive to the differences that
actually exist between the groups. Additionally we suggest calculating one
unsigned and one signed version of the same statistic and comparing them
(Chalmers et al., 2016; Chalmers, 2023). If the two are substantially different
from one another, this may provide insight into the nature of the differences
between groups.

8 Recommendations for Best Practices

As has hopefully been demonstrated, there are not only many ways to test
for measurement invariance or DIF but different ways to conceptualize these
questions in the first place. Critically, we did not even consider a number of
questions that are at the cutting edge of this rapidly advancing science. This
omission includes (but is not limited to) Bayesian methods for testing and
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quantifying measurement invariance and DIF (e.g., Shi et al., 2019; Zhang
et al., 2022), as well as whether and how measurement invariance can be con-
sidered in a network psychometric perspective (Epskamp et al., 2017). Another
important area we have not discussed is a class of models which do not require
the researcher to specify a priori which covariates are responsible for DIF.
These approaches, which have a long history dating back to at least the 1990s,
use mixture modeling to investigate heterogeneity in measurement parameters
across unobserved subgroups, allowing a data-driven approach to determining
whether and where DIF is present (Lubke & Neale, 2008; Rost, 1990). We have
foregone discussion of these strategies focusing instead on cases in which the
covariates of interest (or at least a number of suitable candidates) are known in
advance.

If nothing else, these omissions should underscore to the reader that there
is no one “right” way to study measurement invariance. A few recommenda-
tions follow from this, but they pertain more to broad decisions a researcher
might make (e.g., whether to test for specific effects or use one of the data-
driven algorithms discussed above), rather than specific methods to use. Our
recommendations are as follows.

8.1 Always Visualize the Data before Doing Any Analyses.

As discussed above, visualizing the data helps the researcher to get a prelim-
inary sense of whether item response patterns differ across individuals. This
step can also help to identify problems with the data which need to be rec-
tified before continuing. As discussed above, sparse response categories are
well-known to cause problems with estimation in models for binary and ordi-
nal data in general (DiStefano et al., 2021; Flora & Curran, 2004). With respect
to measurement invariance in particular, the relatively high Type I error rates
of some of the tests discussed above (e.g., some of the standard specification
search approaches; (Belzak & Bauer, 2020; Woods, 2008), it is highly plau-
sible that some tests will pick up on idiosyncrasies of the data, if present. If,
for instance, a sparse response category is endorsed by participants at one level
of the covariate (e.g., there are only five male participants and four of them
endorsed an extreme response option), this may masquerade as a DIF effect
which is likely an eccentric feature of the dataset.

We suggest undertaking as many exploratory, visual analyses as is feasi-
ble before fitting any models. We gave a few examples in Figures 4-6 of
how researchers might go about this. However, others present comprehensive
guides to premodeling data visualization steps which will help researchers to
determine whether measurement invariance analyses will run into problems, as
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well as whether they may yield particularly useful information, in their dataset
(Curran et al., 2014; Gottfredson et al., 2019).

8.2 Run as Many DIF Analyses as You Can and Report the
Results Transparently.

Most of the algorithms above involve making some decisions, which may at
times seem arbitrary in the sense that there are many other decisions that could
be made at each step. For instance, the automated moderated nonlinear fac-
tor analysis (aMNLFA) algorithm mentioned above (Gottfredson et al., 2019)
entails testing the effect of all P covariates on each item at once, which is effec-
tively generalizing the likelihood ratio test (IRT-LR-DIF) to a mutiple-covariate
case. Why not use the multiple-group factor analytic approach instead, testing
the effect of a single covariate on the intercepts or loadings of all .J items at
once? Even if one accepts all of the steps in this algorithm as written, there
are still a number of decisions the researcher must make. First, if one is work-
ing with an ordinal item, one must decide whether to test covariate effects on
each individual item’s thresholds (i.e., allowing DIF effects of each covariate in
Equation 14) or to simply allow covariate effects on the overall intercept (i.e.,
constraining ;; to equality in Equation 14 but allowing v;; to differ across
covariates). One must also decide what to do if estimation issues arise; these
issues, such as empirical underidentification and model nonconvergence, are
common to heavily parameterized models such moderated nonlinear factor
analysis.

Even outside of specification searches, which may be particularly vulnerable
to capitalizing on chance, each of the above methods entails some decisions.
The pretest methods and effect sizes all have multiple variants (e.g., the differ-
ent effects discussed by Chalmers (2023); Gunn et al. (2020)). Regularization
(Belzak, 2020; Belzak & Bauer, 2020) requires the researcher to set the val-
ues of each tuning parameter. Similarly, in alignment (Asparouhov & Muthén,
2014; Muthén & Asparouhov, 2018), the researcher must make a number of
decisions about how to formulate the loss function, which may have substantial
effects on the ultimate solution.

The point of explicitly naming all of these choices is to emphasize that
there are many researcher degrees of freedom in the modeling of measurement
invariance. Moreover, no one method is “right.” Although there is some evi-
dence that the methods are differentially affected by certain nuances of each
dataset (e.g., alignment being more adversely affected by larger proportions of
noninvariant items), the reality is that much of what makes one method supe-
rior or inferior to another in a given circumstance is unknown. Researchers
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are therefore advised not to accept any one solution as the final word on the
presence or absence of DIF but instead test multiple different methods and con-
clude whether and where DIF exists based on which effects appear repeatedly
across methods. Moreover, we suggest reporting as many results as possible,
making liberal use of online appendices and, when possible, posting the results
of extra DIF analyses on OSF (https://osf.i0/).

This logic also extends to our next and final point.

8.3 Do Not Substantively Interpret Data-Driven Findings

Most of the above methods for testing measurement invariance are essen-
tially data-driven: the researcher comes in with no a priori hypotheses, and
instead conducts some exhaustive search to determine what effects are present.
Although each of the models shown above treats a given DIF effect as either
a difference in parameters (in the multiple groups framework) or a parameter
unto itself (in the regression framework), one should be careful about conclud-
ing that a test is “truly” noninvariant or an item “truly” has DIF from a given
covariate. As has been noted before, DIF effects, particularly small DIF effects,
may in many cases merely be artifacts of the sample (Steenkamp & Baumgart-
ner, 1998). Of course, if one has hypotheses going into an analysis which are
based in theory, it may make sense to consider the results of measurement invar-
iance testing in light of these hypotheses. For instance, in the paper on anxiety
symptoms among children with ASD cited at the beginning of this Element
(Schiltz & Magnus, 2021), the authors clearly had theoretically driven reasons
to believe that a core feature of ASD, social skills deficits, would adversely
impact the functioning of the scale in specific ways. They justify these hypothe-
ses, point out the respects in which their results are inconsistent with them, and
do not overinterpret the effects that they found.

Absent strong hypotheses, we recommend testing for DIF with the goal of
eliminating or accommodating it, not interpreting it. Much of the reason for
this is the instability of DIF parameter estimates from one analysis to the next.
We have recently examined the effects of small, seemingly arbitrary decisions
on measurement-related findings, particularly in the context of data synthesis,
using a multiverse analysis (Cole et al., 2022). By analyzing the same dataset
72 different times, each time using different variants of automated moderated
nonlinear factor analysis and regularization as well as subtle differences in
data management, we found substantial differences across analyses in the pat-
tern and nature of DIF effects found. Substantively interpreting those findings
would have been quite dangerous, as (1) we did not set out with any particular
hypotheses as to the effect of our background variables on the items, and (2)
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many of these putative findings disappeared when slightly different analytic
decisions were made.

Moreover, if one were guided by hypothesis tests of measurement invari-
ance and DIF, one might conclude that an effect is present when, in reality,
it is of such trivial magnitude as to be basically absent. In that spirit, the other
major finding of the above-cited study (Cole et al., 2022) is that, even when DIF
effects differed substantially across two models, they often produced very simi-
lar factor scores — that is, while DIF parameters were highly unstable, the factor
scores which resulted from models with DIF were not. This finding corrobo-
rates those reported by other studies which have shown that even substantial
DIF in terms of parameter estimates may lead to very few differences in fac-
tor scores (Chalmers et al., 2016; Curran et al., 2018). Instead of interpreting
DIF effects themselves, we suggest interpreting DIF in terms of its effects on
latent variable parameter estimates, item endorsement rates, and factor scores.
The effect size metrics introduced above are very useful tools for doing exactly
this (Chalmers, 2023; Gunn et al., 2020). Researchers should also run multi-
ple different models and, in addition to determining which parameters hold up
across multiple models, they should calculate the correlations among the fac-
tor scores generated by these models. If the correlations are high even when
models themselves differ, that may strengthen one’s confidence in the factor
scores and (in our view, appropriately) weaken one’s confidence in the mean-
ing of the DIF parameters. Another potentially useful strategy is to obtain factor
scores from a model without any DIF at all (i.e., a standard IRT or CFA model)
and calculate the correlation between these factor scores and those resulting
from a model which accounted for DIF effects, such as the multiple groups or
regression-based models shown here.

The critical point to note, however, is that DIF does not need to be interpret-
able for it to be important. Whether or not we can generate an explanation
for why a DIF effect may have appeared, the knowledge that it is present
empowers us to take action — either by using a different scale, generating factor
scores using a model which accounts for DIF, dropping an offending item, or
doing whatever else might be necessary to make sure that every participant is
measured fairly.
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