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Let k be a field of characteristic p>0. We classify all finite p-groups G satisfying the inequality p’2|G|§l(G)
<p~ |G}, where ¢(G) is the nilpotency index of the Jacobson radical of k[G].
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1. Introduction

Let p be a prime number, G a finite p-group of order p™ and k a field of characteristic
p. Denote by t(G) the nilpotency index of the Jacobson radical of k[G], the group
algebra of G over k.

It is well known (see [8], for example) that

(A) t(G)<p™ Moreover t(G)=p™ if and only if G is cyclic.

Let us assume that G is noncyclic and denote by exp G the exponent of G. Then
t(G)<p™ and it is known, by a result of Koshitani [6], that

(B) p" '<t{(G)<p™ if and only if expG=p™~'. Moreover in this case t(G)=p™ !
+p—1

We know also, by a result of Motose [7], that

(C) t(G)=p™" if and only if G is either an elementary abelian 2-group of order 2* or
M(3), the nonabelian 3-group of order 3* and exponent 3.

The purpose of this note is to classify all finite p-groups G satisfying the inequality
p" 2<H(G)<p™ . In a recent paper [10], Shalev showed that if p>7, then G) =p™~?
if and only if exp G2 p™~ 2. Therefore:

(D) If p=7, then p™~2<t(G)<p™~! if and only if exp G=p™ 2.

Now we are interested in the case when p<7. We know that in this case there exist
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five non-isomorphic groups G with expG<p™~ 2 and p™~2<t(G)<p™~'. One of them is
an elementary abelian 2-group of order 2*. All the nonabelian p-groups of order p* are

given by Burnside [1]. We know, by his result, that if p#2 then two of them, which we
denote by P and Q, are of exponent p:

P=M(p) x C, (where M(p) is the nonabelian p-group of order p* and exponent p, and
C, is a cyclic group of order p);

Q=<a,b,c,d>, p=5, where a?=bP=c?=d’=1, [a,b]=[a,c]=[a,d]=[b,c]=1, [c,d]=b,
[b,d] = a.

Then t(P)=5(p—-1)+1, t(Q)=7(p— 1)+ 1, and we see that

32<t(PY=11<33(for p=3),

52<t(Q)=29 <53 (for p=5).
All the non-isomorphic 2-groups of order 2% are given by Hall and Senior [2]. We
know, by their description, that all such groups of exponent 4 generated by two

elements satisfy our condition. We have only two such groups, which we denote by R
and S:

R={a,b,c), a*=b*=c*=1, [a,b]=[a,c]=1, [b,c]=a;

S={a,b,c,d,e),a’*=b*>=c*=d*=1,e*=c, [abl=[a,c]=[a,d]=[a,e]l=[b,c]=[b,d]
=1, [b,e]l=[c,d]=a, [d,e}=0b.

It is not difficult to see that ¢(R)=9 and t(S) =10. In this note, we shall show that the

above five groups are all the p-groups such that expG<p™ 2 and p" 2<t(G)<p™ .
More precisely, we shall prove the following theorem.

Theorem 1. Let G be a finite p-group of order p™, where m>3. Then p™ 2 <t(G)<
p™ ! if and only if one of the following seven cases holds:

(1) p#2, expG=p"~2, GEM(3);

(2) p=3, m=4, G=M(3) xC5;

3) p=5m=4, G=(Q;

4 p=2,m24,expG=2""%
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(5) p=2,m=4,G=C,;xCy;x Cy;x Cy;
(6) p=2, m=5, G=R;
(7 p=2,m=5, G~S.

Moreover, we shall give all the finite p-groups G with t(G)=p™ 2. Denote by ®(G)
the Frattini subgroup of G.

Theorem 2. Let G be a finite p-group of order p™, where m23. Then t(G)=p™~? if
and only if

(1) p=3,m=4,G=~C, xCy3x C3xCj; or
(2) p=2, m=>5, expG=2? and |G/®(G)|=2".

Let us note that if a group G satisfies condition (2) of Theorem 2, then G is either an
abelian 2-group of type (2,2,1) or one of the fourteen nonabelian groups described in
Section 3 (See Remark).

2. Preliminaries

To compute the nilpotency index of the Jacobson radical of the modular p-group
algebra, Jennings’ formula given in [4, Theorem 3.7] (see also [5]) is very useful. Let us
recall this formula.

Let {y{G)} be the lower central series of G, that is, y{G) is defined inductively by

71(G)=G, y;+1(G)=[7{G),G] for i=1.

Denote by G”' the subgroup of G generated by {g"'|geG}, and let {x,(G)} be the
sequence defined by

x(G)= [ 7(6)”.

ip/2n

Moreover, let [(G) be the smallest integer such that kyg+,(G)={1} and put
|K,,(G)/x,,+,(G)| =p®, 1 n<I(G). Jennings’ formula for t(G) is as follows:

1G)
HG)=1+(p—1) ). ne,.

n=1

Now let G be a finite p-group of order p™. Suppose that exp G=p™ 2. If G is abelian
then G is either of type (m—2, 2) or of type (m—2, 1, 1), and correspondingly
H{G)=p" 2+p?—1 or p" 242(p—1). Now we assume that G is nonabelian. If G is
metacyclic then t(G)=p™ 2+4+p*—1 (see [6,7]). In [9], we classified all the finite
p-groups of order p™ and exponent p™~2. This result implies that |G/®(G)|=p? or p>.
Applying the above Jennings’ formula to each group listed in [9, Theorems 1 and 2], we
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have ((G)=p™ 2+3(p—1) if |G/®(G)|=p* and G is nonmetacyclic; and #(G)=p™ 2+
2(p—1) if |G/®(G)|=p>. So we have the following:

m-—2

Proposition 1. Suppose that G is a finite p-group of order p™ and exponent p™~ %,
where m2 3.

(1) If G is metacyclic, then t(G)=p™ ?+p*—1.

(2) If G is not metacyclic, but |G/®(G)|=p?, then t(G)=p™ 2+ 3(p—1).

(3) If|G/®(G)|=p>, then t(G)=p™ 2 +2(p—1).

3. Proofs of Theorems 1 and 2

We see, by Shalev’s result (D), that if p=7 then Theorem 1 holds. In our proof of
Theorem 1, we shall not use this fact. First we prove Theorems 1 and 2 in the case
where G is abelian. For this aim we need the following lemma.

Lemma 1. Let G be an abelian p-group of order p™ and exponent p™~ 3, where m>5
provided p=2. Then t(G)<p™ 2. Moreover t(G)=p™ 2 if and only if G is either an
elementary abelian 3-group of order 3* or an abelian 2-group of type (2,2,1).

Proof. Assume that p#2 and let 4 be a cyclic subgroup of G of order p™ 3. If G/A
is cyclic then t(G)=p™ 3 +p>—1<p™ 2. If G/A is of type (2,1) then

HG)=p" 3+p2+p—-2<p" i

If G/A is elementary abelian then t(G)=p™ 3+ 3(p—1)<p™~ 2 In the last case, we see
that if t(G)=p™ ? then p=3 and m=4. Therefore our lemma is proved for the case
p#2. When p=2 we use a similar argument.

Now we are able to prove Theorem 1 in the case where G is abelian.

Proposition 2. Let G be an abelian p-group of order p™, where m=3. Then the
following properties are equivalent:

(1) p"2<t(G)<pm 1.
(2) (1) expG=p™ 2 and m=4 if p=2; or
(ll) G'zszCzXCZXCz.

Proof. The implication (2) = (1) is obvious. Assume now that (1) holds. Then by (A)
and (B), expG<p™ 2. Let p=2. If m=3 then G is elementary abelian and t(G) =4, but it
is not our case. If m=4, then exp G<2?, so we see that (2) holds. Therefore we must
show that if either p#2, m>3, or p=2, m=5, then expG=p™ 2. For this aim, we use
induction on m. If p#2 and m=3 then expG=p. So assume p=2 and m=35. If exp
G<2? then it is easy to see that t(G)<2>. This shows that expG=23. Suppose that
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mz24 if p#2, and m=6 if p=2. Let z be an element of G of order p. Then by [11,
Theorem 2.4), p-t(G/{z))=t(G)>p™ 2, and consequently t(G/(z))>p™ 3. Moreover,
t(G/{z)) <t(G)<p™ . So we have p™ 3 <t(G/{z))<p™~'. Assume now that {(G/{z))>
p™ % Then (because |G/<z)|=p™" "), expG/{zy=p™ % by (B), and so expG=p™ 2.
Since t(G/{z))#p™ ? by (C), it is enough to prove that if p™ 3 <t(G/{z))<p™ % then
exp G=p™ 2. In this case, by the induction hypothesis, we have exp G/{z) =p™~ 3, which
implies exp G=p™~>. Hence, by Lemma 1, we obtain exp G=p™~ 2. This completes the
proof.

Corollary 1. Let G be an abelian p-group of order p™, where m=3. Then the following
properties are equivalent:

(1) (G)=p" "2
(2) (i) G=CyxC3xC3xCy; 0r
(i) G~C,xCyxC,.

Proof. It suffices to prove that (1) implies (2). Suppose first p#2. Then we have
expG<t(G)=p™2, and so m=4. If m=4, then p>=t(G)=4(p—1)+1, because G is
elementary abelian, which forces p to be 3, and (i) follows. Therefore we must prove that
if m=5 then t(G)#p™ 2. We proceed by induction on m. If m=35, then exp G<p? and
s0

t(G)=2p*+p—2 or p*+3(p—1) or S5(p—1)+1.

Hence t(G)#p>. Now let m>5 and assume that t(H)#p™ 3 for any abelian group H of
order p™~'. Suppose by way of contradiction that there exists an abelian group G of
order p™ such that t(G)=p™ % Choose an eclement z of order p in G. Then we have
p" 3=21(G/{z))<p™ ? and by the induction hypothesis t(G/{z))#p™ 3. Hence by
Proposition 2, exp G/{z)> =p™ 3, which yields exp G=p™ 3 because exp G<p™~3, and so
t(G)<p™ 2 by Lemma 1, a contradiction. Thus the corollary is proved for the case p
odd. When p=2, we use a similar argument.

In the rest of the paper, we denote by cl(G) the class of G, and by Z(G) the centre of
G. Now, using the classification of finite p-groups of order <p® (Hall and Senior [2]
and James [3]), we shall prove the following three lemmas.

Lemma 2. Let G be a 2-group of order 25 and exponent at most 2°. Then the
Jollowing hold:

(1) If exp G=2 then 1(G)=6.
(2) If exp G=2? then

_{7 i |6/@(G)|=24
‘(G)_{s if |G/¥G)|=2%, and
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t(G)={9 i |G/®(G)| =22, cl(G)=2,
10 if |G/®(G)|=2% «cl(G)=3.

Lemma 3. Let G be a 2-group of order 2° and exponent at most 23. Then t(G) <2*.

Lemma 4. Let p#2, and G a p-group of order p> and exponent at most p*. Then
HG)<p3.

Proof of Lemma 2. If exp G=2, G is elementary abelian, and so t(G)=6. Assume
that exp G=22 Since k,(G)=®(G), we have 2° =|G/®(G)|, and so if G is abelian then
e, =4 or 3, and correspondingly ((G)=7 or 8. Hence the lemma holds for abelian
groups. Now let G be nonabelian. Then G belongs to one of the families: I',, [y, ['s, I'5
(see [2]). If G belongs to I',, T', or ' then cl(G)=2 and y,(G)*={1}. Therefore I(G)=2
and (e,,e,)=(4,1) or (3,2) or (2,3); and correspondingly t(G)=7 or 8 or 9. On the other
hand, in the family I",, there is only one group G of order 2° and exponent 22. For this
group, e, =2, and #(G)=10, and we know that cl/(G)=3. This completes the proof of
Lemma 2.

Remark. There are twenty-one types of nonabelian 2-groups of order 2° and
exponent 22. Five of them given below satisfy t(G)=7:

32I'ya,,32I,a,,32IN,b,32I 5a,, 320 5a,.
The following fourteen groups satisfy t(G)=8§:
32IN,¢4,32005¢,,321,e,,321,e,,3200, f, 321 4a,,32T 4a,,
32T 4a34,3200,b,,321 4b,,320 4¢,,3217, ¢,, 320 44,321 ,d.

The last two are the groups we presented in Section 1: R=32I",h with t(R)=9 and
§=32I",a, with t(S)=10.

Proof of Lemma 3. If expG=2, G is elementary abelian, and so ¢(G)=7. Suppose
next that exp G=22. If G is abelian then G is of type (2,2,2) or (2,2,1,1) or (2,1,1,1,1),
and we see that (G)<10. Suppose G is nonabelian. Then G belongs to one of the
families: I';, 'y, I's, 5, Tg, Ty0, 11, T3, a3, [25. If G belongs to a family other than
I,3, then cl(G)<3, y,(G)*={1} and |ys(G)|<2. Hence k3(G)={1} if cl(G)=2; and
Kk3(G)=~C,, k4(G)={1} if cl(G)=3. So it follows that t(G)<2* If G belongs to I',; then
|x2(G)|=2% and k3(G)=y5(G)=C, x C;, ka(G)=74G)~C,, ks(G)={1}, and so #(G)=14.
Therefore the lemma holds if exp G <22. Finally, consider the case expG=23. If G is
abelian then G is of type (3,3) or (3,2,1) or (3,1,1,1), and so t(G)<15. So assume G is
nonabelian. Then G belongs to one of the families: I'y,..., [, ['y5, Ti4,..., 18, a2,
I3, Taa, Tye, and so cl(G) £4, 75(G)* =73(G)?>={1}. This shows that [(G)=4. Because,
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e,#0, and e,=1 if e,=1 ([10, Corollary 1.5, Theorem 1.12(ii)]), noting that e, =2, 3 or
4, we have the following possibilities:

(e1,ez.e5.4)=(2,1,2,1} or (2,2,1,1) or (2,2,0,2) or (3,1,1,1) or (3,2,0,1) or (4,1,0, 1).
This implies that t(G) <2* and Lemma 3 is proved.
Proof of Lemma 4. If G is abelian, then it is easy to see that
HG)SHCpax Cpax C,)=2p* +p—2<p>.

Assume G is nonabelian. Then G belongs to one of the families: @,,...,®,, ®g, ®,, (see
[3]). If G belongs to a family other than ®, and @, then cl(G)<3 and y,(G)*={1}. So
we see that /(G) < p, and by Jennings’ formula, we conclude that

HG)S(1-24p-3)(p—-1)+1<p’.

If G belongs to ®, or ®,, then cl(G)=4 and y,(G)’={1}. Therefore, if p>3 then
I(G)£p, so t(G) < p? again; while if p=3 then I(G)=4, k,(G)~C,, and we have

HG)S(1-2+3-24+4-1)3—-1)+1=25<33
Thus Lemma 4 is proved.

Lemma 5. Let G be a nonabelian p-group of order p™, and let z be an element of order
p lying in Z(G) N kyg(G). Assume exp G/{z)=p™>.

(1) If m27 then expG=p™ 2.
(2) If m=6, p#2 and t(G) 2 p* then exp G=p*.

Proof. (1) Suppose the result is false. Then there exists a p-group G of order p™ with
m27 such that exp G=exp G/{z)=p™ 3. Since G/{z) is of order p™~!, it is either an
abelian group of type (m—3,2) or (m—3, 1, 1), or isomorphic to one of the groups listed
in [9, Theorems 1 and 2]. Because m>7, in either case, we have rcsz(G):G"J:(a"’),
where a is an element of G such that a{z) (e G/{z)) is of order p™~3. But, because
exp G=p™~3, {a) does not contain z, and so K,241(G) $ z, which contradicts the choice
of z. Thus (1) is proved.

(2) Suppose the result is false. Then exp G=p> and G/{z) is either an abelian group
of type (3,2) or (3,1, 1); or isomorphic to one of the groups: G,,G,,...,G, given in [9,
Theorem 1]. Hence it follows that cl(G)<4 and y,(G)”’ =y(G)?={1}, and so I(G)=p>.
Because e,#0, and e,.=1 if e,=1 ([10]), noting that e, =2 or 3, we have the following
possibilities:

(er,ep,€,2)=(2,1,1) or (2,2,1) or (2,2,2) or (2,3,1) or (3,1,1) or (3,2, 1).
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This together with Jennings’ formula implies that ¢(G) does not exceed
(1-2+p-14+p?-3)(p—1)+ 1 <p*. This contradicts our assumption. Thus (2) is proved.

The next proposition is our Theorem 1 in the case when G is nonabelian.

Proposition 3. Let G be a nonabelian p-group of order p™, where m=3. Then the
Jfollowing properties are equivalent:

(1) p" 2 <t(G)<p™ 1.
(2) One of the following holds:
(i) expG=p™2, where (p,m) #(3,3);
(i) p=3,m=4,G=>M3)xCj;
(iii) p=5, m=4, G~Q;
(iv) p=2,m=S5, G~R;
(v} p=2,m=5, G~=S.

Proof. Obviously (2) implies (1). Suppose (1) holds. Then exp G <p™~2. Therefore, if
m=3 then expG=p, and so, as G is nonabelian, p is odd and G~ M(p). But then
t(G)=4p—3. Hence the inequality p?>t(G) yields p#3. Assume m=4. Then exp G <p?
and we already know that (i), (ii) or (iii) holds in this case. Further if p=2 and m=35, by
Proposition 1 and Lemma 2 (see also Remark), (i), (iv) or (v) holds. Therefore it suffices
to prove that if either p#2, m>5; or p=2, m=6, then expG=p™~2. We proceed by
induction on m. By Lemmas 3 and 4, the cases p#2, m=5 and p=2, m=6 are done.
Suppose m>5 if p#£2, and m>6 if p=2, and let z be an element of order p lying in
Z(G) N Ky6)(G). Then

p UG/ ZHG)>p" 2, UG/{())<HG)<p™ ™},

and so p" 3 <t(G/{(zD)<p™ L. If t(G/{z))>p™2, then exp G/{z)=p™ 2 by (B), and so
expG=p™ 2 as desired. Since t(G/{z))#p™ 2 by (C), it remains only to show that if
p" 3 <t(G/{zd)<p™ ? then expG=p™ 2 In this case, we have exp(G/{(z))=p™ 3
because if G/{z) is abelian, this follows from Proposition 2, and if G/{z) is nonabelian,
this follows from the induction hypothesis. Therefore expG=p™ % by Lemma 5, and
Proposition 3 is proved.

Corollary 2. Let G be a nonabelian p-group of order p™. Then the following properties
are equivalent:

(1) (G)=p""2
(2) |G|=2%, exp G=22, |G/®(G)| = 2.

Proof. The implication (2)=>(1) follows from Lemma 2. Suppose (1) holds. Since
expG<t(G)=p™ 2 and G is nonabelian, we see that m>4 if p#2, and m>5 if p=2. Let
p=2. If m=5; (2) follows from Lemma 2. Further, if m=6 then t(G)#2* by Lemma 3.
We next assume that p#2. If m=4 then expG=p and G=M(p) x C, or Q. We already
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know that ¢(G)#p? in either case. If m=35 then t(G)#p® by Lemma 4. Therefore it
suffices to prove that if either p=2 and m>7, or p#2 and m=6, then t(G)#p™ 2.
Suppose that it is false and let G be a nonabelian p-group of minimal order satisfying
1(G)=p™ % Let z be an element of order p lying in Z(G)NK,g(G). Then by
P 2=t(G) < p-t(G/{z)), we get p™ 3 £t(G/{zD). Suppose now t(G/{zD>)=p™ 3. Then by
Lemmas 3 and 4, we have p=2, m>7 or p#2, m>6, and G/{z) is abelian by the
minimality of G. But, by Corollary 1, this is impossible. Hence p™ 3 <t(G/{z)). Now the
inequality t(G/{z))<t(G)=p™ 2 implies p™ 3 <t(G/{z))<p™ 2. Therefore by Proposi-
tions 2 and 3, expG/{z)=p™ 3, and so expG=p™ % by Lemma 5, a contradiction.
Thus the corollary is proved.

Theorem 1 now follows from Propositions 2 and 3; and Theorem 2 follows from
Corollaries 1 and 2.
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