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Group Cohomology and Lp-Cohomology
of Finitely Generated Groups

Michael J. Puls

Abstract. Let G be a finitely generated, infinite group, let p > 1, and let Lp(G) denote the Banach

space {
∑

x∈G axx |
∑

x∈G |ax|p < ∞}. In this paper we will study the first cohomology group of G

with coefficients in Lp(G), and the first reduced Lp-cohomology space of G. Most of our results will

be for a class of groups that contains all finitely generated, infinite nilpotent groups.

1 Introduction

In this paper G will always be a finitely generated, infinite group and S will always

be a symmetric generating set for G. Let M be a right G-module. A 1-cocycle with

values in M is a map δ : G → M such that δ(gh) =

(

δ(h)
)

g + δ(g) for any g, h ∈ G;

a 1-coboundary is a 1-cocycle of the form δ(g) = xg − x for some x ∈ M and for all

g ∈ G. We denote by Z1(G, M) the vector space of all 1-cocycles and the vector space

of all 1-coboundaries will be denoted by B1(G, M). The factor group H1(G, M) =

Z1(G, M)/B1(G, M) is called the first cohomology group of G with coefficients in M.

Suppose now that M is a topological vector space and that the action of G on M

is continuous. Then we give Z1(G, M) the compact open topology. Assuming that

M is Hausdorff, this means that δn → δ in Z1(G, M) if and only if δn(g) → δ(g)

in M for all g ∈ G. In general B1(G, M) is not closed in Z1(G, M). The quotient

space H̄1(G) = Z1(G, M)/B1(G, M), where B1(G, M) is the closure of B1(G, M) in

Z1(G, M), is called the first reduced cohomology space.

Let F(G) be the set of complex-valued functions on G. We may represent each f

in F(G) as a formal sum
∑

x∈G axx where ax ∈ C and f (x) = ax. For a real number

p ≥ 1, Lp(G) will consist of those formal sums for which
∑

x∈G |ax|
p < ∞. Let

α ∈ F(G) and g ∈ G, the right translation of α by g is the function defined by

αg(x) = α(xg−1). Observe that if α is represented formally by
∑

x∈G axx, then αg is

represented by
∑

x∈G axg−1 x.

In this paper we will study the cohomology theories defined above for the case

M = Lp(G), and with G acting on Lp(G) by right translations.
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2 Preliminaries

Let CG be the group ring of G over C. For α =

∑

x∈G axx ∈ CG and β =

∑

x∈G bxx ∈
F(G) we define a multiplication F(G) × CG → F(G) by

β ∗ α =

∑

x,y

bxayxy =

∑

x∈G

(

∑

y∈G

bxy−1 ay

)

x.

For 1 ≤ p ∈ R, let Dp(G) = {β ∈ F(G) | β ∗ (g − 1) ∈ Lp(G) for all g ∈ S}. Recall

that S is a symmetric set of generators for G. We define a norm on Lp(G) by ‖α‖p =

(
∑

x∈G |ax|
p)

1
p , where α =

∑

x∈G axx ∈ Lp(G). Let β =

∑

x∈G bxx ∈ Dp(G) and let e

be the identity element of G. We define a norm on Dp(G) by ‖β‖Dp(G) = (
∑

g∈S ‖β ∗

(g − 1)‖
p
p + |β(e)|p)

1
p . Under this norm Dp(G) is a Banach space. Let α1 and α2 be

elements of Dp(G). We will write α1 ' α2 if α1 − α2 is a constant function. Clearly

' is an equivalence relation on Dp(G). Identify the constant functions on G with C.

Now Dp(G)/C is a Banach space under the norm induced from Dp(G). That is, if [α]

is an equivalence class from Dp(G)/C then ‖[α]‖Dp(G)/C =

(
∑

g∈S ‖α ∗ (g − 1)‖
p
p

)

1
p .

We shall write ‖α‖D(p) for ‖[α]‖Dp(G)/C.

Define a linear map T from Dp(G) to Z1
(

G, Lp(G)
)

by (Tα)(g) = α ∗ (g − 1).

It was shown in [1, Lemma 4.2] that H1
(

G, F(G)
)

= 0, so for each 1-cocycle δ ∈

Z1
(

G, F(G)
)

there exists an α ∈ F(G) such that δ(g) = α ∗ (g − 1). This implies

that T is onto. The kernel of T is C, the constant functions on G. Thus Dp(G)/C is

isometric with Z1
(

G, Lp(G)
)

. Now B1
(

G, Lp(G)
)

= T
(

Lp(G)
)

, so we obtain the

following:

(a) The first cohomology group of G with coefficients in Lp(G), H1
(

G, Lp(G)
)

, is

isomorphic with Dp(G)/
(

Lp(G)
⊕

C
)

.

(b) The first reduced Lp-cohomology space of G, denoted by H̄1
(p)(G), is isometric

with Dp(G)/Lp(G)
⊕

C, where the closure is taken in Dp(G).

3 A Sufficient Condition For the Vanishing of H̄1
(p)(G)

In this section we give sufficient conditions on Lp(G) so that H̄1
(p)(G) = 0. We begin

with

Lemma 3.1 Let 1 ≤ p < ∞ and let α ∈ Dp(G)/C be a non-negative, real-valued

function. If {βn} is a sequence in Dp(G)/C such that βn ≥ 0 on G, {βn} converges

pointwise to ∞ and ‖βn‖D(p) → 0 as n → ∞, then ‖α − min(α, βn)‖D(p) → 0 as

n → ∞.

Proof Let αn = min(α, βn), Un = {x ∈ G | α(x) > βn(x)} and Vn = {x | x ∈ Un

or xg−1 ∈ Un for some g ∈ S}. Represent α by
∑

x∈G axx, αn by
∑

x∈G(ãx)nx and βn
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by
∑

x∈G(bx)nx. Now

‖α − αn‖
p
D(p) =

∑

g∈S

‖(α − αn) ∗ (g − 1)‖
p
p

=

∑

g∈S

∑

x∈G

∣

∣ (axg−1 − ax) −
(

(ãxg−1 )n − (ãx)n

) ∣

∣

p

≤
∑

g∈S

∑

x∈Vn

(

|axg−1 − ax| + |(bxg−1 )n − (bx)n|
) p

≤ 2p
∑

g∈S

∑

x∈Vn

(

|axg−1 − ax|
p + |(bxg−1 )n − (bx)n|

p
)

= 2p
∑

g∈G

(

∑

x∈Vn

|axg−1 − ax|
p +

∑

x∈Vn

|(bxg−1 )n − (bx)n|
p
)

.

Let ε > 0 be given. Since α ∈ Dp(G)/C there exists a finite subset F of G such

that
∑

g∈S

∑

x∈G\F |axg−1 − ax|
p < ε. Since βn(x) → ∞ as n → ∞, there exists

N such that Vn ⊆ G \ F for all n ≥ N . Thus
∑

g∈S

∑

x∈Vn
|axg−1 − ax|

p → 0 as

n → ∞. By hypothesis
∑

g∈S

∑

x∈Vn
|(bxg−1 )n − (bx)n|

p → 0 as n → ∞. Therefore

‖α − min(α, βn)‖D(p) → 0 as n → ∞.

Let α ∈ Dp(G) and x ∈ G. Then |α(x)| will denote the modulus of α(x) and

|α| will denote the function |α|(x) = |α(x)|. We are now ready to give a sufficient

condition for the vanishing of H̄1
(p)(G) = 0.

Theorem 3.2 Let 1 ≤ p < ∞. Suppose there exists a sequence {αn} in Lp(G) such

that ‖αn‖D(p) → 0 as n → ∞ and {αn(x)} does not converge pointwise to zero for each

x in G. Then H̄1
(p)(G) = 0.

Proof By taking a subsequence if necessary we may assume that ‖αn‖D(p) < 1
n2 for

all n. Since ‖|α|‖D(p) ≤ ‖α‖D(p) we may assume that αn(x) ≥ 0 for all x ∈ G.

Set βn = nαn. Now βn(x) ≥ 0 for all x ∈ G, βn(x) → ∞ as n → ∞ for every

x ∈ G and ‖βn‖
p
D(p) = ‖nαn‖

p
D(p) = np‖αn‖

p
D(p) ≤ np( 1

n2p ) =
1

np . We now have

that ‖βn‖D(p) → 0 as n → ∞. Let α be a real-valued, non-negative function in

Dp(G)/C. By Lemma 3.1, ‖α − min(α, βn)‖D(p) → 0 as n → ∞. Thus α ∈ Lp(G)

since min(α, βn) ∈ Lp(G). It now follows by approximation that Lp(G) = Dp(G)/C.

Hence H̄1
(p)(G) = Dp(G)/

(

Lp(G)
⊕

C
)

= 0.

4 Harmonic Functions

In this section we will give some results about harmonic functions on G. Let α ∈
F(G) and represent α by

∑

x∈G axx. Now define

(4α)(x) :=
∑

g∈S

(

(

α ∗ (g − 1)
)

(x)
)

=

∑

g∈S

(axg−1 − ax).
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We shall say that α is harmonic on G if (4α)(x) = 0 for each x ∈ G; alternatively α
is harmonic if |S|

(

α(x)
)

=

∑

g∈S α(xg−1) for each x in G. Let LHD p(G) = {α | α

is harmonic and α ∈ Dp(G)}. Observe that the constant functions are contained in

LHD p(G).

Lemma 4.1 Let x ∈ G. There exists a positive constant Mx such that |α(x)| ≤
Mx‖α‖Dp(G) for all α ∈ Dp(G).

Proof Write x = g1g2 · · · gn where gk ∈ S and no subword of g1g2 · · · gn is the identity.

Set wk = g1g2 · · · gk. Let α ∈ Dp(G). Now

|α(x)| =

(

|α(wn) − α(wn−1) + α(wn−1) − α(wn−2)

+ · · · + α(w2) − α(w1) + α(w1) − α(e) + α(e)|p
)

1
p

≤
(

(

|α(wn) − α(wn−1)| + |α(wn−1) − α(wn−2)|

+ · · · + |α(w2) − α(w1)| + |α(w1) − α(e)| + |α(e)|
) p

)
1
p

.

If 0 ≤ a1, . . . , an ∈ R, then by Jensen’s inequality [3, p. 189] applied to the function

xp for x > 0,

(a1 + · · · + an)p ≤ np−1(a
p
1 + · · · + ap

n),

consequently

|α(x)| ≤
(

np−1
(

|α(wn) − α(wn−1)|p + |α(wn−1) − α(wn−2)|p

+ · · · + |α(w1) − α(e)|p + |α(e)|p
)

)
1
p

= n
p−1

p

(

|
(

α ∗ (g−1
n − 1)

)

(wn−1)|p +
∣

∣

(

α ∗ (g−1
n−1 − 1)

)

(wn−2)
∣

∣

p

+ · · · +
∣

∣

(

α ∗ (g−1
1 − 1)

)

(e)
∣

∣

p
+|α(e)|p

)
1
p

≤ n
p−1

p ‖α‖Dp(G).

We are now ready to prove:

Lemma 4.2 The set LHD p(G) is closed in Dp(G).

Proof Let {αn} be a sequence in LHD p(G) and suppose that {αn} → α in Dp(G).

Let x ∈ G. By Lemma 4.1 there exists a positive constant Mx such that |(α−αn)(x)| ≤
Mx‖α−αn‖Dp(G). Thus {αn(x)} converges pointwise to α(x) for all x ∈ G. Represent

α by
∑

x∈G axx and αn by
∑

x∈G(ãx)nx. Now
∑

g∈S

(

(ãxg−1 )n − (ãx)n

)

= 0 for all

natural numbers n and for all x ∈ G. Thus
∑

g∈S(axg−1 − ax) = 0 for all x ∈ G.
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The following proposition will be used in Sections 5 and 6. The idea behind the

proposition and the proof were inspired by [4, Theorem 3.1].

Proposition 4.3 Let G be a finitely generated group that has a central element of infi-

nite order. If 1 ≤ p < ∞, then LHD p(G) = C.

Proof Let y be an element of infinite order that is an element of the center of G. Let

α ∈ LHD p(G) and x ∈ G. Now |S|
(

αy(x)
)

= |S|
(

α(xy−1)
)

=

∑

g∈S α(xy−1g−1)

=

∑

g∈S α(xg−1 y−1) =

∑

g∈S αy(xg−1). Hence αy is harmonic if α is harmonic.

Define a new function β(x) = αy(x) − α(x) on G. Now β is harmonic since it is the

sum of harmonic functions. The formal series representation of β is
∑

x∈G(axy−1 −
ax)x. Since α ∈ Dp(G) we have that β ∈ Lp(G). Thus for each ε > 0, the set

{x | |axy−1 − ax| > ε} is finite. By the maximum (minimum) principle for harmonic

functions it must be the case |axy−1 − ax| < ε for all x ∈ G. Hence αy(x) = axy−1 =

ax = α(x) for all x ∈ G.

Let x ∈ G and g ∈ S. We now have that α(x) − α(xg) = αy(x) − αy(xg) =

αy2 (x) − αy2 (xg) = · · · = αyn (x) − αyn (xg) for all natural numbers n. In other

words, ax − axg = axy−1 − axy−1g = · · · = axy−n − axy−ng . Since α ∈ Dp(G) and

yn 6= y for all natural numbers n, we have that |axy−n − axy−ng | < ε for all ε > 0.

Thus α(x) = α(xg). The proposition now follows since S generates G.

Remark 4.4 The center of a finitely generated, infinite nilpotent group contains an

element of infinite order.

5 Groups With a Central Element of Infinite Order

Let 1 < p ∈ R and let d be a natural number. It was proven in [2] that Z
d satisfies

the hypothesis of Theorem 3.2 if and only if d ≤ p. Thus, for example, Theorem 3.2

cannot be used to determine if H̄1
(p)(Z

d) = 0 whenever d > p. In this section we will

prove that H̄1
(p)(G) = 0 whenever G is a group that has a central element of infinite

order.

Given 1 < p ∈ R, we shall always let q denote the conjugate index of p. Thus if

p > 1, then 1
p

+ 1
q

= 1. Fix β =

∑

x∈G bxx ∈ Dq(G)/C. We can define a linear func-

tional on Dp(G)/C by 〈α, β〉 =

∑

x∈G

∑

g∈S

(

(

α∗(g−1)
)

(x)
)(

(

β ∗ (g − 1)
)

(x)
)

=

∑

x∈G

∑

g∈S(axg−1 − ax)(bxg−1 − bx), where α =

∑

x∈G axx ∈ Dp(G)/C. The sum

is finite since α ∗ (g − 1) ∈ Lp(G) and β ∗ (g − 1) ∈ Lq(G) for each g ∈ S. For y ∈ G,

define δy by δy(x) = 0 if x 6= y and δy(y) = 1.

Lemma 5.1 Let α ∈ F(G). Then α is a harmonic function if and only if 〈δy, α〉 = 0

for all y ∈ G.

Proof Represent α by
∑

x∈G axx and let y ∈ G. Now

〈δy , α〉 = −2
∑

g∈S

(ayg−1 − ay).
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If α is harmonic, then 〈δy , α〉 = 0. Conversely, if 〈δy , α〉 = 0 for all y ∈ G, then α is

harmonic since
∑

g∈S(ayg−1 − ay) = 0 for all y ∈ G.

For X ⊆ Dp(G)/C, let (X̄)D(p) denote the closure of X in Dp(G)/C.

Proposition 5.2 If α ∈ (CG)D(p) and β ∈ LHDq(G), then 〈α, β〉 = 0.

Proof Let {αn} be a sequence in CG which converges to α in Dp(G)/C. It follows

from Lemma 5.1 that 〈αn, β〉 = 0 for each n. We now obtain,

0 ≤
∣

∣

∣

∑

x∈G

∑

g∈S

(

(

α ∗ (g − 1)
)

(x)
)(

(

β ∗ (g − 1)
)

(x)
)

∣

∣

∣

=

∣

∣

∣

∑

x∈G

∑

g∈S

(

(

(α − αn) ∗ (g − 1)
)

(x)
)(

(

β ∗ (g − 1)
)

(x)
)

∣

∣

∣

≤
∑

x∈G

∑

g∈S

∣

∣

∣

(

(

(α − αn) ∗ (g − 1)
)

(x)
)(

(

β ∗ (g − 1)
)

(x)
)

∣

∣

∣

≤ ‖α − αn‖D(p)‖β‖D(q) → 0 as n → ∞.

The last inequality follows from Hölder’s inequality.

We are now ready to prove

Theorem 5.3 If 1 < p ∈ R and G is a finitely generated group with a central element

of infinite order, then H̄1
(p)(G) = 0.

Proof The space of continuous linear functionals on Dp(G)/C is Dq(G)/C. Let
(

Lp(G)
)⊥

D(p)
=

{

β ∈ Dq(G)/C | 〈α, β〉 = 0 for all α ∈
(

Lp(G)
)

D(p)

}

. Since

(CG)D(p) =

(

Lp(G)
)

D(p)
it follows from Proposition 5.2 that LHDq(G)/C is con-

tained in
(

Lp(G)
)⊥

D(p)
.

Let β ∈ Dq(G)/C and represent β by
∑

x∈G bxx. Suppose that β is not harmonic

on G. Then there exists an x ∈ G such that
∑

g∈S(bxg−1 − bx) 6= 0. If α is supported

only on x, then by Lemma 5.1 we have that 〈α, β〉 6= 0. Thus the space of continuous

linear functionals on Dp(G)/
(

Lp(G)
⊕

C
)

is LHDq(G)/C. The theorem now follows

from Proposition 4.3.

Remark 5.4 If G is a group for which L2(G) does not satisfy the hypothesis of The-

orem 3.2, then using the proof of the above theorem we can obtain the well known

result D2(G) = (CG)D2(G)

⊕

LHD2(G).
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6 A Description of H1
(

G, L2(G)
)

Let d > 1. We shall say that G satisfies condition Sd if there exists a constant C > 0

such that ‖α‖ d
d−1

≤ C‖α‖D(1) for all α ∈ CG. In this section we will describe the

nonzero elements of H1
(

G, L2(G)
)

for groups that satisfy property Sd and have a

central element of infinite order. If α ∈ F(G) and t ≥ 1, then αt will denote the

function αt (x) =

(

α(x)
) t

. Let us start with

Lemma 6.1 Let G be a finitely generated group and let t be a real number greater than

or equal to 2. If α is a non-negative, real function in F(G), then

‖αt‖D(1) ≤ 2t
∑

x∈G

αt−1(x)
(

∑

g∈S

∣

∣

(

α ∗ (g − 1)
)

(x)
∣

∣

)

.

Proof Represent α by
∑

x∈G axx. Let x ∈ G and let g ∈ S. It follows from the Mean

Value Theorem applied to xt that (rt − st ) ≤ t(rt−1 + st−1)(r − s) where r and s

are real numbers with 0 ≤ s ≤ r. Thus |at
xg−1 − at

x| ≤ t(at−1
x + at−1

xg−1 )|axg−1 − ax|.

Now ‖αt‖D(1) =

∑

x∈G

∑

g∈S

∣

∣

(

αt ∗ (g − 1)
)

(x)
∣

∣

=

∑

x∈G

∑

g∈S |a
t
xg−1 − at

x| ≤

t
∑

x∈G

∑

g∈S(at−1
x + at−1

xg−1 )|axg−1 − ax| = 2t
∑

x∈G

∑

g∈S at−1
x |axg−1 − ax|.

We will now use this lemma to prove the following:

Proposition 6.2 Let d > 2. If G satisfies condition Sd, then there is a constant C ′ > 0

such that ‖α‖ 2d
d−2

≤ C ′‖α‖D(2) for all α ∈ CG.

Proof Put t =
2d−2
d−2

and represent α by
∑

x∈G axx. By property Sd, Lemma 6.1 and

Schwartz’s inequality we have (assuming without loss of generality that α is non-

negative).

‖α
2d−2
d−2 ‖ d

d−1
≤ C‖α

2d−2
d−2 ‖D(1)

≤ 2C
( 2d − 2

d − 2

)

∑

x∈G

α
d

d−2 (x)
(

∑

g∈S

|
(

α ∗ (g − 1)
)

(x)|
)

= 2C
( 2d − 2

d − 2

)

∑

x∈G

∑

g∈S

a
d

d−2
x |axg−1 − ax|

≤ 2C
( 2d − 2

d − 2

)

‖α
d

d−2 ‖2‖α‖D(2).

Observe ‖α
2d−2
d−2 ‖ d

d−1
= ‖α

2d
d−2 ‖

d−1
d

1 and ‖α
d

d−2 ‖2 = ‖α
2d

d−2 ‖
1
2

1 . Substituting we obtain

‖α
2d

d−2 ‖
d−1

d

1 ≤ C ′‖α
2d

d−2 ‖
1
2

1 ‖α‖D(2). The proposition follows by dividing both sides by

‖α
2d

d−2 ‖
1
2

1 and observing that ‖α
2d

d−2 ‖
d−2

2d

1 = (‖α‖
2d

d−2

2d
d−2

)
d−2

2d .
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If G is finitely generated, then Lp(G) ⊆ Lp ′

(G) for 1 ≤ p ≤ p ′. If α ∈ Lp(G),

then α is in the zero class of H1
(

G, Lp(G)
)

. Our next result will show, for the case

G a group that has a central element of infinite order and satisfies property Sd, that

each nonzero class in H1
(

G, L2(G)
)

can be represented by a function in Lp ′

(G) for

some fixed real number p ′ > 2.

Theorem 6.3 If G is a finitely generated group that has a central element of infinite

order and satisfies condition Sd for d > 2, then each nonzero class in H1
(

G, L2(G)
)

can

be represented by a function from L
2d

d−2 (G).

Proof Let 1G denote the constant function one on G. If 1G ∈ (CG)D2(G), then there

exists a sequence {αn} in CG such that ‖1G − αn‖D2(G) → 0 but ‖αn‖ 2d
d−2

6→ 0

contradicting Proposition 6.2. Hence (CG)D2(G) 6= D2(G). By Remark 5.4 we have

the decomposition D2(G) = L2(G)
⊕

LHD2(G). By Proposition 4.3, LHD2(G) =

C. Thus nonzero classes in H1
(

G, L2(G)
)

can be represented by functions in

(CG)D2(G) \L2(G). Let α ∈ (CG)D2(G), so there exists a sequence {αn} in CG such that

αn → α in the Banach space D2(G). Thus {αn} is a Cauchy sequence in D2(G). By

Proposition 6.2 {αn} forms a Cauchy sequence in L
2d

d−2 (G). Now ‖ᾱ − αn‖ 2d
d−2

→ 0

for some ᾱ ∈ L
2d

d−2 (G). Since Lp-convergence implies pointwise convergence

‖(ᾱ−αn) ∗ (g − 1)‖2 → 0 as n → ∞ for each g ∈ S. Hence ‖(ᾱ−αn)‖D2(G) → 0 as

n → ∞. Therefore ᾱ = α

Let A be a finite subset of G and define

∂A := {x ∈ A | there exists g ∈ S with xg 6∈ A}.

We shall say G satisfies condition (IS)d if |A|d−1 < |∂A|d for all finite subsets A of

G and some positive constant C . Varopoulous proves the following proposition on

page 224 of [5].

Proposition 6.4 A finitely generated group G satisfies the condition (IS)d for some d ≥
1 if and only if it satisfies condition Sd.

Now Z
d satisfies condition (IS)d but does not satisfy (IS)d+ε for any ε > 0. We

now have the following:

Corollary 6.5 Let d ≥ 3. Each nonzero class in H1
(

Z
d, L2(Z

d)
)

can be represented

by a function from L
2d

d−2 (Z
d).
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