ADJOINT-TRIANGLE THEOREMS FOR CONSERVATIVE FUNCTORS

G.B. IM AND G.M. KELLY

An adjoint-triangle theorem contemplates functors $P: C \to A$ and $T: A \to B$ where T and TP have left adjoints, and gives sufficient conditions for P also to have a left adjoint. We are concerned with the case where T is conservative - that is, isomorphism-reflecting; then P has a left adjoint under various combinations of completeness or cocompleteness conditions on C and A, with no explicit condition on P itself. We list systematically the strongest results we know of in this direction, augmenting those in the literature by some new ones.

Let the conservative functor $T\colon A\to \mathcal{B}$ have a left adjoint S with counit $\varepsilon\colon ST\to 1$, and let $P\colon C\to A$ be such that $TP\colon C\to \mathcal{B}$ has a left adjoint R. The original adjoint-triangle theorem, due independently to Dubuc [1] and to Huq [2], concerns the case where each ε_A is a coequalizer, and reads:

Received 25 August 1986. The first author acknowledges the support of a grant from the Republic of Korea which permitted a year-long visit to Sydney in 1983/84, and the second author acknowledges the support of the Australian Research Grants Scheme.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/87 \$A2.00 + 0.00.

THEOREM 1. When each ϵ_A is a coequalizer, P has a left adjoint if C admits coequalizers. \Box

To suppose ε_A to be a coequalizer, or even a regular epimorphism in the sense of [4], is strictly stronger than supposing T to be conservative; the right-adjoint functor $\operatorname{Cat} + \operatorname{Set}$ sending a small category to its set of morphisms is conservative, but the corresponding ε_A is not a regular epimorphism for all A. By Proposition 4.3 of Im and Kelly [3], T is conservative when each ε_A is a strong epimorphism in the sense of [4], while the converse is true under various mild conditions on A.

Consider the following conditions on A:

- (a) A has small limits;
- (b) A has non-empty finite limits and arbitrary (even large) intersections of regular monomorphisms;
- (c) A is weakly cowellpowered (that is, each object has but a small set of strongly-epimorphic quotients) and has coequalizers and all cointersections of strong epimorphisms;
- (d) A has coequalizers and arbitrary cointersections of strong epimorphisms;
- (e) A has pullbacks and pushouts;

and the following conditions on C:

- (α) C is weakly cowellpowered and has small limits and arbitrary intersections of monomorphisms;
- (β) C is weakly cowellpowered and has coequalizers and all cointersections of strong epimorphisms;
- (γ) C has coequalizers and arbitrary cointersections of strong epimorphisms;
- (δ) C has coequalizers and small cointersections of strong epimorphisms.

Remark 2. (a) and (b) are completeness conditions on A , while (c) and (d) are cocompleteness conditions with (c) stronger than (d) , and (e) is a mixture of finite completeness and finite cocompleteness conditions. Again, (a) is (except for the weak cowell-powerdness) a completeness condition on C , while (β), (γ), and (δ) are cocompleteness conditions, each stronger than the next. The nasty conditions are those requiring cowell-poweredness or arbitrary cointersections of strong epimorphisms; since, while commonly satisfied by the usual categories of structures, these conditions do not pass automatically to reflective subcategories — it is not even known whether a total category (see [6]) satisfies such conditions. The new result (iii) of the following theorem goes beyond the results of [3] in not requiring such a condition of C , at the expense, however, of transferring it to A . The other advance on the results of [3] consists in requiring in (b) intersections, not of all monomorphisms, but only of regular ones.

THEOREM 3. Given P: $C \to A$ and a conservative T: $A \to B$ where T and TP have left adjoints, P has a left adjoint under any of the following pairs of conditions on A and C:

- (i) A satisfies (b) or (d) or (e) and C satisfies (a) or (γ) ;
- (ii) A satisfies (a) and C satisfies (a) or (β);
- (iii) A satisfies (c) and C satisfies (δ).
- Proof. (i) If A satisfies (b) or (d) or (e), each ε_A is a familially-strong epimorphism: this is in Theorem 4.5 of [3] for (d) and (e), but it is true for (b) too by Proposition 2.3 and 4.3 of [3]. Since (α) implies by Theorem 3.4 of [3] that every map in C factorizes as a strong epimorphism followed by a monomorphism, (i) now follows from parts (i) and (iii) of Theorem 5.4 of [3].
- (ii) If A satisfies (a), each ε_A is a small-familiarly-strong epimorphism by Theorem 4.5 of [3], and (ii) now follows from parts (ii) and (iii) of Theorem 5.4 of [3].
 - (iii) Write A' for the full subcategory of A determined

by the objects of the form SB for $B \in B$. We need the representability for each $A \in A$ of A(A,P-): $C \to S$ et , where Set is the category of sets in some universe containing all the hom-sets of A; and we have it for $A \in A'$, since $A(SB,P-) \cong B(B,TP-) \cong C(RB,-)$. We therefore have it for every A, by Propositions 3.36 and 3.37 of [5], if A is the closure of A' under the class Φ of colimits consisting of the coequalizers and the small cointersections of strong epimorphisms. That this is indeed so follows from (the proof of) Proposition 3.40 of [5], since each ε_A is a strong epimorphism by Theorem 4.5 of [3].

References

- [1] E. Dubuc, "Adjoint triangles", Lecture Notes in Math. 61 (1968), 69-91.
- [2] S.A. Huq, "An interpolation theorem for adjoint functors", *Proc. Amer. Math. Soc.* 25 (1970), 880-883.
- [3] G.B. Im and G.M. Kelly, "Some remarks on conservative functors with left adjoints", J. Korean Math. Soc. 23 (1986), 19-33.
- [4] G.M. Kelly, "Monomorphisms, epimorphisms, and pullbacks", J. Austral.

 Math. Soc. 9 (1969), 124-142.
- [5] G.M. Kelly, Basic Concepts of Enriched Category Theory, (London Math. Soc. Lecture Notes Series 64, Cambridge University Press, 1982).
- [6] G.M. Kelly, "A survey of totality for enriched and ordinary categories", *Cahiers Topologie Géom. Différentielle*, 27 (1986), 109-132.

Mathematics Department, Chung-Ang University, Seoul 151, Korea. Pure Mathematics Department, University of Sydney, New South Wales 2006 Australia.