ON HERMITE-FEJÉR TYPE INTERPOLATION

H.-B. Knoop and B. Stockenberg

> For the Hermite-Fejér interpolation operator of higher order $K_{m}^{(\alpha, \beta)}$ constructed on the roots $x_{k m}^{(\alpha, \beta)}, 1 \leq k \leq m$, of the Jacobi-polynomial $P_{m}^{(\alpha, \beta)}$ it is shown that $K_{m}^{(\alpha, \beta)}$ is positive for all $m \in N$, if $(\alpha, \beta) \in\left[-\frac{3}{4},-\frac{1}{4}\right]^{2}$. Further there is given an error bound, which implies ${\underset{m i m}{m}}^{l} \|_{f-K_{m}^{(\alpha, \beta)} f \|=0 \text { for arbitrary }}^{(\alpha)}$ $f \in C(I)$ and $(\alpha, \beta) \in\left[-\frac{3}{4},-\frac{1}{4}\left[\left[^{2}\right.\right.\right.$.

1. Formulation of the problem and main results

In this paper we investigate the question of convergence for HermiteFejér interpolation of higher order, introduced by Kryloff and Stayermann [8]. To state the problem, let $m \in N,(\alpha, \beta) \in]-1, \infty\left[^{2}\right.$ and let

$$
\begin{equation*}
-1<x_{m m}^{(\alpha, \beta)}<x_{m-1, m}^{(\alpha, \beta)}<\ldots<x_{1 m}^{(\alpha, \beta)}<1 \tag{1.1}
\end{equation*}
$$

be the roots of the Jacobi-polynomial $P_{m}^{(\alpha, \beta)}$ of degree m (with regard to the weight function $\left.x \mapsto(1-x)^{\alpha} \cdot(1+x)^{\beta}\right)$. We denote by $C(I)$ the Banach-space of all continuous real-valued functions on $I=[-1,1]$ with the sup-norm $\|\cdot\|$. For any $f \in C(I)$ there is an uniquely determined polynomial $K_{m}^{(\alpha, \beta)} f$ of degree at most $4 m-1$ satisfying the conditions

Received 21 March 1983.

$$
\begin{aligned}
K_{m}^{(\alpha, \beta)} f\left(x_{k m}^{(\alpha, \beta)}\right) & =f\left(x_{k m}^{(\alpha, \beta)}\right), & & 1 \leq k \leq m \\
\left(K_{m}^{(\alpha, \beta)} f\right)^{(i)}\left[x_{k m}^{(\alpha, \beta)}\right) & =0, & & 1 \leq k \leq m, i=1,2,3 .
\end{aligned}
$$

This polynomial can be represented in the following form:

$$
K_{m}^{(\alpha, \beta)} f(x)=\sum_{k=1}^{m} u_{k m}^{(\alpha, \beta)}(x) \cdot\left(z_{k m}^{(\alpha, \beta)}(x)\right)^{4} \cdot f\left(x_{k m}^{(\alpha, \beta)}\right)
$$

where $l_{k m}=l_{k m}^{(\alpha, \beta)}$ is the k th Lagrange polynomial of degree $m-1$ determined by the nodes (1.1) and where $u_{k m}^{(\alpha, \beta)}$ is given by

$$
\begin{equation*}
u_{k m}^{(\alpha, \beta)}(x)=\sum_{i=0}^{3} a_{k m}^{(i)} \cdot\left(x-x_{k m}^{(\alpha, \beta)}\right)^{i} \tag{1.2}
\end{equation*}
$$

with

$$
\begin{aligned}
& a_{k m}^{(0)}=1 \\
& a_{k m}^{(1)}=-4 z_{k m}^{\prime}\left(x_{k m}^{(\alpha, \beta)}\right), \\
& a_{k m}^{(2)}=10 \cdot\left(z_{k m}^{\prime}\left(x_{k m}^{(\alpha, \beta)}\right)\right)^{2}-22_{k m}^{\prime \prime}\left(x_{k m}^{(\alpha, \beta)}\right),
\end{aligned}
$$

and

$$
a_{k m}^{(3)}=10 z_{k m}^{\prime}\left(x_{k m}^{(\alpha, \beta)}\right) \cdot \tau_{k m}^{\prime \prime}\left(x_{k m}^{(\alpha, \beta)}\right)-20\left(z_{k m}^{\prime}\left(x_{k m}^{(\alpha, \beta)}\right)\right)^{3}-\frac{2}{3} \imath_{k m}^{(3)}\left(x_{k m}^{(\alpha, \beta)}\right)
$$

As in the case of Hermite-Fejer interpolation the question arises for which $(\alpha, \beta) \in]-1, \infty{ }^{2}$ we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|f-K_{m}^{(\alpha, \beta)} f\right\|=0 \quad \text { for all } \quad f \in C(I) \tag{1.3}
\end{equation*}
$$

It was shown first that (1.3) is valid in the case $\alpha=\beta=-0.5$ (cf. Kryloff and Stayermann [8], Laden [9] as well as Sharma and Tzimbalario [12]). Then it was shown that estimations of

$$
\left\|f-K_{m}^{(-0.5,-0.5)} f\right\| \text { and of }\left|f(x)-K_{m}^{(-0.5,-0.5)} f(x)\right|
$$

(for $x \in I$) by the modulus of continuity and by the modulus of smoothness
of f can be given (cf. Stancu [13], Florica [2], Haussmann and Knoop [6], Mills [10], Prasad [11] and Gonska [3, 4]). Moreover, there exist error bounds for subspaces of $C(I)$ ($c f$. Gonska [3, 4] as well as Goodenough and Mills [5]). In these investigations the positivity of the operators $K_{m}^{(-0.5,-0.5)}$ plays a fundamental role. Now the positivity of these operators is equivalent to

$$
u_{k m}^{(-0.5,-0.5)}(x) \geq 0 \text { for all } x \in I, \quad 1 \leq k \leq m
$$

In [1] it was shown that for all $m \in \mathbb{N}$ we have

$$
u_{k m}^{(-0.5,-0.5)}(x) \geq \frac{1}{8} \text { for all } x \in I, 1 \leq k \leq m
$$

Other pairs (α, β) were considered by Laden. He has shown in [9] that (1.3) is valid for all pairs (α, β) with

$$
(\alpha, \beta) \in\left[-\frac{3}{4},-\frac{1}{2}\right]^{2} \cup\left[-\frac{1}{2},-\frac{1}{4}\left[^{2},\right.\right.
$$

and that there is a function $f \in C(I)$ such that $K_{m}^{(\alpha, \alpha)} f(1)$ does not converge to $f(1)$ in the case $\alpha=-0.25$.

In this paper we show that

$$
K_{m}^{(\alpha, \beta)}: C(I) \ni f \mapsto K_{m}^{(\alpha, \beta)} f \in C(I)
$$

is a positive operator for a wider field of pairs (α, β), namely for all $(\alpha, \beta) \in\left[-\frac{3}{4},-\frac{1}{4}\right]^{2}$, and that (1.3) holds even for all $(\alpha, \beta) \in\left[-\frac{3}{4},-\frac{1}{4}\left[^{2}\right.\right.$. To formulate more precisely

THEOREM 1. Let $(\alpha, \beta) \in\left[-\frac{3}{4},-\frac{1}{4}\right]^{2}$, then for any $m \in \mathbb{N}$, any $k \in\{1, \ldots, m\}$ and any $x \in I$ we have

$$
u_{k m}^{(\alpha, \beta)}(x) \geq-\frac{4}{3} \eta^{3}+\frac{23}{12} n^{2}-2 n+1 \geq \frac{1}{64}
$$

with $\eta=\max (\alpha, \beta)+1$.
THEOREM 2. Let $(\alpha, \beta) \in\left[-\frac{3}{4},-\frac{1}{4}\left[^{2}\right.\right.$, then we have for any $f \in C(I)$,

$$
\left\|f-K_{m}^{(\alpha, \beta)} f\right\| \leq 2 \cdot D \cdot \begin{cases}\omega\left(f, \sqrt{m^{4 \theta+1}}\right), & \text { if } \min (\alpha, \beta)>-\frac{3}{4} \\ \omega\left(f, \sqrt{m^{4 \theta+1} \cdot \log m}\right), & \text { if } \min (\alpha, \beta)=-\frac{3}{4}\end{cases}
$$

Here $\Theta=\max (\alpha, \beta,-0.5), \omega$ denotes the usual modulus of continuity and D is a positive constant independent of f and m.

2. Proof of Theorem 1

Let $m \in \mathbb{N}$ and $(\alpha, \beta) \in\left[-\frac{3}{4},-\frac{1}{4}\right]^{2}$ be given. Then for the sake of simplicity we put

$$
\begin{aligned}
& r:=\alpha-\beta, \\
& \delta:=\alpha+\beta+2,
\end{aligned}
$$

and

$$
M:=m(m+\alpha+\beta+1) .
$$

We further use the notation

$$
x_{k}:=x_{k m}^{(\alpha, \beta)}, \quad \tau_{k}:=\tau_{k m}^{(\alpha, \beta)} \text { and } u_{k}:=u_{k m}^{(\alpha, \beta)} .
$$

From the differential equation for the Jacobi-polynomials (see Szegö [15]) we conclude
(2.1) $u_{k}(x)=1-2 \cdot \frac{\gamma+\delta x_{k}}{1-x_{k}^{2}} \cdot\left(x-x_{k}\right)+\frac{11}{6}\left(\frac{\gamma+\delta x_{k}}{1-x_{k}^{2}}\right)^{2} \cdot\left(x-x_{k}\right)^{2}$

$$
\begin{aligned}
& +\frac{1}{6}\left(\frac{x-x_{k}}{1-x_{k}^{2}}\right)^{2} \cdot s_{k}(x) \cdot\left[4 \cdot(M-\delta)\left(1-x_{k}^{2}\right)-8 \cdot x_{k} \cdot\left(\gamma+\delta x_{k}\right)\right] \\
& -\left[\left(\frac{\gamma+\delta x_{k}}{1-x_{k}^{2}}\right)^{3}+\frac{1}{3} \cdot x_{k} \cdot \frac{\left(\gamma+\delta x_{k}\right)^{2}}{\left(1-x_{k}^{2}\right)^{3}}+\frac{1}{6}(\delta+2) \cdot \frac{\gamma+\delta x_{k}}{\left(1-x_{k}^{2}\right)^{2}}\right] \cdot\left(x-x_{k}\right)^{3}
\end{aligned}
$$

with

$$
s_{k}(x)=s_{k m}^{(\alpha, \beta)}(x)=1-\frac{2 \gamma+(2 \delta-1) \cdot x_{k}}{1-x_{k}^{2}} \cdot\left(x-x_{k}\right)
$$

Now the assertion of Theorem l is an immediate consequence of the two
following lemmas.
LEMMA 1. For any $(\alpha, \beta) \in\left[-\frac{3}{4},-\frac{1}{4}\right]^{2}$, any $k \in\{1, \ldots, m\}$ and any $x \in I$ we have

$$
s_{k m}^{(\alpha, \beta)}(x) \geq \min \left(-\left(2 \alpha+\frac{1}{2}\right),-\left(2 \beta+\frac{1}{2}\right)\right) \geq 0
$$

Proof. s_{k} being a linear function it is sufficient to consider $s_{k}(1)$ and $s_{k}(-1)$. We compute

$$
s_{k}(1)=-\left(2 \alpha+\frac{1}{2}\right)+\frac{4 \beta+3}{2} \cdot \frac{1-x_{k}}{1+x_{k}}
$$

and

$$
s_{k}(-1)=-\left(2 \beta+\frac{1}{2}\right)+\frac{4 \alpha+3}{2} \cdot \frac{1+x_{k}}{1-x_{k}} .
$$

Now taking into consideration the estimation

$$
4(M-\delta) \cdot\left(1-x_{k}^{2}\right)-8 \cdot x_{k} \cdot\left(\gamma+\delta x_{k}\right) \geq\left(\gamma+\delta x_{k}\right)^{2}
$$

(cf. Laden [9, Lemma 4]) and putting for fixed $k \in\{1, \ldots, m\}$ and, for fixed $x \in I$,

$$
t:=\frac{\gamma+\delta x_{k}}{1-x_{k}^{2}}, \quad y:=x-x_{k}
$$

we get for any $(\alpha, \beta) \in\left[-\frac{3}{4},-\frac{1}{4}\right]^{2}$,
$u_{k}(x) \geq(1-t y)^{2}+\frac{5}{6}(t y)^{2}+\frac{2}{3}(t y)^{2} \cdot s_{k}(x)-\frac{1}{2}(t y)^{2} \cdot\left[1-2 t y+\frac{y \cdot x_{k}}{1-x_{k}^{2}}\right]$

$$
-(t y)^{2},\left[t y+\frac{1}{3} \frac{y \cdot x}{1-x_{k}^{2}}\right]-\frac{1}{6}(\delta+2) \frac{t \cdot y^{3}}{1-x_{k}^{2}} .
$$

Thus we have for any $x \in I$ and all u_{k} the estimation

$$
\begin{equation*}
u_{k}(x) \geq h\left(x, x_{k}, \gamma, \delta\right) \tag{2.2}
\end{equation*}
$$

with

$$
h\left(x, x_{k}, \gamma, \delta\right)=-\frac{t}{6}\left(8 t^{2}+t \cdot \frac{x_{k}}{1-x_{k}^{2}}+\frac{\delta+2}{1-x_{k}^{2}}\right) y^{3}+2 t^{2} y^{2}-2 t y+1
$$

Now h can be estimated from below as shown in the following lemma.
LEMMA 2. For any $(\alpha, \beta) \in\left[-\frac{3}{4},-\frac{1}{4}\right]^{2}$ we have

$$
\inf _{\left.x_{k} \in\right]-1,1[} \min _{x \in[-1,1]} h\left(x, x_{k}, \gamma, \delta\right)=-\frac{4}{3} n^{3}+\frac{23}{12} \eta^{2}-2 \eta+1
$$

with $\eta=\max (\alpha, \beta)+1$.
Proof. For any $(\alpha, \beta) \in\left[-\frac{3}{4},-\frac{3}{4}\right]^{2}$ we have $\gamma \in\left[-\frac{1}{2}, \frac{1}{2}\right]$ and $\delta \in\left[\frac{1}{2}, \frac{3}{2}\right]$. Since $h\left(x, x_{k}, \gamma, \delta\right)=h\left(-x,-x_{k},-\gamma, \delta\right)$ we assume $\gamma \geq 0$ in the following. At first we show that h is a monotone function of x. Let $t \neq 0$. If there is a zero of $\partial h / \partial x$ we then have

$$
\Delta:=-4 t^{2}-t \cdot \frac{x_{k}}{1-x_{k}^{2}}-\frac{\delta+2}{1-x_{k}^{2}} \geq 0
$$

This implies $t \cdot x_{k}<0$, hence $t>0$ and $x_{k}<0$. From this we conclude $x_{k} \geq-0.5$. Since $\Delta \geq 0$ implies that Δ has a zero (as a polynomial in t) we have

$$
\frac{x_{k}^{2}}{\left(1-x_{k}^{2}\right)^{2}}-16 \frac{\delta+2}{1-x_{k}^{2}} \geq 0
$$

But this is impossible since $x_{k} \in[-0.5,0[$. Therefore we have for $\left.x_{k} \in\right]-1, \mathcal{L}, \gamma \in[0,0.5]$ and $\delta \in[0.5,1.5]$,

$$
\min _{x \in[-1,1]} h\left(x, x_{k}, \gamma, \delta\right)=\min \left(h\left(-1, x_{k}, \gamma, \delta\right), h\left(1, x_{k}, \gamma, \delta\right)\right)
$$

Next we compare $h\left(-1, x_{k}, \gamma, \delta\right)$ with $h\left(1, x_{k}, \gamma, \delta\right)$. We put $\tau:=\left(\gamma+\delta x_{k}\right) /\left(1-x_{k}\right)$ and compute

$$
\begin{aligned}
h\left(-1, x_{k}, \gamma, \delta\right)=\frac{4}{3} \tau^{3}+\left(2+\frac{1}{6} \frac{x_{k}}{1-x_{k}}\right) & \cdot \tau^{2} \\
& +\left(2+\frac{1}{6} \frac{(\delta+2)\left(1+x_{k}\right)}{1-x_{k}}\right) \cdot \tau+1=: u(\tau) .
\end{aligned}
$$

If $x_{k} \leq 0$ it is easily seen that $(\partial / \partial \tau) u(\tau)$ has no zero and hence $(\partial / \partial \tau) u(\tau)>0$. In this case we get

$$
h\left(1,-x_{k}, \gamma, \delta\right)=u\left(\tau-\frac{2 \gamma}{1-x_{k}}\right) \leq u(\tau)=h\left(-1, x_{k}, \gamma, \delta\right) .
$$

If $x_{k} \geq 0$ we have $\tau \geq 0$ and therefore $h\left(-1, x_{k}, \gamma, \delta\right) \geq 1$. Since we will see later on that

$$
\inf _{\left.x_{k} \in\right]-1,1[} h\left(1, x_{k}, \gamma, \delta\right)<1,
$$

there follows for any $\gamma \in[0,0.5], \delta \in[0.5,1.5]$,

$$
\inf _{\left.x_{k} \in\right]-1,1[x \in[-1,1]}^{\min } h\left(x, x_{k}, \gamma, \delta\right)=\inf _{\left.x_{k} \in\right]-1,1[} h\left(1, x_{k}, \gamma, \delta\right) .
$$

We now consider the function $\left.h_{1}:\right]-1, I[\ni z \mapsto h(1, z, \gamma, \delta)$ for fixed γ and δ,

$$
\begin{aligned}
& h_{1}\left(x_{k}\right)=1-\frac{\gamma+\delta x_{k}}{1+x_{k}}\left(2+\frac{1}{6} \frac{(\delta+2)\left(1-x_{k}\right)}{1+x_{k}}\right)+2\left(\frac{\gamma+\delta x_{k}}{1+x_{k}}\right)^{2} \\
&-\frac{1}{6}\left(\frac{\gamma+\delta x_{k}}{1+x_{k}}\right)^{2} \cdot \frac{x_{k}}{1+x_{k}}-\frac{4}{3}\left(\frac{\gamma+\delta x_{k}}{1+x_{k}}\right)^{3} .
\end{aligned}
$$

Obviously h_{1} has a continuous extension to a function on 1-1, 1]. Evidently, for $x_{k} \leq-(y / \delta)$ we have $h_{1}\left(x_{k}\right) \geq 1$. We now show that

$$
\inf _{\left.\left.x_{k} \in\right]-1,1\right]} h_{1}\left(x_{k}\right)=h_{1}(1)
$$

Since we will see that $h_{1}(1)<1$, it is sufficient to show that there is no x_{k} with $-(\gamma / \delta)<x_{k}<1$ and $h_{1}\left(x_{k}\right)<h_{1}(1)$. It is evident that for the derivative h_{I}^{\prime} we have $h_{l}^{\prime}(-(\gamma / \delta))<0$. On the other hand it
follows that

$$
h_{1}^{\prime}\left(x_{k}\right)=\frac{1}{\left(1+x_{k}\right)^{4}}\left(A \cdot x_{k}^{2}+B \cdot x_{k}+C\right)
$$

with

$$
\begin{aligned}
& A=-\frac{47}{6} \alpha^{2}-23 \alpha-8 \beta^{3}-\frac{98}{3} \beta^{2}-43 \beta-8 \alpha^{2} \beta-16 \alpha \beta^{2}-40 \alpha \beta-18, \\
& B=-\frac{47}{3} \alpha^{2}-14 \alpha+16 \beta^{3}+49 \beta^{2}+42 \beta-16 \alpha^{2} \beta-16 \alpha \beta+\frac{32}{3}, \\
& C=-\frac{47}{6} \alpha^{2}+9 \alpha-8 \beta^{3}-\frac{101}{6} \beta^{2}-15 \beta-8 \alpha^{2} \beta+16 \alpha \beta^{2}+24 \alpha \beta-\frac{16}{3} .
\end{aligned}
$$

Now sign $h_{1}^{\prime}(1)=\operatorname{sign}(A+B+C)$ and

$$
A+B+C \leq-\frac{22}{3} \alpha^{2}-4 \alpha-\frac{2}{3}<0 .
$$

If we now assume that there is an $\left.x_{k} \in\right]-(\gamma / \delta)$, I[with $h_{1}\left(x_{k}\right)<h_{1}(1)$, it follows that h_{1}^{\prime} has two different zeros in the interval $]-(\gamma / \delta), I[$ and therefore $B^{2}>4 A C$ and $A<0$. Now

$$
C=\alpha^{2}\left(-\frac{47}{6}-8 \beta\right)+16 \alpha\left(\beta+\frac{3}{4}\right)^{2}-8 \beta^{3}-\frac{101}{6} \beta^{2}-15 \beta-\frac{16}{3}<0
$$

We consider two cases.
CASE 1. $B>0$. We show that in this case the middle-point $-(B / 2 A)$ of the zeros of h_{1}^{\prime} satisfies $-(B / 2 A)>1$, that is, a contradiction. Indeed, from $-(B / 2 A) \leq 1$ there follows $4 A C \geq-2 B C$ and $B \geq-2 C$. Now

$$
B+2 C=\alpha^{2}\left(-\frac{94}{3}-32 \beta\right)+\alpha\left(4+32 \beta+32 \beta^{2}\right)+\frac{46}{3} \beta^{2}+12 \beta
$$

It is $B+2 C \geq 0$ only if

$$
\begin{aligned}
D(B) & :=\left(4+32 \beta+32 \beta^{2}\right)^{2}+4\left(\frac{94}{3}+32 \beta\right)\left(\frac{46}{3} \beta^{2}+12 \beta\right) \\
& \geq 0 .
\end{aligned}
$$

But using Descartes' rule we see that D has exactly one zero β_{0} with $\beta_{0} \geq-\frac{3}{4}$ and from $D\left(-\frac{1}{4}\right)<0$ we conclude that $D(B)<0$ if $\beta \in[-0.75,-0.25]$. Thus $B+2 C<0$ and therefore $-(B / 2 A)>1$.

CASE 2. $B<0$. We will show that in this case we have $-(B / 2 A) \leq-1$. From the assumption $-1<-(B / 2 A)$ we conclude similar as
above $B<2 C$. Now we have

$$
2 C-B=32 \alpha(\beta+1)^{2}-r(\beta)
$$

where r with

$$
r(\beta)=32 \beta^{3}+\frac{248}{3} \beta^{2}+72 \beta+\frac{64}{3}
$$

is an increasing function of β. From this we see that $2 C-B<0$; hence we get $-(B / 2 A) \leq-1$.

From Case 1 and Case 2 we conclude that h_{1}^{\prime} cannot have two distinct zeros in $]-(\gamma / \delta), 1[$. Therefore

$$
\inf _{\left.\left.x_{k} \in\right]-1,1\right]} h_{1}\left(x_{k}\right)=h_{1}(1)
$$

The result is

$$
\inf _{\left.x_{k} \in\right]-1,1[x \in[-1,1]}^{\min } h\left(x, x_{k}, \gamma, \delta\right)=-\frac{4}{3} n^{3}+\frac{23}{12} n^{2}-2 n+1 .
$$

Now the right side of this equation is a strictly decreasing function of η. Therefore

$$
\frac{1}{64} \leq h_{1}(1) \leq \frac{115}{192},
$$

which completes the proof.
From Lemma 2 we get in view of formula (2.2) the assertion of Theorem 1.

In the case of $\alpha=\beta=-\frac{1}{2}$ we have - as an improvement of the result in [7] - the estimation

$$
u_{k m}^{(-0.5,-0.5)}(x) \geq \frac{5}{16}
$$

for any $m \in \mathbf{N}$, any $k=1, \ldots, m$ and any $x \in I$.

3. Proof of Theorem 2

For $(\alpha, \beta) \in\left[-\frac{3}{4},-\frac{1}{4}\right]^{2}$ the mappings $K_{m}^{(\alpha, \beta)}$ form a sequence of positive linear operators from $C(I)$ into $C(I)$. If e is a constant function we have $K_{m}^{(\alpha, \beta)} e=e$; therefore the theorem of Bohman-Korovkin
(cf. DeVore [1]) yields for any $x \in I$,

$$
\begin{equation*}
\left|f(x)-K_{m}^{(\alpha, \beta)} f(x)\right| \leq 2 \omega\left(f,\left|\varepsilon_{m}(x)\right|\right) \tag{3.1}
\end{equation*}
$$

with

$$
\varepsilon_{m}^{2}(x)=\left(K_{m}^{(\alpha, \beta)} g_{x}\right)(x)
$$

and

$$
g_{x}(t)=(x-t)^{2}
$$

The function ε_{m}^{2} can be estimated from above. We have
LEMMA 3. For Jacobi abscissas, with $(\alpha, B) \in\left[-\frac{3}{4},-\frac{3}{4}\right]^{2}$, there exists a positive constant $D=D_{\alpha, \beta}$ independent of m such that we have for any $x \in I$,

$$
\varepsilon_{m}^{2}(x) \leq D \cdot \begin{cases}m^{4 \theta+1} & , \text { if } \min (\alpha, \beta)>-\frac{3}{4} \\ m^{4 \theta+1} \log m, & \text { if } \min (\alpha, \beta)=-\frac{3}{4}\end{cases}
$$

with $\theta=\max \left(\alpha, \beta,-\frac{1}{2}\right)$.
Proof. We get from (2.1) with $P_{m}=p_{m}^{(\alpha, \beta)}$,

$$
\begin{aligned}
\varepsilon_{m}^{2}(x)= & \sum_{k=1}^{m} u_{k}(x) \cdot\left(x-x_{k}\right)^{2} \cdot l_{k}^{4}(x) \\
\leq & D_{1} \cdot \sum_{k=1}^{m} \frac{P_{m}^{2}(x)}{\left(1-x_{k}^{2}\right)\left(P_{m}^{\prime}\left(x_{k}\right)\right)^{2}} l_{k}^{2}(x) \\
& \quad+D_{2} \cdot \sum_{k=1}^{m} \frac{m^{2} P_{m}^{4}(x)}{\left(1-x_{k}^{2}\right)^{2} \cdot\left(P_{m}^{\prime}\left(x_{k}\right)\right)^{4}}+D_{3} \cdot \sum_{k=1}^{m} \frac{P_{m}^{4}(x)}{\left(1-x_{k}^{2}\right)^{3}\left(P_{m}^{\prime}\left(x_{k}\right)\right)^{4}}
\end{aligned}
$$

where D_{1}, D_{2}, D_{3} are positive constants depending only on (α, β). Because of the uniform boundedness of

$$
\sum_{k=1}^{m} \frac{1}{\left(1-x_{k}^{2}\right) \cdot\left(P_{m}^{\prime}\left(x_{k}\right)\right)^{2}} \text { and } \sum_{k=1}^{m} \tau_{k}^{2}(x)
$$

(cf. for example, Szász [14]) we get in view of Szegö [15, Chapter 7.32, Chapter 8.9],

$$
\varepsilon_{m}^{2}(x) \leq D_{4} \cdot m^{2 \cdot \max (\alpha, \beta,-0.5)}
$$

$$
+D_{5} \cdot m^{4 \cdot \max (\alpha, \beta,-0.5)} \cdot \sum_{k=1}^{m} \frac{m^{6}}{k^{4}}\left(\frac{k^{4 \alpha+6}}{m^{4 \alpha+8}}+\frac{k^{4 \beta+6}}{m^{4 \beta+8}}\right)
$$

(cf. also Laden [9, proof of Lemma 2]).
Since

$$
m^{-4 \varphi} m^{-2} \cdot \sum_{k=1}^{m} k^{4 \varphi+2} \leq D_{6} \cdot \begin{cases}m, & \text { if } \varphi>-\frac{3}{4}, \\ m \log m, & \text { if } \varphi=-\frac{3}{4},\end{cases}
$$

and

$$
2 \varphi \leq 4 \varphi+1 \leq 0 \text { if }-\frac{1}{2} \leq \varphi \leq-\frac{1}{4},
$$

the proof is complete.
Combining the estimation of Lemma 3 and formula (3.1) yields the proof of Theorem 2. In the special case $\alpha=\beta=-0.5$ we derive from Theorem 2 the relation

$$
\left\|f-K_{m}^{(-0.5,-0.5)} f\right\| \leq 2 D \omega\left(f, \sqrt{m^{-1}}\right)
$$

(of. Stancu [13]).

References

[1] Ronald A. De Vore, The approximation of continuous functions by positive linear operators (Lecture Notes in Mathematics, 293. Springer-Verlag, Berlin, Heidelberg, New York, 1972).
[2] Olariu Florica, "Asupra ordinului de aproximatie prin polinoame de interpolare de tip Hermite-Fejér cu noduri cvadruple" [On the order of approximation by interpolating polynomials of HermiteFejér type with quadruple nodes], An. Univ. Timisoara Ser. Sti. Mat.-Fiz. 3 (1965), 227-234.
[3] Heinz Herbert Gonska, "Quantitative Aussagen zur Approximation durch positive lineare Operatoren" (Dissertation, Universität Duisburg, 1979).
[4] Heinz H. Gonska, "A note on pointwise approximation by Hermite-Fejér type interpolation polynomials", Functions, series operators (Proc. Conf. Budapest, Hungary, 1980. North-Holland, Groningen, to appear).
[5] S.J. Goodenough and T.M. Mills, "The asymptotic behaviour of certain interpolation polynomials", J. Approx. Theory 28 (1980), 309-316.
[6] Werner Haussmann und Hans-Bernd Knoop, "Konvergenzordnung einer Folge positiver linearer Operatoren", Rev. Anal. Numér. Théor. Approx. 4 (1975), 123-130.
[7] H.-B. Knoop, "Eine Folge positiver Interpolationsoperatoren", Acta Math. Acad. Sci. Hungar. 27 (1976), 263-265.
[8] N.M. Kryloff and E. Stayermann, "Sur quelques formules d'interpolation convergentes pour toute fonction continue", Bull. Acad. de I'Oucraine 1 (1923), 13-16.
[9] H.N. Laden, "An application of the classical orthogonal polynomials to the theory of interpolation", Duke Math. J. 8 (1941), 591-610.
[10] T.M. Mills, "On interpolation polynomials of the Hermite-Fejér type", Colloq. Math. 35 (1976), 159-163.
[11] J. Prasad, "On the rate of convergence of interpolation polynomials of Hermite-Fejer type", Bull. Austral. Math. Soc. 19 (1978), 29-37.
[12] A. Sharma and J. Tzimbalario, "Quasi-Hermite-Fejér type interpolation of higher order", J. Approx. Theory 13 (1975), 431-442.
[13] D.D. Stancu, "Asupra unei demonstratii a teoremei lui Weierstrass" [On a proof of the theorem of Weierstrass], Bul. Inst. Politehn. Iasi (N.S.) 5 (9) (1959), 47-50.
[14] Paul Szász, "On a sum concerning the zeros of the Jacobi polynomials with application to the theory of generalized quasi-step parabolas", Monatsh. Math. 68 (1964), 167-174.
[15] Gäbor Szegö, Orthogonal polynomials (American Mathematical Society Colloquium Publications, 23. American Mathematical Society, Providence, Rhode Island, 1975).

Fachbereich II - Mathematik
der Universität Duisburg
Lotharstr. 65
D-4100 Duisburg
West Germany.

