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Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that has reached epidemic proportions worldwide, posing a huge treat on people’s
health and quality of life. From a pathogenetic prospective, T2DM is driven by insulin resistance defined as a blunted response of tissues to
insulin which leads to chronic hyperglycaemia. Mechanistically, lipotoxicity and particularly the intracellular accumulation of ceramides in the
skeletal muscle and the liver, is a primarymetabolic aberration underpinning insulin resistance. Indeed, intracellular ceramide accumulation can
hamper insulin signal transduction pathway thereby promoting insulin resistance. This review will provide an updated overview of the
metabolic defects underlaying ceramide buildup and the molecular mechanism by which ceramides imping upon insulin signalling.
Additionally, the role of specific ceramide subspecies as potential biomarkers for T2DM and the role of both long- and medium-chain saturated
fatty acids as a modulator of ceramide metabolism will be discussed.
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Introduction

Obesity represents a global health pandemic affecting both
developed and, increasingly, developing countries(1). The
burden posed by obesity on people’s health and the health
care systems worldwide is a direct consequence of its life-
threatening comorbidities. Indeed, obesity is not to be merely
considered as an abnormal excess of body fat, instead the excess
of body weight and the overexpansion of the adipose tissue
trigger a plethora of pathophysiological derangements that
disrupt cardiometabolic health(2). In support of this, obesity is
closely associated with the onset of type 2 diabetes (T2DM)(3),
cardiovascular diseases(4), non-alcoholic fatty liver disease(5),
certain types of carcer(6) and mental health issues(7).

In terms of its pathophysiology, obesity arises from a long-
term positive energy balance which is the direct consequence of
energy overconsumption, fostered by the ready availability of
cheap, highly palatable, nutrient-dense foods and physical
inactivity(8–11). These are two pivotal paradigms which have
been fuelling obesity and its comorbidities in high-income
countries and are now spreading to low- and middle-income
countries due to rapid behavioural and cultural changes
prompted by the pressure of globalisation(12). Remarkably,
obesity develops despite the human subject’s body being
equipped with a sophisticated and finely tuned centre for the
control of energy balance, located in the hypothalamus, which is

tasked tomatch energy intake and expenditure to one another to
maintain bodyweight within a tight range(13). This is achieved by
the ability of the hypothalamus, and particularly the arcuate
nucleus, to sense peripheral hormonal, nervous and nutritional
cues related to the nutritional status and mount physiological
responses to maintain energy homoeostasis(13–16). Nonetheless,
this homoeostatic system appears to fail in obesity, thereby
predisposing to weight and adiposity gain(17). From a nutritional
perspective, long-chain saturated fatty acids and sugar represent
the primary nutritional culprits in promoting hypothalamic
dysfunction(18,19).

Thus, obesity arises as a consequence of nutrient oversupply,
with this energy excess being stored in the adipose tissue in the
form of triglycerides. The adipose tissue triglycerides represent
an energy reservoir to be used in response to fasting or increased
energy demand, as in the case of prolonged physical activity. In
particular, the adipose tissue releases free fatty acids as a result of
triacylglycerols lipolysis which, in turn, is a finely tuned process
under the control of hormonal, nervous and nutritional
inputs(20). Therefore, under physiological conditions, this allows
the correct matching of free fatty acid supply to and demand of
extra adipose tissues. However, this tight physiological regula-
tion of lipid metabolism becomes impaired in obesity, with a
mismatch between fatty acid supply to metabolically active
tissues and their ability to catabolise them(21–24). In this regard,
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adipose tissue dysfunction represents a pivotal driver of free fatty
acid oversupply to metabolically active tissues such as the
skeletal muscle and liver. Indeed, dysfunctional adipocytes are
characterised by insulin resistance with promotes the disinhibi-
tion of lipolysis leading to an uncontrolled release of free fatty
acids from the adipose tissue(25). Uncontrolled fatty acid spill
over from the adipose tissue and fatty acids derived from
chylomicrons and VLDL, in the face of impaired fatty acid
oxidative capacity and reduced energy demand, promote the
ectopic accumulation of lipid in tissue not suited for lipid storage,
namely skeletal muscle(26), liver(27), pancreas(28) and heart(29), a
phenomenon termed lipotoxicity(30). Lipotoxicity, in turn, has
been proposed as one of the key effectors underlaying the link
between obesity and its comorbidities, therefore representing a
putative target to improve cardiometabolic health(31). However,
not all the lipid species appear to be detrimental when
accumulating in non-adipose tissues. In keeping with this, while
triacylglycerols intracellular accumulation does not appear to
promote insulin resistance(32,33); the opposite is true for
ceramides which have been shown to hamper insulin signalling
and impair insulin sensitivity(34–37).

Saturated fatty acids have been widely proposed as a pivotal
metabolic culprit in fostering obesity(18) and insulin resis-
tance(38), with ceramides being one of the potential mediators
driving themetabolically detrimental effects of these dietary fatty
acids(36,39). In light of this, the aim of this review is to provide an
overview on the molecular mechanisms underpinning the
effects of ceramides on insulin resistance as well as their role
as an innovative biomarker for T2DM. Additionally, this
manuscript will discuss the role of saturated fatty acid quality
in the modulation of ceramide metabolism.

Ceramide biosynthesis and breakdown

Ceramides are the precursor of complex sphingolipids that are
integral components of cell membranes. Cellular ceramide
content is regulated by hormonal, metabolic and inflammatory
cues which include substrate availability, specifically palmitoyl-
CoA, the CoA-derivate of the long-chain saturated fatty acid
palmitic acid, pro-inflammatory cytokines, adiponectin and
fibroblast growth factor 21 signalling(37,40). Ceramide de novo
synthesis takes place in the endoplasmic reticulum (ER) and
begins with the condensation of palmitoyl-CoA and the amino
acid serine catalysed by serin-palmitoyl transferase. The
resulting product, 3-ketosphinganine, is then converted to
sphinganine by 3-ketosphinganine reductase. The next step is
represented by a N-acylation reaction mediated by a family of
enzymes termed ceramide synthases, which encompasses six
isoforms. In light of this, part of this step provides a wide variety
of dihydroceramides differing in their acyl chain length are
synthetised, ranging from 14 to 34 carbon atoms. The final step of
the de novo ceramide synthesis is catalysed by dihydroceramide
desaturases which introduces a 4,5-trans-double bond into the
dihydroceramide molecules forming ceramides(37,41). These
enzymatic reactions, particularly those mediated by ceramide
synthases, give raise to a variety of ceramide pool which
potentially confer different pathophysiological roles to these

sphingolipids and is most likely influenced by the availability of
specific fatty acids as well as the ceramide synthase substrate
preferences(42).

Ceramides can also be synthetised following alternative
pathways, namely the catabolism of sphingomyelin and the
salvage pathway. The former pathway generates ceramides via
the sphingomyelinase-mediated catabolism of sphingomye-
lins(43), whereas the latter is based on the recycling of
sphinganine derived from ceramidase-induced ceramide
catabolism(44). A further pathway responsible for ceramide
synthesis, albeit less frequent, relies on the hydrolysis of
glycosphingolipids by glycosidases(45). Once synthetised,
ceramide can be exported to the Golgi apparatus where head
groups are added to the 1-hydroxyl position to produce
ceramide-1-phosphate, sphingomyelin or glycoceramides as
extensively reviewed elsewhere(46).

Beside their de novo synthesis and regeneration, the
metabolism of ceramides also includes a catabolic branch
(Figure 1). Indeed, ceramides can be breakdown by ceram-
idase-mediated diacylation leading to the formation of sphingo-
sine, which, in turn, is converted to sphingosine-1-phosphate by
specific cytosolic sphingosine kinases. Sphingosine-1-phosphate
is finally brokendown to hexadecenal and phosphoethanolamine
by sphingosine-1-phosphate lyase localised in the ER
(Figure 1)(43). Ceramide degradation is mediated by ceramidases
which in mammals include five proteins classified according to
their pH optimum in acid, neutral and alkaline ceramidases(41).
Beside these classical ceramides, the adiponectin receptor has
also been reported to possess intrinsic ceramidase activity which
is induced by adiponectin binding(47,48).

The impact of ceramides on insulin resistance and the
onset of type 2 diabetes mellitus

Ceramides are at the forefront of metabolic dysfunction
integrating nutrient overload, particularly in the form of long-

Fig. 1. Ceramide catabolic pathway. Ceramides can be catabolised by acid,
neutral and alkaline ceramidases, as well as the intrinsic ceramidase activity of
the adiponectin receptor. A ceramide is deacylated with the consequent
formation of sphingosine which is phosphorylated by sphingosine kinases 1 and
2. The resulting sphingosine-1-phosphate, via the intervention of sphingosine-1-
phosphate lyase, is finally cleaved with the release of hexadecenal and
phosphoethanolamine. CDases, ceramidases; SK, sphingosine kinases; S1P
lyase, sphingosine-1-phosphate lyase
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chain saturated fatty acids, obesity and insulin resistance.
Indeed, these lipotoxic lipid species have been reported to
disrupt insulin signal transduction pathway and promote insulin
resistance(36,39), trigger metabolic inflammation(40,49,50) and
disrupt energy and glucose homeostasis by inducing hypotha-
lamic dysfunction(18,51), which not surprisingly are all pivotal
features of obesity.

From amechanistic perspective, ceramides have been shown
to hamper insulin signalling via different mechanisms. The first
relies on ceramide-induced activation of protein kinase Cζ
which, by phosphorylating AKT/protein kinase B on a
regulatory site of Pleckstrin homology domain, inhibits its
translocation to the plasma membrane(52,53) (Figure 2). On the
contrary a further mechanism of ceramide-induced insulin
resistance involves the activation of protein phosphatase 2A and
the subsequent dephosphorylation and inactivation of AKT/
protein kinase B(54) (Figure 2). Additionally, ceramides are able
to impair insulin signalling by targeting the insulin receptor
substrate. This effect is mediated by ceramide-induced activation
of the double-stranded RNA dependent protein kinase – c-jun
N-terminal kinase (JNK) axis which culminates with the
phosphorylation of insulin receptor substrate on serine 307
and its inhibition(55). Finally, ceramides are also able to disrupt
insulin signal transduction pathway by upregulating the

transcription factor Pbx-regulating protein 1 and its cofactor
p160 and favouring their interaction. In turn, Pbx-regulating
protein 1–p160 interaction hampers insulin signalling leading to
a decrease in glycogen synthesis and glucose uptake by L6
myotubes(56). These mechanistic data are extensively supported
by in vivo studies both in human subjects as well as animal
models. Indeed, myriocin-mediated inhibition of serin palmitoyl
transferase, the first and rate-limiting enzyme in the ceramide de
novo synthesis pathway, improved systemic saturated fatty acid
and dexamethasone-induced insulin resistance(57), as well as
enhanced adipose tissue insulin sensitivity in rats fed a high-fat
diet(58). Furthermore, specifically targeting of ceramides 4,5-trans
double bond in their sphingoid backbone bywhole body or liver
and/or adipose tissue dihydroceramide desaturase 1 knock-out
countered insulin resistance and hepatic steatosis induced by
either a high-fat diet or leptin deficiency, indicating that the
deleterious effects ascribed to ceramides are not dependent of
other lipid intermediary in the ceramide biosynthetic path-
way(39). Remarkably, the effects of the inhibition of ceramide
production are not limited to insulin resistance, with myriocin
preventing the onset of fasting hyperglycaemia, and the decline
in β-cell mass in Zucker diabetic fatty rats(57). Thus, apart from
improving insulin sensitivity, the inhibition of ceramide synthesis
also exerts a protective effect on pancreatic β cells, a further

Fig. 2. Circulating ceramides and dihydroceramides packed in lipoproteins and their effect on insulin resistance. Circulating Cer(d18:1/16:0) and Cer(d18:1/18:0), as
well as dihydroceramides, of which Cer(d18:0/18:0) is exemplified here, are up-regulated in individuals with insulin resistance and suffering from T2DM. Circulating
ceramides packed in LDL and VLDL can target metabolically active tissues, such as the skeletal muscle, to promote insulin resistance along with intracellularly
synthetised ceramides. Ceramides hamper intracellular insulin signal transduction by promoting protein kinase Cζ-mediated phosphorylation and inhibition of AKT. To a
similar extent, the activation of protein phosphatase 2A by ceramides leads to the dephosphorylation and inhibition of AKT. This figure was created using
smart.servier.com
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tissue target of lipotoxicity(59), thereby preventing the progres-
sion from prediabetes to full blown T2DM(57). The protective
effects of the inhibition of ceramide accumulation upon high-fat
diet feeding does not appear to be tissue specific as similar
improvements in insulin sensitivity were also reported upon
specific inhibition of ceramide synthesis in skeletal muscle(60) or
brown adipose tissue(61).

The evidence relative to the metabolic effects of ceramide in
humans are limited by the impossibility to perform pharmaco-
logical or genetic manipulation to decrease ceramide synthesis
as reported in animal models. However, this does not negate the
metabolically detrimental effects of ceramide in humans. Indeed,
circulating ceramides, particularly circulating C16:0 ceramide,
correlated with insulin resistance assessed using the homoeo-
stasis model assessment: insulin resistance(62). This also held true
relative to the accumulation of ceramide in metabolically active
tissues. In agreement with this, an increase in ceramide levels in
the adipose tissue correlated with hepatic lipid content and
insulin resistance independently of obesity(63). Furthermore, an
increase in C16:0 ceramide and the up-regulation of ceramide
synthase 6 was reported in the adipose tissue of obese
individuals and positively correlated with adiposity, hyper-
glycaemia as well as insulin resistance assessed by euglycemic
hyperinsulinemia clamps(61). The buildup of ceramides has also
been reported in the skeletal muscle and, not surprisingly, also in
this case it correlated with insulin resistance(64–66). Most
importantly, lifestyle, such as physical activity, or pharmaco-
logical interventions (metformin and pioglitazone), as well as
bariatric surgery apart from improving glycaemic control also
resulted in a decrease in intramyocellular and circulating
ceramide levels(66–69) supporting the notion that a decrease in
muscular and circulating ceramide levels goes hand in handwith
improved insulin resistance. However, the cause–effect relation-
ship between ceramides and insulin resistance in humans
remains to be fully elucidated. Indeed, it cannot be excluded that
improved insulin sensitivity in response to the aforementioned
interventions may be exquisitely dependent on improved lipid
metabolismofwhich a decrease in ceramide levelsmay only be a
read out. Furthermore, albeit unlikely, the improvement in
insulin sensitivity may be a cause, rather than a consequence, of
the decrease in tissue and circulating ceramide levels.
Nonetheless, the animal studies described that fat provides
sufficient support to the conundrum that ceramides represent a
pivotal driver of insulin resistance.

Nevertheless, the fact that not all ceramides are created equal
must not be overlooked. In line with this notion, the
metabolically detrimental effects described above appear to
be ceramide specific. Indeed, evidence from animal models
suggest that lowering C18:0 ceramide by knocking out ceramide
synthase 1 both within the skeletal muscle and globally
improved glucose homoeostasis(60). Nevertheless, lowering
C16:0 ceramide by targeting ceramide synthase 5 and 6 in the
skeletal muscle did not improve insulin sensitivity in high-fat-fed
animals(60). On the contrary, other evidence, always collected as
part of animal studies, supported the role of C16:0 ceramide as
being instrumental for the development of insulin resis-
tance(61,70). This was also corroborated in human subject studies
reporting that in the adipose tissue, the de novo synthesis of

C16:0 ceramidewas amajor driver of insulin resistance(71). While
the involvement of specific ceramide species in promoting
insulin resistance remains a matter of debate, indistinctly
lowering ceramide levels by dihydroceramide desaturase 1
knock out has metabolically beneficial effects of insulin
resistance and hepatic steatosis(39).

Ceramide accumulation within the hypothalamus
contributes to impaired peripheral metabolic health and
obesity

The metabolically detrimental effects of ceramide accumulation
are not limited to peripheral tissues, as described so far. Indeed,
ceramide buildup has also been reported in the hypothalamus of
rodents fed a high-fat diet leading to a deterioration of metabolic
health(72). Hypothalamic lipotoxicity, and particularly ceramide
accumulation, is not without metabolic consequences. In
support of this, direct hypothalamic infusion of C6 ceramide, a
cell permeable ceramide, induced hypothalamic ER stress and
inflammation(51), two pivotal mechanisms responsible for
promoting insulin and leptin resistance, posing the pathogenetic
basis for obesity and impaired glycaemic control(73–76). As such,
animals receiving intracerebroventricular C6 ceramide adminis-
tration displayed a decrease in insulin sensitivity and developed
obesity secondary to decreased energy expenditure and brown
adipose tissue thermogenesis(51). Remarkably, these effects were
countered by inhibition of hypothalamic ER stress which, not
only normalised body weight, but also reversed central
ceramide-induced peripheral insulin resistance(51), supporting
the notion that ER stress represents an effector of lipotoxicity.
These effects were recapitulated in obese Zucker rats which are
generally characterised by hypothalamic ER stress and ceramide
accumulation. In these animals, inhibition of ER stress was
sufficient to improve their metabolic phenotype marked by an
improvement in insulin as well as leptin resistance, reduced
body weight gain and hepatic steatosis(51). In consideration of
this, besides their role in insulin resistance, ceramides may also
promote obesity. This was confirmed by the protective effect of
ceramide synthase 6 knock out against high-fat diet-induced
obesity(61). Always in support of the metabolically detrimental
role of ceramide accumulation in the hypothalamus, inhibition of
its synthesis within the hypothalamus resulted in an improve-
ment in insulin sensitivity, an effect that was also confirmed on
cultured hypothalamic neurons(77). Additionally, the inhibition
of ceramide synthesis within the hypothalamus improved
glycaemic control by enhancing glucose-stimulated insulin
secretion and pancreatic β-cell mass(77). Thus, ceramides appear
to impair metabolic health and particularly insulin sensitivity by
accumulating both in peripheral tissues and in the hypothala-
mus, with these effects being presumably dependent on the
activation of protein kinase Cζ, protein phosphatase 2A,
metabolic inflammation and ER stress(36,40,51,78). Particularly, ER
stress may be at the interface between lipotoxicity andmetabolic
dysfunction. However, ER stress may mediate the deleterious
effect of ceramide in concert with inflammation given the cross-
talk between these pathophysiological responses(79) and the
ability of ceramides to trigger both(49,51). Nevertheless, ER stress
may not be responsible for the detrimental effects of ceramide on
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insulin resistance in in vitro skeletal muscle models. This
possibility is supported by the fact that the inhibition of ER stress
is not sufficient to rescue palmitic acid-induced impairment in
insulin signalling in C2C12 and human myotubes(80,81).

As described thus far, ceramides represent a particularly
strong candidate in linking obesity, dysfunctional lipid metabo-
lism and insulin resistance. In addition, the inhibition of
ceramide synthesis has been reported to exert beneficial effects
on a full spectrum of obesity and insulin resistance-associated
cardiometabolic aberrations, including metabolic dysfunction-
associated steatotic liver disease, cardiomyopathy, atherosclero-
sis and hypertension(39,57,82–84). In light of this, modulating lipid
metabolism to counter ceramide synthesis represents a prom-
ising therapeutic strategy to improve cardiometabolic health.

Ceramides as a biomarker of insulin resistance and
progression to type 2 diabetes mellitus

The deleterious effects of ceramides on skeletal muscle insulin
signalling stem beyond their intracellular synthesis and may be
dictated by plasma ceramides which are primarily derived from
the liver in both rodents and humans(85) (Figure 2). These
hepatic-synthetised ceramides travel in the blood stream packed
in LDL and VLDL(86) (Figure 2) and have been reported to target
the skeletalmuscle to elicit insulin resistance(50). Indeed, infusion
of LDL containing C24:0 ceramide in lean mice induced an
impairment in insulin signalling via AKT, thereby hampering
insulin-mediated glucose uptake in skeletal muscle(50). The
ability of LDL-derived ceramides to elicit insulin resistance may
also hold true in humans as the transport of ceramide in LDL is
increased in obese and type 2 diabetic individuals and correlated
with insulin resistance(50). This notion is also supported by the
fact that insulin resistance, assessed by homoeostasis model
assessment: insulin resistance, is positively associated with
saturated ceramides(87).Thus, an intracellular mismatch between
fatty acid supply and oxidation may not be the only driver of
ceramide accumulation, but these lipotoxic lipid species may
also act in an endocrine fashion to target extra hepatic tissues as
demonstrated for skeletal muscle(50). In consideration of the
ability of circulating ceramides to trigger insulin resistance and
the positive correlation between circulating ceramides and the
onset of insulin resistance(50,88), these sphingolipids are emerg-
ing as a predictive marker of insulin resistance and progression
to T2DM. Additionally, total dihydroceramides were reported to
be elevated up to 9 years prior to the diagnosis T2DM(89) as well
as in obese and type 2 diabetic individuals(90) and are associated
with the severity of metabolic dysfunction-associated steatotic
liver disease(91), further supporting ceramide and themetabolites
in its biosynthetic pathways as potential novel prognostic
biomarkers of T2DM. Furthermore, not only serum dihydrocer-
amides correlate with insulin resistance, but they are also able to
impair insulin signalling in primary myotubes(90). However, the
ability of dihydroceramides to directly promote insulin resistance
remains controversial(39). This further confirms the implication of
ceramide metabolism, particularly its anabolism, as a pivotal
driver of insulin resistance and impaired glycaemic control,
suggesting that defects in ceramide homeostasis may prevent the
onset of overt T2DM.

Ceramides link fatty acid oversupply to insulin resistance

Energy overload is a sine qua non condition to shift ceramide
synthesis beyond cellular physiological requirements as a
precursor of complex sphingolipids(43) and promotes its
metabolically detrimental accumulation(92). Particularly, excess
fatty acid supply represents a pivotal trigger for ceramide
synthesis which takes place as a compensatory mechanism to
buffer the excess fatty acid supply and prevent their accumu-
lation and disruption of cellular the bilayer structure(92). Fatty
acids, upon entry into the cells, are activated via the esterification
with a CoA molecule to generate acyl-CoAs whose metabolic
fate is dictated by the cellular energy status. In the condition of
negative energy balance, acyl-CoAs are shuttled into the
mitochondria via the carnitine system to be β-oxidised to
generate energy and heat. When energy needs are met, fatty
acids are diverged towards the synthesis of triacylglycerols, the
main form of energy storage in the body along with glycogen,
and glycerophospholipids which are key components of cellular
lipid bilayers. However, when fatty acid supply overcomes
intracellular storage capacity, fatty acid excess is funnelled
towards the synthesis of ceramides(92,93).

The effect of ceramides on lipid metabolism

Ceramide accumulation intracellularly is able to modulate lipid
metabolism(92,93). In support of this, ceramides can rewire lipid
metabolism to increase fatty acid uptake and promote their
storage in the form of triglycerides. In line with this, lowering
ceramide levels in the liver or adipose tissue by overexpressing
ceramidases in animal models resulted in a down-regulation in
CD36(94), suggesting ceramide being able to increase fatty acid
uptake. Similarly, knocking out dihydroceramide desaturase 1,
thereby lowering ceramide content in the liver, was sufficient to
dampen hepatic lipid intake(39). This effect appears to be
dependent upon ceramide-induced protein kinase Cζ activation
as the overexpression of a dominant-negative form of this
enzyme was sufficient to abrogate the effects of ceramides on
fatty acid uptake(94). Apart from increasing CD36-mediated fatty
acid uptake, ceramides also increase fatty acid esterification via
the up-regulation of sterol response element binding proteins
and the consequent indication of genes involved in triacylgly-
cerols synthesis(95). Additionally, ceramides decrease the uptake
of glucose(96) and amino acids(97,98), possibly to favour the
catabolism of fatty acid as the main energy substrate, even
though it is also true that C16:0 ceramide impairs mitochondrial
function(70) and may therefore negatively impact fatty acid
catabolism. In line with this, ceramides, and particularly C16:0
ceramide accumulation, have been shown to impair mitochon-
drial respiration and the activity of electron transport chains II(70)

and IV(99) in vitro, leading to a decrease in β-oxidation as
reported in cultured hepatocytes(70). Always in agreement with
their ability to affect lipid metabolism, ceramides inhibit
isoproterenol-induced phosphorylation of adipocyte hormone
sensitive lipase(39) with this effect being a potential mechanism
by which these sphingolipids may counter further oversupply of
NEFA to metabolically active tissues. Nevertheless, despite this
appearing a protective mechanism to prevent fatty acid over-
supply to liver and skeletal muscle for example, ceramide
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accumulation within adipocytes may contribute to increase
adipocyte size and impair mitochondrial respiration(100). In
agreement with this, genetic approaches aimed at lowering
adipocyte ceramide levels led to a decrease in adipocyte size,
increased mitochondrial function and enhanced insulin sensi-
tivity(39,100). Thus, on one hand ceramides increase fatty acid
uptake and intracellular storage and influence adipocyte lipid
metabolism possibly to buffer fatty acid excess and the potential
perturbation of cell membranes by the detergent-like effects of
NEFA; however, on the other hand thesemechanisms contribute
to increasing intracellular lipid storage and adipocyte hypo-
metabolism, thereby paving the way for the development of
insulin resistance(93).

Long- versus medium-chain saturated fatty acids as the
dietary drivers of ceramide synthesis

As already discussed, fatty acid overload is the main driver of
ceramide synthesis. However, not all fatty acids promote
ceramide synthesis, a paradigm which is in line with the fact
that not all fatty acids are metabolically detrimental(101,102).
Indeed, long-chain saturated fatty acids, as opposed to mono-
and poly-unsaturated fatty acids, increase circulating ceramide
levels(101,103,104) in human subject feeding trials, an effect that was
accompanied by insulin resistance(101,104) (Figure 3a). The
accumulation of ceramides was also demonstrated in the
skeletal muscle and liver of rats upon the infusion of lard oil,

mainly composed of long-chain saturated fatty acids, and was
paralleled by insulin resistance(57). The ability of long-chain
saturated fatty acids to promote ceramide buildup may be
dependent on an increase in serine palmitoyltransferase and a
concomitant decrease in ceramidase activity. The induction of
serine palmitoyltransferase activity by long-chain saturated fatty
acids is not surprising given that palmitoyl-CoA, the CoA derivate
of palmitic acid, along with serine, is a substrate for this
enzyme(105). Long-chain saturated fatty acids are also able to
trigger inflammatory response in a variety of tissues(106–111) and
inflammation itself has been proposed as one of the triggers of
ceramide synthesis, thus representing a further mechanism
linking saturated fatty acids and ceramide buildup(40) (Figure 3a).
Indeed, the chronic low-grade inflammation typical of obesity
not only represents a key pathophysiological mechanism
underpinning the cardio-metabolic complications linked with
obesity, but also promotes the synthesis of ceramide(40). This
may be at the basis of a vicious cycle in which metabolic
inflammation promotes the synthesis of ceramide and ceramide
itself fuels inflammation(40), with both stimuli hampering insulin
signal transduction pathway(36,112,113). In support of the nexus
between inflammation and ceramide synthesis, in cell cultures
cytokines stimulate the synthesis of ceramide by promoting the
expression of genes involved in de novo ceramide synthesis and
sphingomyelin breakdown(114–116). This effect has been further
confirmed in vivo as demonstrated by the ability of TNFα to
increase ceramide levels in epithelial cells via the activation of

Fig. 3. Modulation of ceramide synthesis by long- and medium-chain saturated fatty acids. Long- and medium-chain saturated fatty acids modulated intracellular
ceramide accumulation differently. (a) Long-chain saturated fatty acids, and particularly palmitic acid (represented here), promote ceramide synthesis by providing the
building blocks for the synthesis of these sphingolipids. Furthermore, Long-chain saturated fatty acids activate pro-inflammatory responses, including the induction of the
NFκB signalling, which in turn, has been reported to foster ceramide synthesis. Long-chain saturated fatty acids have also been shown to induce mitochondrial
dysfunction, with a consequent impairment of β-oxidation thereby resulting in an increase in intracellular fatty acid available to be funnelled towards ceramide synthesis.
(b) Contrarily to Long-chain saturated fatty acids, medium-chain saturated fatty acids such as lauric, capric and caprylic acid (represented here), may prevent intracellular
ceramide accumulation by improving mitochondrial oxidative metabolism which, in concert with a decrease in the ATP/AMP ratio, contribute to sustaining β-oxidation
thereby decreasing the availability of fatty acids to be directed towards ceramide synthesis. Additionally, as opposed to long-chain saturated fatty acids, medium-chain
saturated fatty acids are unable to induce inflammatory responses which, in turn, contribute to preventing intracellular ceramide accumulation. This figure was created
using smart.servier.com
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neutral sphingomyelinase(117). Always in line with the ability of
inflammation to modulate ceramide metabolism, toll-like
receptor 4 activation resulted in increased ceramide synthe-
sis(118) in primary macrophages, while its pharmacological
inhibition led to a decrease in skeletal muscle ceramide
levels(119). Particularly, the toll-like receptor 4 appears tomediate
the synergistic effects of its cognate ligand, lipopolysaccharide
and palmitic acid in mediating ceramide buildup(94). However,
the mechanisms underpinning this synergy between lipopoly-
saccharide and palmitic acid remain to be fully elucidated, also in
consideration of the fact that the ability of palmitic acid to act as a
toll-like receptor 4 agonist remains controversial(120–122).

As already anticipated, ceramides also impact metabolic
health by accumulating in the hypothalamus. In light of this, it is
not surprising that diet may also impact hypothalamic ceramide
accumulation. Indeed, a high-fat diet rich in long-chain saturated
fatty acids promoted ceramide accumulation within the
hypothalamus(72) with this effect appearing to be sex specific
andmoremarked inmale rodents(123). These in vivo data are also
supported by in vitro studies in hypothalamic neuronal cell
cultures confirming the ability of long-chain saturated fatty acids
to promote ceramide accumulation not only in peripheral
tissues, but also within the hypothalamus. Saturated fatty acids,
and particularly palmitic acid, promoted C16:0 ceramide
accumulation within neuronal hypothalamic cell lines with this
effect being accompanied by inflammatory responses(121,124) and
impaired insulin signalling(77). Remarkably, increasing fatty acid
oxidation in hypothalamic neurons not only lowered ceramide
levels with cultured hypothalamic neurons, but also mitigated
inflammation(124). To a similar extend, specifically inhibiting
ceramide synthesis using pharmacological or molecular tools
was sufficient to rescue hypothalamic insulin signalling(77),
confirming the role of ceramides as pivotal mediators of the
metabolically detrimental role of long-chain saturated fatty acids
also with the hypothalamus.

Nevertheless, the effects of saturated fatty acids on ceramide
accumulation appear to be chain-length specific as long- but not
medium-chain saturated fatty acids are able to increase ceramide
synthesis. Indeed, animals fed a high-fat diet, when switched to a
high-fat diet supplemented with medium-chain triacylglycerols
(C8 and C10), not only experienced an improvement in
metabolic health independently of changes in adiposity but
also displayed a decrease in hepatic ceramide content(125)

(Figure 3b). This effect may be dependent upon the ability of
medium-chain triglycerides to down-regulate the expression of
key enzymes involved in ceramide biosynthesis and sphingo-
myelin hydrolysis, namely ceramide synthase 6 and sphingo-
myelin phosphodiesterase 3, respectively(125). Another potential
mechanism underpinning these effects may be dependent on
the ability of medium-chain saturated fatty acids to modulate
mitochondrial oxidative metabolism and the fact that, compared
with long-chain saturated fatty acids, they are more effectively
β-oxidised(126). With regard to their impact on mitochondrial
oxidative metabolism, lauric acid, a medium-chain saturated
fatty acids did not impair mitochondrial membrane potential or
promote mitochondrial fission in the primary myotubes of
human subjects as opposed to the long-chain saturated fatty acid
palmitic acid(107). Furthermore, in rodents, a high-fat diet

enriched in medium, compared with long-chain fatty acids,
induced a greater increase in skeletal muscle markers of
mitochondrial metabolism with this effect being associated with
an improvement in insulin sensitivity in skeletal muscle and
adipose tissue(127). Thus, it is tempting to hypothesise that the
preserved mitochondrial function in response to medium-chain
saturated fatty acids would favour mitochondrial oxidative
metabolism, thereby preventing intracellular ceramide buildup.
However, this effect was tissue-specific as medium-chain fatty
acid supplementation led to hepatic steatosis and liver-selective
insulin resistance in rodents while preserving skeletal muscle
and adipose tissue insulin sensitivity(127). These effects may also
be related to the divergent effect of palmitic and lauric acid on
metabolic inflammation, with the former, but not the latter, being
able to trigger the activation of the pro-inflammatory NFκB
signalling in primary myotubes of human subjects(107) (Figure 3),
which, in turn, has been reported to play a key role in disrupting
mitochondrial function in myotubes(128). Always in line with the
effect of medium-chain fatty acid on inflammation, they have
been shown to inhibit the pro-inflammatory effect of lipotoxicity
by activating the G-protein-coupled receptor 84, as demon-
strated on hepatic macrophages(129). Finally, medium chain fatty
acids are also able to act as signalling molecules given by their
ability to increase intracellular AMP(130) while lowering ATP
levels(131) (Figure 3b). The drop in ATP/AMP ratio, in turn,
activates AMP-activated protein kinase which is pivotal in
switching off anabolic pathways, including ceramide biosyn-
thesis(132), while stimulating ATP-generating pathways such as
β-oxidation(133). Thus, the activation of intracellular signalling
pathways that boost oxidative metabolism while inhibiting
anabolic pathways represents a further mechanisms by which
medium-chain fatty acids counter ceramide accumulation.

Conclusions

Ceramides are at the nexus between the derangements in lipid
metabolism underlaying metabolically unhealthy obesity and
insulin resistance. Indeed, the intracellular accumulation of
ceramides is a pivotal driver of insulin resistance and arises as a
direct consequence of the mismatch between fatty acids supply,
both from the adipose tissue and the diet, and their catabolism
via mitochondrial β-oxidation. Remarkably, ceramides not only
represent a pathogenetic factor able to impair insulin signal
transduction, but the raise in circulating levels of total and
specific dihydroceramide species such as Cer(d18:0/22:0).
Cer(d18:0/24:0) may also predict the onset of overt T2DM. In
keeping with this, the levels of these dihydroceramide species
were reported to be up-regulate up to 9 years before the
diagnosis of T2DM, suggesting that the defect in lipid
metabolism that derange ceramide homoeostasis precede the
onset of the disease. The overconsumption of dietary saturated
fatty acids has beenwidely reported to hamper insulin sensitivity
with this effect being potentially mediated, at least in part, by
their ability to foster ceramide synthesis. However, this effect is
chain length-specific as long-chain saturated fatty acids, and
particularly palmitic acid, foster ceramide accumulation by
providing the building blocks for its synthesis and by triggering
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inflammatory responses. On the contrary, medium-chain
saturated fatty acids not only have not been associated with
an increase in ceramide synthesis, but some reports also suggest
their ability to counter lipotoxicity.
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