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ON THE DIOPHANTINE EQUATION (8n)x + (15n)y = (17n)z
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Abstract

Let a, b, c be relatively prime positive integers such that a2 + b2 = c2. Half a century ago, Jeśmanowicz
[‘Several remarks on Pythagorean numbers’, Wiadom. Mat. 1 (1955/56), 196–202] conjectured that for
any given positive integer n the only solution of (an)x + (bn)y = (cn)z in positive integers is (x, y, z) =
(2, 2, 2). In this paper, we show that (8n)x + (15n)y = (17n)z has no solution in positive integers other than
(x, y, z) = (2, 2, 2).
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1. Introduction

Let n be a positive integer and let (a, b, c) be a primitive Pythagorean triple such
that a2 + b2 = c2, (a, b, c) = 1, and 2 | b. It is well known that a = u2 − v2, b = 2uv,
c = u2 + v2 with u > v > 0, 2 | uv and (u, v) = 1. Clearly, the Diophantine equation

(na)x + (nb)y = (nc)z (1.1)

has the solution (x, y, z) = (2, 2, 2). In 1956, Sierpiński [7] showed there were no
other solutions when n = 1 and (a, b, c) = (3, 4, 5), and Jeśmanowicz [2] proved that
when n = 1 and (a, b, c) = (5, 12, 13), (7, 24, 25), (9, 40, 41) or (11, 60, 61), then (1.1)
has only the solution (x, y, x) = (2, 2, 2). Moreover, he conjectured that (1.1) has no
positive integer solutions for any n other than (x, y, z) = (2, 2, 2).

In 1998, Deng and Cohen [1] proved the following two theorems.

T A. Let a = 2k + 1, b = 2k(k + 1), c = 2k(k + 1) + 1, for some positive
integer k. Suppose that a is a prime power, and that the positive integer n is such
that either C(b) | n or C(n) - b, where C(n) is the product of distinct primes of n. Then
the only solution of the Diophantine equation (na)x + (nb)y = (nc)z is x = y = z = 2.
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T B. For each of the Pythagorean triples (a, b, c) = (3, 4, 5), (5, 12, 13),
(7, 24, 25), (9, 40, 41) and (11, 60, 61), and for any positive integer n, the only solution
of the Diophantine equation (na)x + (nb)y = (nc)z is x = y = z = 2.

In 1999, Le Maohua [5] obtained certain conditions for (1.1) to have positive integer
solutions (x, y, z) with (x, y, z) , (2, 2, 2). For other related problems, see [3, 4, 6, 8].

In this paper, we consider (1.1) with (a, b, c) = (8, 15, 17) and obtain the following
result.

T. For any positive integer n, the only solution of the Diophantine equation

(8n)x + (15n)y = (17n)z (1.2)

is (x, y, z) = (2, 2, 2).

2. Proofs

L 1 [1, Lemma 2]. If z ≥max{x, y}, then the Diophantine equation ax + by = cz,
where a, b and c are any positive integers (not necessarily relatively prime) such that
a2 + b2 = c2, has no solution other than (x, y, z) = (2, 2, 2).

L 2 [9]. The only solution of the Diophantine equation (4n2 − 1)x + (4n)y =

(4n2 + 1)z is (x, y, z) = (2, 2, 2).

P  T. By Lemma 2, we know that the Diophantine equation 8x + 15y =

17z has the single solution (x, y, z) = (2, 2, 2). Suppose that (1.2) has solutions other
than x = y = z = 2, and n ≥ 2. By Lemma 1 we have z <max{x, y}.

Case 1. x > y.

Subcase 1.1 z ≤ y < x. Then

ny−z(8xnx−y + 15y) = 17z. (2.1)

If (n, 17) = 1, then by (2.1) and n ≥ 2 we have y = z. Thus

8xnx−y + 15y = 17y. (2.2)

We have (−1)y ≡ 1 (mod 4), so y is even. Write y = 2y1. By (2.2),

8xnx−y = (17y1 − 15y1 )(17y1 + 15y1 ).

Noting that (17y1 − 15y1 , 17y1 + 15y1 ) = 2, then

23x−1 | 17y1 − 15y1 , 2 | 17y1 + 15y1 , (2.3)

or
2 | 17y1 − 15y1 , 23x−1 | 17y1 + 15y1 . (2.4)
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However,

23x−1 > 23y−1 = 26y1−1 > 25y1 = (17 + 15)y1 > 17y1 + 15y1 > 17y1 − 15y1 ,

which contradicts both (2.3) and (2.4).
If (n, 17) = 17, then write n = 17rn1, where r ≥ 1 and 17 - n1. By (2.1),

ny−z
1 17r(y−z)(8xnx−y

1 17r(x−y) + 15y) = 17z.

Noting that (17, n1) = 1 and (8xnx−y
1 17r(x−y) + 15y, 17) = 1, we know that r(y − z) = z.

Thus ny−z
1 (8xnx−y

1 17r(x−y) + 15y) = 1. This is impossible.

Subcase 1.2. y < z < x. Then

15y = nz−y(17z − 8xnx−z). (2.5)

If (n, 15) = 1, then by (2.5) and n ≥ 2 we have y = z, a contradiction.
If (n, 15) > 1, then write n = 3r5qn1, where (15, n1) = 1 and r + q ≥ 1. By (2.5),

15y = 3r(z−y)5q(z−y)nz−y
1 (17z − 8x3r(x−z)5q(x−z)nx−z

1 ). (2.6)

Thus r(z − y) = q(z − y) = y. Hence r = q. By (2.6),

1 = nz−y
1 (17z − 8x15r(x−z)nx−z

1 ).

Thus n1 = 1 and 17z − 8x15r(x−z) = 1. Then 2z ≡ 1 (mod 3) and z ≡ 0 (mod 2). Write
z = 2z1. We have

23x15r(x−z) = (17z1 − 1)(17z1 + 1).

Noting that (17z1 − 1, 17z1 + 1) = 2, then

23x−1 | 17z1 − 1, 2 | 17z1 + 1, (2.7)

or
2 | 17z1 − 1, 23x−1 | 17z1 + 1. (2.8)

However,

23x−1 > 23z−1 = 26z1−1 > 25z1 > (17 + 1)z1 > 17z1 + 1z1 > 17z1 − 1z1 ,

which contradicts both (2.7) and (2.8).

Case 2. x = y. Then
nx−z(8x + 15x) = 17z. (2.9)

If (n, 17) = 1, then by (2.9) and n ≥ 2 we have x = z, a contradiction.
If (n, 17) = 17, then write n = 17rn1, where r ≥ 1 and 17 - n1. By (2.9),

17r(x−z)nx−z
1 (8x + 15x) = 17z. (2.10)

It follows that nx−z
1 | 17z, so n1 = 1. By (2.10),

8x + 15x = 17z−r(x−z).

By Lemma 2, x = z − r(x − z) = 2 which implies that x = z = 2, a contradiction.
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Case 3. x < y.

Subcase 3.1. z < x < y. Then

nx−z(8x + 15yny−x) = 17z. (2.11)

If (n, 17) = 1, then by (2.11) and n ≥ 2 we have x = z, a contradiction.
If (n, 17) = 17, then write n = 17rn1, where r ≥ 1 and 17 - n1. By (2.11),

17r(x−z)nx−z
1 (8x + 15y17r(y−x)ny−x

1 ) = 17z. (2.12)

It follows that nx−z
1 | 17z, so n1 = 1. By (2.12),

17r(x−z)(8x + 15y17r(y−x)) = 17z.

Then r(x − z) < z and 8x + 15y17r(y−x) = 17z−r(x−z). Thus 17 | 8x, a contradiction.

Subcase 3.2. x ≤ z < y. Then

23x + 15yny−x = 17znz−x. (2.13)

If (n, 2) = 1, then by (2.13) and n ≥ 2 we have x = z < y. Thus

8x + 15yny−x = 17x. (2.14)

Then 3x ≡ 2x (mod 5), so x ≡ 0 (mod 2). Write x = 2x1. By (2.14),

3y5yny−x = (17x1 − 8x1 )(17x1 + 8x1 ).

Noting that (17x1 − 8x1 , 17x1 + 8x1 ) = 1, we have 5y | 17x1 − 8x1 or 5y | 17x1 + 8x1 .
However,

5y > 5x = 52x1 = 25x1 = (17 + 8)x1 > 17x1 + 8x1 > 17x1 − 8x1 ,

a contradiction.
If (n, 2) = 2, write n = 2rn1, where r ≥ 1 and 2 - n1. By (2.13),

23x = nz−x(17z − 15yny−z) = 2r(z−x)nz−x
1 (17z − 15y2r(y−z)ny−z

1 ).

It follows that nz−x
1 | 23x, so that n1 = 1 or x = z.

If n1 = 1, then
23x = 2r(z−x)(17z − 15y2r(y−z)).

It follows that r(z − x) = 3x and 17z − 15y2r(y−z) = 1. Then 2z ≡ 1 (mod 3), so z ≡
0 (mod 2). Write z = 2z1. Then

15y2r(y−z) = (17z1 − 1)(17z1 + 1).

Noting that (17z1 − 1, 17z1 + 1) = 2, we have 5y | 17z1 − 1 or 5y | 17z1 + 1.
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However,

5y > 5z = 52z1 = 25z1 > (17 + 1)z1 > 17z1 + 1 > 17z1 − 1,

a contradiction.
If x = z, then 8x + 15yny−x = 17x. Thus 3x ≡ 2x (mod 5), so x ≡ 0 (mod 2). Write

x = 2x1. Then
3y5yny−x = (17x1 − 8x1 )(17x1 + 8x1 ).

Noting that (17x1 − 8x1 , 17x1 + 8x1 ) = 1, we have 5y | 17x1 − 8x1 or 5y | 17x1 + 8x1 .
However,

5y > 5x = 52x1 = 25x1 = (17 + 8)x1 > 17x1 + 8x1 > 17x1 − 8x1 ,

a contradiction.
This completes the proof of the theorem. �
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