ON THE DIOPHANTINE EQUATION $(8n)^x + (15n)^y = (17n)^z$

ZHI-JUAN YANG and MIN TANG™

(Received 10 November 2011)

Abstract

Let a, b, c be relatively prime positive integers such that $a^2 + b^2 = c^2$. Half a century ago, Jeśmanowicz ['Several remarks on Pythagorean numbers', *Wiadom. Mat.* 1 (1955/56), 196–202] conjectured that for any given positive integer n the only solution of $(an)^x + (bn)^y = (cn)^z$ in positive integers is (x, y, z) = (2, 2, 2). In this paper, we show that $(8n)^x + (15n)^y = (17n)^z$ has no solution in positive integers other than (x, y, z) = (2, 2, 2).

2010 Mathematics subject classification: primary 11D61.

Keywords and phrases: Jeśmanowicz's conjecture, Diophantine equation.

1. Introduction

Let *n* be a positive integer and let (a, b, c) be a primitive Pythagorean triple such that $a^2 + b^2 = c^2$, (a, b, c) = 1, and $2 \mid b$. It is well known that $a = u^2 - v^2$, b = 2uv, $c = u^2 + v^2$ with u > v > 0, $2 \mid uv$ and (u, v) = 1. Clearly, the Diophantine equation

$$(na)^{x} + (nb)^{y} = (nc)^{z}$$
(1.1)

has the solution (x, y, z) = (2, 2, 2). In 1956, Sierpiński [7] showed there were no other solutions when n = 1 and (a, b, c) = (3, 4, 5), and Jeśmanowicz [2] proved that when n = 1 and (a, b, c) = (5, 12, 13), (7, 24, 25), (9, 40, 41) or (11, 60, 61), then (1.1) has only the solution (x, y, x) = (2, 2, 2). Moreover, he conjectured that (1.1) has no positive integer solutions for any n other than (x, y, z) = (2, 2, 2).

In 1998, Deng and Cohen [1] proved the following two theorems.

THEOREM A. Let a = 2k + 1, b = 2k(k + 1), c = 2k(k + 1) + 1, for some positive integer k. Suppose that a is a prime power, and that the positive integer n is such that either $C(b) \mid n$ or $C(n) \nmid b$, where C(n) is the product of distinct primes of n. Then the only solution of the Diophantine equation $(na)^x + (nb)^y = (nc)^z$ is x = y = z = 2.

This work was supported by the National Natural Science Foundation of China, Grant No 10901002. © 2012 Australian Mathematical Publishing Association Inc. 0004-9727/2012 \$16.00

THEOREM B. For each of the Pythagorean triples (a, b, c) = (3, 4, 5), (5, 12, 13), (7, 24, 25), (9, 40, 41) and (11, 60, 61), and for any positive integer n, the only solution of the Diophantine equation $(na)^x + (nb)^y = (nc)^z$ is x = y = z = 2.

In 1999, Le Maohua [5] obtained certain conditions for (1.1) to have positive integer solutions (x, y, z) with $(x, y, z) \neq (2, 2, 2)$. For other related problems, see [3, 4, 6, 8].

In this paper, we consider (1.1) with (a, b, c) = (8, 15, 17) and obtain the following result.

THEOREM. For any positive integer n, the only solution of the Diophantine equation

$$(8n)^{x} + (15n)^{y} = (17n)^{z}$$
(1.2)

is(x, y, z) = (2, 2, 2).

2. Proofs

LEMMA 1 [1, Lemma 2]. If $z \ge \max\{x, y\}$, then the Diophantine equation $a^x + b^y = c^z$, where a, b and c are any positive integers (not necessarily relatively prime) such that $a^2 + b^2 = c^2$, has no solution other than (x, y, z) = (2, 2, 2).

Lemma 2 [9]. The only solution of the Diophantine equation $(4n^2 - 1)^x + (4n)^y = (4n^2 + 1)^z$ is (x, y, z) = (2, 2, 2).

PROOF OF THEOREM. By Lemma 2, we know that the Diophantine equation $8^x + 15^y = 17^z$ has the single solution (x, y, z) = (2, 2, 2). Suppose that (1.2) has solutions other than x = y = z = 2, and $n \ge 2$. By Lemma 1 we have $z < \max\{x, y\}$.

Case 1. x > y.

Subcase 1.1 $z \le y < x$. Then

$$n^{y-z}(8^x n^{x-y} + 15^y) = 17^z. (2.1)$$

If (n, 17) = 1, then by (2.1) and $n \ge 2$ we have y = z. Thus

$$8^x n^{x-y} + 15^y = 17^y. (2.2)$$

We have $(-1)^y \equiv 1 \pmod{4}$, so y is even. Write $y = 2y_1$. By (2.2),

$$8^{x}n^{x-y} = (17^{y_1} - 15^{y_1})(17^{y_1} + 15^{y_1}).$$

Noting that $(17^{y_1} - 15^{y_1}, 17^{y_1} + 15^{y_1}) = 2$, then

$$2^{3x-1} | 17^{y_1} - 15^{y_1}, \quad 2 | 17^{y_1} + 15^{y_1},$$
 (2.3)

or

$$2 | 17^{y_1} - 15^{y_1}, \quad 2^{3x-1} | 17^{y_1} + 15^{y_1}.$$
 (2.4)

However.

$$2^{3x-1} > 2^{3y-1} = 2^{6y_1-1} > 2^{5y_1} = (17+15)^{y_1} > 17^{y_1} + 15^{y_1} > 17^{y_1} - 15^{y_1}$$

which contradicts both (2.3) and (2.4).

If (n, 17) = 17, then write $n = 17^r n_1$, where $r \ge 1$ and $17 \nmid n_1$. By (2.1),

$$n_1^{y-z} 17^{r(y-z)} (8^x n_1^{x-y} 17^{r(x-y)} + 15^y) = 17^z.$$

Noting that $(17, n_1) = 1$ and $(8^x n_1^{x-y} 17^{r(x-y)} + 15^y, 17) = 1$, we know that r(y-z) = z. Thus $n_1^{y-z} (8^x n_1^{x-y} 17^{r(x-y)} + 15^y) = 1$. This is impossible.

Subcase 1.2. y < z < x. Then

$$15^{y} = n^{z-y}(17^{z} - 8^{x}n^{x-z}). (2.5)$$

If (n, 15) = 1, then by (2.5) and $n \ge 2$ we have y = z, a contradiction.

If (n, 15) > 1, then write $n = 3^r 5^q n_1$, where $(15, n_1) = 1$ and $r + q \ge 1$. By (2.5),

$$15^{y} = 3^{r(z-y)} 5^{q(z-y)} n_{1}^{z-y} (17^{z} - 8^{x} 3^{r(x-z)} 5^{q(x-z)} n_{1}^{x-z}).$$
 (2.6)

Thus r(z - y) = q(z - y) = y. Hence r = q. By (2.6),

$$1 = n_1^{z-y} (17^z - 8^x 15^{r(x-z)} n_1^{x-z}).$$

Thus $n_1 = 1$ and $17^z - 8^x 15^{r(x-z)} = 1$. Then $2^z \equiv 1 \pmod{3}$ and $z \equiv 0 \pmod{2}$. Write $z = 2z_1$. We have

$$2^{3x}15^{r(x-z)} = (17^{z_1} - 1)(17^{z_1} + 1).$$

Noting that $(17^{z_1} - 1, 17^{z_1} + 1) = 2$, then

$$2^{3x-1} | 17^{z_1} - 1, \quad 2 | 17^{z_1} + 1,$$
 (2.7)

or

$$2 | 17^{z_1} - 1, \quad 2^{3x-1} | 17^{z_1} + 1.$$
 (2.8)

However,

$$2^{3x-1} > 2^{3z-1} = 2^{6z_1-1} > 2^{5z_1} > (17+1)^{z_1} > 17^{z_1} + 1^{z_1} > 17^{z_1} - 1^{z_1},$$

which contradicts both (2.7) and (2.8).

Case 2. x = y. Then

$$n^{x-z}(8^x + 15^x) = 17^z. (2.9)$$

If (n, 17) = 1, then by (2.9) and $n \ge 2$ we have x = z, a contradiction.

If (n, 17) = 17, then write $n = 17^r n_1$, where $r \ge 1$ and $17 \nmid n_1$. By (2.9),

$$17^{r(x-z)}n_1^{x-z}(8^x+15^x)=17^z. (2.10)$$

It follows that $n_1^{x-z} | 17^z$, so $n_1 = 1$. By (2.10),

$$8^x + 15^x = 17^{z-r(x-z)}$$

By Lemma 2, x = z - r(x - z) = 2 which implies that x = z = 2, a contradiction.

Case 3. x < y.

Subcase 3.1. z < x < y. Then

$$n^{x-z}(8^x + 15^y n^{y-x}) = 17^z. (2.11)$$

If (n, 17) = 1, then by (2.11) and $n \ge 2$ we have x = z, a contradiction. If (n, 17) = 17, then write $n = 17^r n_1$, where $r \ge 1$ and $17 \nmid n_1$. By (2.11),

$$17^{r(x-z)}n_1^{x-z}(8^x + 15^y 17^{r(y-x)}n_1^{y-x}) = 17^z.$$
 (2.12)

It follows that $n_1^{x-z} | 17^z$, so $n_1 = 1$. By (2.12),

$$17^{r(x-z)}(8^x + 15^y 17^{r(y-x)}) = 17^z.$$

Then r(x-z) < z and $8^x + 15^y 17^{r(y-x)} = 17^{z-r(x-z)}$. Thus $17 \mid 8^x$, a contradiction.

Subcase 3.2. $x \le z < y$. Then

$$2^{3x} + 15^y n^{y-x} = 17^z n^{z-x}. (2.13)$$

If (n, 2) = 1, then by (2.13) and $n \ge 2$ we have x = z < y. Thus

$$8^x + 15^y n^{y-x} = 17^x. (2.14)$$

Then $3^x \equiv 2^x \pmod{5}$, so $x \equiv 0 \pmod{2}$. Write $x = 2x_1$. By (2.14),

$$3^{y}5^{y}n^{y-x} = (17^{x_1} - 8^{x_1})(17^{x_1} + 8^{x_1}).$$

Noting that $(17^{x_1} - 8^{x_1}, 17^{x_1} + 8^{x_1}) = 1$, we have $5^y \mid 17^{x_1} - 8^{x_1}$ or $5^y \mid 17^{x_1} + 8^{x_1}$. However,

$$5^y > 5^x = 5^{2x_1} = 25^{x_1} = (17 + 8)^{x_1} > 17^{x_1} + 8^{x_1} > 17^{x_1} - 8^{x_1},$$

a contradiction.

If (n, 2) = 2, write $n = 2^r n_1$, where $r \ge 1$ and $2 \nmid n_1$. By (2.13),

$$2^{3x} = n^{z-x}(17^z - 15^y n^{y-z}) = 2^{r(z-x)} n_1^{z-x}(17^z - 15^y 2^{r(y-z)} n_1^{y-z}).$$

It follows that $n_1^{z-x} \mid 2^{3x}$, so that $n_1 = 1$ or x = z.

If $n_1 = 1$, then

$$2^{3x} = 2^{r(z-x)}(17^z - 15^y 2^{r(y-z)}).$$

It follows that r(z - x) = 3x and $17^z - 15^y 2^{r(y-z)} = 1$. Then $2^z \equiv 1 \pmod{3}$, so $z \equiv 0 \pmod{2}$. Write $z = 2z_1$. Then

$$15^{y}2^{r(y-z)} = (17^{z_1} - 1)(17^{z_1} + 1).$$

Noting that $(17^{z_1} - 1, 17^{z_1} + 1) = 2$, we have $5^y | 17^{z_1} - 1$ or $5^y | 17^{z_1} + 1$.

However.

$$5^{y} > 5^{z} = 5^{2z_1} = 25^{z_1} > (17+1)^{z_1} > 17^{z_1} + 1 > 17^{z_1} - 1,$$

a contradiction.

If x = z, then $8^x + 15^y n^{y-x} = 17^x$. Thus $3^x \equiv 2^x \pmod{5}$, so $x \equiv 0 \pmod{2}$. Write $x = 2x_1$. Then

$$3^{y}5^{y}n^{y-x} = (17^{x_1} - 8^{x_1})(17^{x_1} + 8^{x_1}).$$

Noting that $(17^{x_1} - 8^{x_1}, 17^{x_1} + 8^{x_1}) = 1$, we have $5^y \mid 17^{x_1} - 8^{x_1}$ or $5^y \mid 17^{x_1} + 8^{x_1}$. However,

$$5^{y} > 5^{x} = 5^{2x_1} = 25^{x_1} = (17 + 8)^{x_1} > 17^{x_1} + 8^{x_1} > 17^{x_1} - 8^{x_1}$$

a contradiction.

This completes the proof of the theorem.

References

- M. Deng and G. L. Cohen, 'On the conjecture of Jeśmanowicz concerning Pythagorean triples', Bull. Aust. Math. Soc. 57 (1998), 515–524.
- [2] L. Jeśmanowicz, 'Several remarks on Pythagorean numbers', Wiadom. Mat. 1 (1955/56), 196–202.
- [3] L. Maohua, 'A note on Jeśmanowicz' conjecture', Colloq. Math. 69 (1995), 47–51.
- [4] L. Maohua, 'On Jeśmanowicz' conjecture concerning Pythagorean triples', Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 97–98.
- [5] L. Maohua, 'A note on Jeśmanowicz' conjecture concerning Pythagorean triples', *Bull. Aust. Math. Soc.* 59 (1999), 477–480.
- [6] L. Maohua, 'A note on Jeśmanowicz' conjecture concerning primitive Pythagorean triples', Acta Arith. 138 (2009), 137–144.
- [7] W. Sierpiński, 'On the equation $3^x + 4^y = 5^z$ ', Wiadom. Mat. 1 (1955/56), 194–195.
- [8] K. Takakuwa, 'A remark on Jeśmanowicz' conjecture', Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 109–110.
- [9] L. Wenduan, 'On the Pythagorean numbers $4n^2 1$, 4n and $4n^2 + 1$ ', *Acta Sci. Natur. Univ. Szechuan* **2** (1959), 39–42.

ZHI-JUAN YANG, Department of Mathematics, Anhui Normal University, Wuhu 241000, China

MIN TANG, Department of Mathematics, Anhui Normal University, Wuhu 241000, China

e-mail: tmzzz2000@163.com