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Group Cohomology and LP-Cohomology
of Finitely Generated Groups

Michael J. Puls

Abstract. Let G be a finitely generated, infinite group, let p > 1, and let LP(G) denote the Banach
space {) . cqaxX | D e laxl? < oo}. In this paper we will study the first cohomology group of G
with coefficients in L? (G), and the first reduced L?-cohomology space of G. Most of our results will
be for a class of groups that contains all finitely generated, infinite nilpotent groups.

1 Introduction

In this paper G will always be a finitely generated, infinite group and S will always
be a symmetric generating set for G. Let M be a right G-module. A 1-cocycle with
values in M is amap §: G — M such that 6(gh) = (6(h)) g + 6(g) forany g, h € G;
a 1-coboundary is a 1-cocycle of the form §(g) = xg — x for some x € M and for all
¢ € G. We denote by Z!(G, M) the vector space of all 1-cocycles and the vector space
of all 1-coboundaries will be denoted by B'(G, M). The factor group H'(G, M) =
ZY(G,M)/BY(G, M) is called the first cohomology group of G with coefficients in M.
Suppose now that M is a topological vector space and that the action of G on M
is continuous. Then we give Z!(G, M) the compact open topology. Assuming that
M is Hausdorff, this means that §, — ¢ in Z'(G, M) if and only if §,(g) — d(g)
in M for all g € G. In general B'(G, M) is not closed in Z'(G, M). The quotient
space H'(G) = Z'(G,M)/B' (G, M), where B'(G, M) is the closure of B'(G, M) in
ZY(G, M), is called the first reduced cohomology space.

Let F(G) be the set of complex-valued functions on G. We may represent each f
in F(G) as a formal sum ) _; a.x where a, € Cand f(x) = a,. For a real number
p > 1, LP(G) will consist of those formal sums for which } . |a.[P < oo. Let
o € F(G) and g € G, the right translation of a by g is the function defined by
0g(x) = a(xg™"). Observe that if « is represented formally by >~ _ - a.x, then Oy is
represented by > a1

x€G

In this paper we will study the cohomology theories defined above for the case
M = L?(G), and with G acting on L?(G) by right translations.
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2 Preliminaries

Let CG be the group ringof Gover C. Fora = ) ;a.x € CGand§ =} _;b.x €

F(G) we define a multiplication F(G) x CG — F(G) by

B*a= beayxy = Z(Z bx},flay) X.
%y

x€G yeG

x€G

For1 < p eR,1et D?(G) = {8 € F(G) | B*(g—1) € LP(G) for all g € S}. Recall
that S is a symmetric set of generators for G. We define a norm on L?(G) by |||, =
(> req |ax|1’)§, wherea = ) cax € LP(G). Let 3 = ) bwx € DP(G) and lete
be the identity element of G. We define a norm on D?(G) by || B[ pr(c) = (3 ges 18
(g — 1)||§ + |B(e)|P)?. Under this norm D?(G) is a Banach space. Let v; and «, be
elements of D?(G). We will write o; ~ «; if oy — v is a constant function. Clearly
~ is an equivalence relation on D?(G). Identify the constant functions on G with C.
Now D?(G)/C is a Banach space under the norm induced from D?(G). That is, if [«]
is an equivalence class from D?(G)/C then || []||pr(6)/c = (des lax(g—1)|5)".
We shall write ||| p(p) for || [a]]|pr(6)/c-

Define a linear map T from D?(G) to Z' (G, LP(G)) by (Ta)(g) = a* (g —1).
It was shown in [1, Lemma 4.2] that H! ( G, S"(G)) = 0, so for each 1-cocycle 6 €
Zl(G, S"(G)) there exists an o € F(G) such that §(g) = « * (g — 1). This implies
that T is onto. The kernel of T is C, the constant functions on G. Thus D?(G)/C is
isometric with Z' (G, L?(G)). Now B'(G,L?(G)) = T(LP(G)), so we obtain the
following:

(a) The first cohomology group of G with coefficients in L?(G), H' (G7 LP(G)) , I8
isomorphic with D?(G)/ ( LP(G) P (C) .

(b) The first reduced LP-cohomology space of G, denoted by H(lp)(G), is isometric
with DP(G)/LP(G) @ C, where the closure is taken in D?(G).

3 A Sufficient Condition For the Vanishing of H(lp)(G)
In this section we give sufficient conditions on L?(G) so that I-_I(lp)(G) = 0. We begin

with

Lemma3.1 Letl < p < oo andlet o € DP(G)/C be a non-negative, real-valued
function. If {8,} is a sequence in DP(G)/C such that 5, > 0 on G, {3,} converges
pointwise to 0o and ||Bu||py — 0 asn — oo, then | — min(ex, B,)||pp) — 0 as
n — oo.

Proof Let o, = min(a, 3,), U, = {x € G| a(x) > B,(x)} and V,, = {x | x € U,
orxg~! € U, for some g € S}. Represent v by > e A% 0y by D (dx)px and S,
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by > c(bo)ux. Now

o= llBpy = S lle = ) x (g = DS

g€eSsS
= Z Z‘ (a"gﬂ —ay) — ((dngl)n - (dx)n) ‘P
g€S x€G
S Z Z('axg’l - ﬂxl + |(bxg*1)n - (bx)n‘) P
gEeS x€V,
<223 (lagg-r — axl? + |(byg—1)n — (b)al”)
geS x€V,
=2" Z( Z |Clxg71 - aX|P + Z |(bxg*1)n - (bx)n|p) .
geG x€V, X€EV,

Let € > 0 be given. Since o € DP?(G)/C there exists a finite subset F of G such
that des erG\F lay—1 — ay|P < e. Since 3,(x) — 0o asn — oo, there exists
N such that V,, € G\ F forallu > N. Thus des ervn
n — oo. By hypothesis 3 s> ey, [(bxg-1)n — (bx)a|" — 0asn — oo. Therefore
|l — min(a, B,) | pp) — 0asn — oo. [ |

|ag—1 — ax[P — 0as

Let « € DP(G) and x € G. Then |a(x)| will denote the modulus of a(x) and
|| will denote the function |a|(x) = |a(x)|. We are now ready to give a sufficient
condition for the vanishing of H(,)(G) = 0.

Theorem 3.2 Let 1 < p < co. Suppose there exists a sequence {av, } in LP(G) such
that ||| p(p)y — 0 as n — oo and {cv,(x)} does not converge pointwise to zero for each
xin G. Then I-_I(lp)(G) =0.

Proof By taking a subsequence if necessary we may assume that ||a,||pp) < =5 for
all n. Since |||a|||pp) < [|@/|pp) we may assume that o, (x) > 0 forall x € G.
Set 8, = nay,. Now fB,(x) > Oforall x € G, §8,(x) — oo asn — oo for every
x € Gand ||ﬂn||l[7)(p) = ||rzan|\1p)(p) = nPHanHl[’)(p) < nP(-5) = 5. We now have
that ||Bu||pp) — 0 asn — oo. Let o be a real-valued, non-negative function in
D?(G)/C. By Lemma 3.1, || — min(e, 3,)|pp) — 0asn — oo. Thus a € LP(G)
since min(c, 3,) € LP(G). It now follows by approximation that L?(G) = D?(G)/C.

Hence I-_I(lp)(G) =Dr(G)/(LP(G) P C) =0. [ ]

4 Harmonic Functions

In this section we will give some results about harmonic functions on G. Let a €
F(G) and represent a by > __ - a.x. Now define

x€G
(Ba)w =3 ((axg=D) @) =D (@ —a0.
g€S ges
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We shall say that « is harmonic on G if (A«a)(x) = 0 for each x € G; alternatively o
is harmonic if |S] (a(x)) = ZgES a(xg™!) for each x in G. Let LHD?(G) = {a | «
is harmonic and o € DP(G)}. Observe that the constant functions are contained in
LHD?(G).

Lemma4.1 Let x € G. There exists a positive constant M, such that |a(x)| <
M,||@||pr(g) for all « € DP(G).

Proof Writex = g1g, - - - g, where g; € Sand no subwordofgg; - - - g, is the identity.
Set wy = g1 - - - &- Let &« € DP(G). Now

la(@)| = (|a(w,) — alwa_1) + a(wu_1) — a(w,_2)
+o 4 alwy) — a(w) + alwy) — ale) + a(e)|?) ’
< (((latwn) = atwa-)|+ lalwa-1) = alw,2)]

1
P

oot |alwy) — alw)] + Jalwy) — ale)| + |a(e)|)P) :

If0 <a,...,a, €R, then by Jensen’s inequality [3, p. 189] applied to the function
xP for x > 0,
(a1 +---+a,)? <nP~Yal +---+ab),

consequently

()| < (np*l(loz(wn) — a(wy—)|? + [a(wy—1) — a(wy—)[P

1

+ooet Ja(w) — ale)]f + Ia(e)l”)) p
=T (I(ax (g = D) (o)l + | (ax (g2 = D) (w,)|

+ot | (ax(g'=1) (€)|p+|04(e)|p) '

p—1
P

<n7 |lallpe)- [ ]

We are now ready to prove:
Lemma 4.2 The set LHD?(G) is closed in DP (G).

Proof Let {c,} be a sequence in LHD?(G) and suppose that {«,} — « in D?(G).
Letx € G. By Lemma 4.1 there exists a positive constant M,, such that |(a—a,)(x)| <
M, ||ae— || pe(s)- Thus {av,(x)} converges pointwise to c(x) for all x € G. Represent
aby ) cgaxand a, by > (a).x. Now des((dngl)n — (dx)n) = 0 for all
natural numbers # and for all x € G. Thus des(angl —a,)=0forallxe G. N1
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The following proposition will be used in Sections 5 and 6. The idea behind the
proposition and the proof were inspired by [4, Theorem 3.1].

Proposition 4.3  Let G be a finitely generated group that has a central element of infi-
nite order. If 1 < p < oo, then LHD?(G) = C.

Proof Let y be an element of infinite order that is an element of the center of G. Let
o € LHD?(G) and x € G. Now [§](a,(x)) = |§](alxy™")) = des alxy~lg™h
= Ygesalxgly™h) = 3 cga,(xg™"). Hence e, is harmonic if o is harmonic.
Define a new function 3(x) = a,(x) — a(x) on G. Now 3 is harmonic since it is the
sum of harmonic functions. The formal series representation of 3is ) (a.,—1 —
ay)x. Since a € DP(G) we have that § € LP(G). Thus for each ¢ > 0, the set
{x | |ay,—1 — ax| > €} is finite. By the maximum (minimum) principle for harmonic
functions it must be the case |axy71 —a,| < eforallx € G. Hence a,(x) = Ayy—1 =
a, = a(x) forallx € G.

Let x € Gand g € S. We now have that a(x) — axg) = a,(x) — a,(xg) =
a2 (x) — ap(xg) = -+ = au(x) — a,n(xg) for all natural numbers n. In other
words, dy — Gy = Gyt — g1y = 0 = Ay — Gyy-ng. Since @ € DP(G) and
y" # y for all natural numbers 7, we have that |a,,—» — a,,-ns| < € forall e > 0.
Thus a(x) = a(xg). The proposition now follows since S generates G. [ |

Xy '8

Remark 4.4 The center of a finitely generated, infinite nilpotent group contains an
element of infinite order.

5 Groups With a Central Element of Infinite Order

Let 1 < p € Rand let d be a natural number. It was proven in [2] that Z¢ satisfies
the hypothesis of Theorem 3.2 if and only if d < p. Thus, for example, Theorem 3.2
cannot be used to determine if I-_I(lp)(Zd) = 0 whenever d > p. In this section we will
prove that I-_I(lp)(G) = 0 whenever G is a group that has a central element of infinite
order.

Given 1 < p € R, we shall always let q denote the conjugate index of p. Thus if
p > 1, then p% + é = L. Fix 8 = ) . bx € DY(G)/C. We can define a linear func-

tional on DF(G)/C by (o, B) = e Xyges( (ax(g=1) @) (5 (g = D) )

= G des(angl — ay)(byg—1 — by), wherea = ) - a.x € DP(G)/C. The sum
is finite since a * (¢ — 1) € LP(G) and B x (g — 1) € LU(G) foreach g € S. For y € G,
define 6, by §,(x) = 0ifx # yand 0, (y) = 1.

Lemma 5.1 Let o € F(G). Then o is a harmonic function if and only if (§,, ) = 0

forally € G.
Proof Representaby ) ,a.xandlety € G. Now
(0y, ) = =2 Z(ﬂygfl —ay).
geSs
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If a is harmonic, then (d,, &) = 0. Conversely, if (6,, ) = 0 forall y € G, then avis

harmonic since des(a},gfl —ay,) =0forally € G. [ |

For X C DP(G) /G, let (X)p(p) denote the closure of X in D?(G)/C.
Proposition 5.2 Ifa € (CG)p(p) and 3 € LHDY(G), then (v, 3) = 0.

Proof Let {«,} be a sequence in CG which converges to o in D?(G)/C. It follows
from Lemma 5.1 that («,, 3) = 0 for each n. We now obtain,

0< |33 ((axg-n)@) ((Brg-D)®)|

x€G gES

=33 ((l@-aw+g-1)@) (B D))
x€G gES

=S 3 ((@-ansg-10)®) ((B+g-D)@)|
xe€G ges

< lla = aullpip|8llpg — 0 asn — oo

The last inequality follows from Hoélder’s inequality. ]
We are now ready to prove

Theorem 5.3 If1 < p € R and G is a finitely generated group with a central element
of infinite order, then H{,(G) = 0.

Proof The space of continuous linear functionals on D?(G)/C is D1(G)/C. Let
(FP(G) py = 18 € DUG)/C | (a,) = 0 forall a € (IP(G)) ,, }. Since
(@)D(p) = (LP(G)) D(p) it follows from Proposition 5.2 that LHD%(G)/C is con-

e A L
tained in (LP(G)) D)

Let 8 € DU(G)/C and represent 3 by . byx. Suppose that 3 is not harmonic
on G. Then there exists an x € G such that > g€ s(byg—1 — by) # 0. If o is supported
only on x, then by Lemma 5.1 we have that («, 3) # 0. Thus the space of continuous
linear functionals on D?(G)/ ( Lr(G) P (C) is LHD(G)/C. The theorem now follows

from Proposition 4.3. ]

Remark 5.4 If G is a group for which L?(G) does not satisfy the hypothesis of The-
orem 3.2, then using the proof of the above theorem we can obtain the well known
result D?(G) = (CG)pz(g) @ LHD*(G).
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6 A Description of H' (G, L*(G))
Let d > 1. We shall say that G satisfies condition S, if there exists a constant C > 0
such that ||| 4 < C|la]|py for all @ € CG. In this section we will describe the

nonzero elements of H' (G, L*(G)) for groups that satisfy property S; and have a
central element of infinite order. If « € F(G) and t > 1, then o will denote the
function o' (x) = (a(x)) ', Let us start with

Lemma 6.1 Let G be a finitely generated group and let t be a real number greater than
or equal to 2. If « is a non-negative, real function in F(G), then

o' lpay < 2f20/_1(x)(Z’ (ax(g—1) (x)\) :

xeG geSs

Proof Represent a by erc ayx. Letx € Gand let g € S. It follows from the Mean
Value Theorem applied to x' that (r' — s') < t(r'~! + s~ 1)(r — s) where r and s

are real numbers with 0 < s < r. Thus |a! e al] < t(at '+ al 1)|axg 1 — ayl.
Now fla’]lpg) = ZxEG des‘ (o' * (g = 1) @] = Fieq Zg€S|axg_l — @] <
t2 xeq des(at 1 +a )|axg* Al =2t o des x | - a u

We will now use this lemma to prove the following:

Proposition 6.2 Let d > 2. If G satisfies condition Sy, then there is a constant C’ > 0
such that ||Oz||dszz < C'||e||pea) for all « € CG.

Proof Putt = d —2 and represent a by Y, . ; axx. By property Ss, Lemma 6.1 and
Schwartz’s inequality we have (assuming without loss of generality that « is non-

negative).
=2 u=2
la=]| o < Clla=pa)
2d —
§2C<d )Zaziz(x)(z‘ a*(g—l)(x)|)
x€G geSs
242 e
= ZC( 72 ) ZZa,‘é’ﬂaxg_] — ay|
x€G g€eSs
2d -2 4
<20(Z=) lla7= allalve)
_ -1 1
Observe ||azjf22\| s = ||adzfd2|\1d and ||ari2|\2 = ||cw’27d2|\12 Substituting we obtain

||ad 2|, 7 <c’ ||ad 2 H Il p2y- The proposmon follows by dividing both sides by

= 2H2 and observing that || 72 2||12" = (J|a Hd 2) o, [
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If G is finitely generated, then LP(G) C LP'(G) for1 < p <pl.Ifa e LF(G),
then o is in the zero class of H' (G, L?(G)) . Our next result will show, for the case
G a group that has a central element of infinite order and satisfies property Sy, that
each nonzero class in H'! (G, LZ(G)) can be represented by a function in L? ' (G) for
some fixed real number p’ > 2.

Theorem 6.3 If G is a finitely generated group that has a central element of infinite
order and satisfies condition S, for d > 2, then each nonzero class in H' ( G, LZ(G)) can

be represented by a function from = (G).

Proof Let 1 denote the constant function one on G. If 1 € (CG) p2(G)> then there
exists a sequence {ca,} in CG such that ||1g — ay||p2gy — 0 but ||04n||dz__.;z2 40
contradicting Proposition 6.2. Hence (CG) pG) 7 D*(G). By Remark 5.4 we have
the decomposition D?(G) = L2(G) @ LHD?*(G). By Proposition 4.3, LHD?*(G) =
C. Thus nonzero classes in H'(G,L*(G)) can be represented by functions in
(CG)pr) \L*(G). Let a € (CG)p2(g), so there exists a sequence {cv, } in CG such that
a, — « in the Banach space D?(G). Thus {«,} is a Cauchy sequence in D*(G). By

Proposition 6.2 {«a,} forms a Cauchy sequence in L7 (G). Now |a — e, 2 =0

2d . . . . .
for some & € L72(G). Since LP-convergence implies pointwise convergence
(@ —ay) % (g—1)||, — Oasn — oo foreach g € S. Hence ||(& — )| p2(g) — 0 as
n — o0. Therefore @ = « ]

Let A be a finite subset of G and define
OA := {x € A | thereexists g € Swithxg & A}.

We shall say G satisfies condition (IS), if |A|*~! < |0A|? for all finite subsets A of
G and some positive constant C. Varopoulous proves the following proposition on
page 224 of [5].

Proposition 6.4 A finitely generated group G satisfies the condition (IS) 4 for some d >
1 if and only if it satisfies condition S,.
Now 7 satisfies condition (IS); but does not satisfy (IS)gc for any € > 0. We

now have the following:

Corollary 6.5 Letd > 3. Each nonzero class in H' (Zd JL2(7°4 )) can be represented
by a function from L5 (2.
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