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ON HERMITE-FEJER TYPE INTERPOLATION

H.-B. KNOOP AND B. STOCKENBERG

For the Hermite-Fejer interpolation operator of higher order

K^a'®' constructed on the roots x \ ' , 1 S k 5 m , of the
m Km

Jacobi-polynomial p^a''i> i t is shown that x is positive

for all m € N- , if (a, B) € [-%, -\]2 . Further there is given

an error bound, which implies lim \\f-K ' f = 0 for arbitrary
m-*00 " m "

f € C(I) and (a , 3) € [ -1 , - ^ [ 2 .

1. Formulation of the problem and main results

In this paper we investigate the question of convergence for Hermite-

Fejer interpolation of higher order, introduced by Kryloff and Stayermann
o

[ $ ] . To s t a t e the problem, l e t m € N , (a , f3) € ] - l , °°[ and l e t

(1.1) - l < x ( a ' B ) < * ( a ' B ) < . . . < x ! a ' e ) < 1
mm m-l,m lm

be the roots of the Jacobi-polynomial P of degree m (with regard

to the weight function x (—• ( l -x) a • (1+x) ) . We denote by C(J) the

Banach-space of a l l continuous real-valued functions on J = [-1, 1] with

the sup-norm ||*|| . For any / € C(I) there is an uniquely determined

polynomial K ' f of degree at most hm - 1 satisfying the conditions
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= 0 , l < f c < m , i = l , 2, 3 .

This polynomial can be represented in the following form:

where I, = J, ' i s the fcth Lagrange polynomial of degree m - 1

determined by the nodes ( l . l ) and where w! ' is given by

(1.2) «£""<*) = I a£> - L_J«^
^=0

with

akm = -1 '

fern fem

and

As in the case of Hermite-Fejer interpolation the question arises for

which (oc, 8) € ] - l , °°[2 we have

(1.3) lim | f - K ( a ' B ) / | = 0 for a l l / € C(I) .

akm ~ 1 0 ' l"kmrfem

I t was shown f i r s t that (1.3) i s valid in the case a = 8 = -0.5 (of.

Kryloff and Stayermann [8] , Laden [9] as well as Sharma and Tzimba lario

CJ2]). Then i t was shown that estimations of

II m

(for x € I ) by the modulus of continuity and by the modulus of smoothness
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of / can be given {of. Stancu [ / 3 ] , Florica [ 2 ] , Haussmann and Knoop [ 6 ] ,

Mills [10 ] , Prasad [ / / ] and Gonska [ 3 , 4 ] ) . Moreover, there e x i s t e r ro r

bounds for subspaces of C{I) {of. Gonska [ 3 , 4] as well as Goodenough and

Mills [ 5 ] ) . In these inves t iga t ions the p o s i t i v i t y of the operators

K plays a fundamental role. Now the positivity of these
m

operators is equivalent to

u^° ' 5 ' " ° ' 5 ) ( x ) > 0 for all x € J , 1 5 k £ m .

In [7] i t was shown that for all m € N we have

°5'~°'5){x) ~ h for a11 X € I ' X - k ~ m •
Other pairs (a, 3) were considered by Laden. He has shown in [9] that

(1.3) is valid for all pairs (a, 8) with

(a, 3) € [-h, -hf " l-h, -hi2 ,

and that there is a function / € C{I) such that K ' f{l) does not

converge to /(I) in the case a = -0.25 •

In this paper we show that

K : C{I) 3 / tff

m m

is a positive operator for a wider field of pairs (a, 3) , namely for all

(a, g) 6 [_|, -3s]2 , and that (1.3) holds even for all

(a, 3) € [-1, -k[ . To formulate more precisely
THEOREM 1. Let {a, 6) € l-i, -kf , then for any m € N , any

k £ { l , . . . , m) and any x € I we have

with n = max(a, g) + 1 .

THEOREM 2. Let ( a , B) € [ - 1 , -k[2 , then we have for any f € C{l),
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m ) if min(a, 6) > - | ,

u>(/, V m • log m) , if min(ot, 3) = _ | .

Here 0 = max(a, 3, -0.5) , w denotes ifre usual modulus of continuity and
D is a positive constant independent of f and m .

2. Proof of Theorem 1

Let m £ IN and (a, 3) € [-\, -k] be given. Then for the sake of
simplicity we put

Y := a - 3 ,

6 := a + 3 + 2 ,

and

M := m(m+a+B+l) .

We further use the notation

(a,3) 7 7(a,B) (a,3)
x, := x, ' , J, := I; ' and M, := u, .
k km k km k km

From the differential equation for the Jacobi-polynomials (see Szego
[75]) we conclude

Y+6x,
(2.1) uk(x) = 1 - 2 • f • [x-xk] + ̂ i

l-x7. 1-x'k>

1-

Y+Sx,
+ - •

3
2 V

with

6) 2Y+(26-l)-x

1 2
1-x,

Now the assertion of Theorem 1 is an immediate consequence of the two
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following lemmas.

LEMMA 1. For any (a, g) € [-i, -\]2 , any k € {l, ..., m) and any

x (. I we have

> 0 .

Proof, s, being a linear function it is sufficient to consider

s,(l) and s,(-1) . We compute

and

Now taking into consideration the estimation

k(M-&) ' (l-xjM - 8 • xk •

(of. Laden [9, Lemma ^]) and put t ing for fixed k € { l , . . . , m) and, for

fixed x (. I ,

h ••=

we get for any (a, 6) € [-h, -k] ,

uk(x) > {1-ty)2 + | ( ty)2 + \{tyf • sfe(x) - - 2ty
y « i

l - x 2

Thus we have for any x € J and al l u, the estimation

(2.2)

with

> ft(a, xf c , Y , 6)
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h{x, x y, 6) = - | \8t2
 + t • i + - ^ | j / 3 + 2t2y2 - 2*2, + 1 .

Now 7z can be estimated from below as shown in the following lemma.

LEMMA 2. For any (a , 3) € [-\, -\)2 we have

inf min h[x, x,, y, 8) = -in + —n - 2n + 1

xf e€]-l , l[ x € [ - l , l ] 3 1 2

with n = max(a, g) + 1 .

Proof. For any (a, 3) € [-!, -fc] we have y € [-̂ , ̂ ] and

6 € [%, |] . Since h[x, x, , y, S) = h[-x, -x, , -y, 6) we assume y > 0

in the following. At first we show that h is a monotone function of x

Let t t 0 . If there is a zero of dh/dx we then have

A ! = J

This implies t • x, < 0 , hence t > 0 and x, < 0 . From this we

conclude x, 2 -0.5 • Since A > 0 implies that A has a zero (as a

polynomial in t ) we have

Mr ^
But this is impossible since x, € [-0.5, 0[ . Therefore we have for

xk € ]-l, 1[ , Y € [0, 0.5] and 6 € [0.5, 1.5] ,

min h[x, x,, y, &) = min(ft(-l, x,, y, 6), h[l, x,, y, <S)) •
x6[-l,l] K • K. • K •

Next we compare h[-l, x, , y, &) with / j ( l , x, , y , 5) . We put

T := (Y+<SX, ) / ( l -x , ) and compute
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-l, ̂ , y, &) = |T 2 + -i
6 1-X,

2 + -i
6

(6+2)(l+x,]
• T + 1 =: u(x)

If a;, 5- 0 it is easily seen that (9 / 3 T ) M ( T ) has no zero and hence

(3/3T)M(T) > 0 . In this case we get

h{l, -x, , Y» <5) = " h - r f H 5 M ( T ) = h ( - 1 ' xt» Y, 6) •fc l ± xfcj K

If x, > 0 we have T i 0 and therefore 7i(-l, x, , y, 6) S I . Since we

will see later on that

inf h[l, x, , y, &) < 1 ,

t h e r e follows for any Y € [ 0 , 0 . 5 ] , 6 € [ 0 . 5 , 1 .5] ,

i n f m i n ^ ( x , x, , y , &) = i n f h[l, x,, y , &) .

We now consider the function h : ]-l, l[ 3 31—* M l , 2, Y> 6) for fixed

Y and 6 ,

Y+6x^2

+ 2
1+X,. l+x,. 1+X7.

Y+6x,

l+x,. 1+X,

Y+6x,

l+x.

Obviously h has a continuous extension to a function on ]-l, l] .

Evidently, for x, £ -(y/'&) we have h (x,) > 1 . We now show that

inf h [xJ = Ml) .
ar€]ll]

Since we will see that hAl) < 1 , it is sufficient to show that there is

no xk with -(Y/6) < xfe < 1 and

for the derivative h' we have ^'

< M l ) • It is evident that

< 0 . On the other hand it
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follows that

+ l 6 3 3 + U932 + U2B - l6a23 - l6aS + H ,

with

A = - ^ a 2 - 23a - 833 - ^ 3 2 - **33 - 8a23 - l6a32 - li0a3 - 18 ,

B = -Ola2 -

C = _12a
2 + 9a - 833 - i ^ B 2 - 153 - 8a2g + l6a32 + 2Ua3 - i l .

Now sign h'{X) = sign(4+S+C) and

A + B + C s - ^ a 2 - l*a - | < 0 .

If we now assume that there is an x, C ]- (Y/"S) , l [ with >J (x;) < h (l) ,
K 1 K' 1

i t follows that ft' has two different zeros in the interval ]-(Y/6) , l [

and therefore B2 > kAC and A < 0 . Now

C = a
2 ( - ^ - 8 3 ) + I6a(3+I)2 - 833 - ^ 3 2 - 153 - ^ < 0 .

We consider two cases.

CASE 1. B > 0 . We show that in this case the middle-point -(B/2A)

of the zeros of h' sa t i s f ies -(B/2A) > 1 , that i s , a contradiction.

Indeed, from -(B/24) < 1 there follows kAC 2 -2BC and S > -2C . Now

B + 2C = a2(-2Jt-323) + a(U+323+3232) + ^ 3 2 + 123 .

I t i s B + 2C > 0 only if

D(B) := (U+323+3232)2 + l4(^+323)(^32+123)

2 0 .

But using Descartes' rule we see that D has exactly one zero 3n with

3 > -% and from D(-fc) < 0 we conclude that 0(3) < 0 if

3 € [-0.75, -0.25] . Thus B + 2C < 0 and therefore -{B/2A) > 1 .

CASE 2. B < 0 . We will show that in this case we have

-(B/2A) 2 -1 . From the assumption -1 < -(B/2A) we conclude similar as
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above B < 2C . Now we have

2C - B = 32a(6+l)2 - r(B)

where r with

r(B) = 32B3 + ^ B 2 + 7 2 3 + ^

is an increasing function of B • From this we see that 2C - B < 0 ;
hence we get -(B/2A) S -1 .

From Case 1 and Case 2 we conclude that h' cannot have two distinct

zeros in ]-(Y/<5), l [ • Therefore

inf \[xk) = ^ ( i ) •

The result is

inf min h[x, x y, &) = ~ n 3 + f |n2 - 2n + 1 .

Now the right side of this equation is a strictly decreasing function of

n . Therefore

_L < fc (i) < —6 t - " 1 ^ x ' - 1 9 2 >

which completes the proof. •

From Lemma 2 we get in view of formula (2.2) the assertion of Theorem

1.

In the case of a = B = -h we have - as an improvement of the result

in [7] - the estimation

for any m € N , any k = 1, ..., m and any x € J .

3. Proof of Theorem 2

For (a, B) € \-\, -W the mappings K ' form a sequence of
m

positive linear operators from C(J) into C(I) . If e is a constant

function we have K e = e ; therefore the theorem of Bohman-Korovkin
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{of. DeVore [ I ] ) y ie lds for any x i I ,

( 3 - D

with

and

m

•£<«> •

gjt) = (x-t

< 2(0(/, |e

The function e can "be estimated from above. We havem

LEMMA 3. For Jaoobi abscissas, with (a , 6) € [ - 1 , -%] , there

exists a positive constant D = D „ independent of m such that we have

for any x Z I ,

e {x) < D •
m

U0+1
m , if min(a, 3) > -\ ,

m log m , if min(a, 3) = -\

with 0 = max(a, 3 , -H) •

Proof. We get from (2.1) with

2 D, ,2
(*)

+ D • y
3 L'* N ) (p:(̂

where D , D , D are pos i t ive constants depending only on (a , 3) •

Because of the uniform boundedness of

m m
a n d
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(ef. for example, Szasz [14]) we get in view of Szego [15, Chapter 7.32,

Chapter 8 .9 ] ,

{of. also Laden [9, proof of Lemma 2 ] ) .

Since

fm , i f <p > -% ,

[m log m , i f tp = -3 ,

and

2cp S Uip+l SO i f -^ S ip S - i ,

the proof is complete. D

Combining the estimation of Lemma 3 and formula (3.1) yields the proof

of Theorem 2. In the special case a = 3 = -0.5 we derive from Theorem 2

the relat ion

{of. Stancu [13]) .
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