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DISCONTINUOUS HOMOMORPHISMS OF C (X ) WITH 2ℵ0 > ℵ2

BOB A. DUMAS

Abstract. Assume that M is a transitive model of ZFC + CH containing a simplified (�1, 2)-morass,
P ∈ M is the poset adding ℵ3 generic reals and G is P-generic over M. In M we construct a function
between sets of terms in the forcing language, that interpreted in M [G ] is an R-linear order-preserving
monomorphism from the finite elements of an ultrapower of the reals, over a non-principal ultrafilter on
�, into the Esterle algebra of formal power series. Therefore it is consistent that 2ℵ0 > ℵ2 and, for any
infinite compact Hausdorff space X, there exists a discontinuous homomorphism of C (X ), the algebra of
continuous real-valued functions on X.

§1. Introduction. This paper addresses Kaplansky’s conjecture in the theory of
Banach algebras concerning the existence of discontinuous homomorphisms of
C (X ), the algebra of continuous real-valued functions with domain X, where X
is an infinite compact Hausdorff space. This problem sits squarely in the extensive
history of the question of automatic continuity—whether algebraic tameness implies
topological tameness. Among the open questions in this area of research is whether
the existence of a discontinuous homomorphism ofC (X ) implies that the cardinality
of the continuum is at most ℵ2. We prove in this paper that the existence of a
discontinuous homomorphism of C (X ) does not imply that 2ℵ0 ≤ ℵ2.

In [10], B. Johnson proved that there is a discontinuous homomorphism of C (X )
provided that there is a nontrivial submultiplicative norm on the finite elements
of an ultrapower of R over �. In [7], J. Esterle constructs an algebra of formal
power series, E , and shows in [6] that the infinitesimal elements of E admit a
nontrivial submultiplicative norm. By results of Esterle in [8], it is known that E is an
�1-ordering of cardinality 2ℵ0 . Furthermore, E is a totally ordered field by a result
of Hahn in 1907 [9], and is real-closed by a result of Maclane [11].

It is a theorem of P. Erdös, L. Gillman, and M. Henriksen in [5] that any
pair of �1-ordered real-closed fields of cardinality ℵ1 are isomorphic as ordered
fields.1 In fact, it is shown using a back-and-forth argument that any order-
preserving field isomorphism between countable subsets of �1-ordered real-closed
fields may be extended to an order-isomorphism. It is a standard result of model
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1An �1- ordered field, F, is one for which any countable gap, (A,B) has a witness (that is, if

A,B ⊆ F , |A| ≤ ℵ0 |B| ≤ ℵ0 and (∀x ∈ A, y ∈ B) x < y, then there is z ∈ F such that (∀x ∈ A) x < z
and (∀y ∈ B) z < y. If F is a real-closed field it is an �1-ordered field if and only if it is ℵ1-saturated.
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theory that for any non-principal ultrafilter U on �, R�/U is an ℵ1-saturated
real-closed field (and hence an �1-ordering). By a result of Johnson [10], between
any pair of �1-ordered real-closed fields of cardinality ℵ1 there is an R-linear
order-preserving field isomorphism (hereafter R-isomorphism). This implies, in a
model of the continuum hypothesis (CH), that there is an R-linear order-preserving
monomorphism (hereafter R-monomorphism) from the finite elements of R�/U
to E , and hence in models of ZFC+CH there exists a discontinuous homomorphism
of C (X ). The proof that in a model of ZFC+CH there exists a discontinuous
homomorphism of C (X ) is due independently to Dales [1, 2] and Esterle [6].

Shortly thereafter R. Solovay found a model of ZFC+¬CH in which all
homomorphisms of C (X ) are continuous. Later, in his Ph.D. thesis, W.H. Woodin
constructed a model of ZFC+Martin’s Axiom in which all homomorphisms of
C (X ) are continuous. This naturally gave rise to the question of whether there is a
model of set theory in which CH fails and there is a discontinuous homomorphism
of C (X ). Woodin subsequently showed that in the Cohen extension of a model of
ZFC+CH by generic reals indexed by �2, there is a discontinuous homomorphism
of C (X ) [15]. Woodin shows that in this model the gaps in E that must be witnessed
in a classical back-and-forth construction are always countable. He observes that
this construction may not be extended to a Cohen extension by more than ℵ2

generic reals. He suggests the plausibility of using morasses to construct an
R-monomorphism from the finite elements of an ultrapower of the reals to the
Esterle algebra in generic extensions with more than ℵ2 generic reals. Woodin’s
argument does not extend to higher powers of the continuum and leaves open
the question of whether there exists a discontinuous homomorphism of C (X ) in
models of set theory in which 2ℵ0 > ℵ2. In this paper we show that the existence of
a simplified (�1, 2)-morass in a model of ZFC + CH is sufficient for the existence
of a discontinuous homomorphism of C (X ) in a model in which 2ℵ0 = ℵ3.

We show that in the Cohen extension adding ℵ2 generic reals to a transitive
model of ZFC + CH containing a simplified (�1, 1)-morass, there is a level,
morass-commutative term function that, interpreted in the Cohen extension, is an
R-monomorphism of the finite elements of an ultrapower of R over � into the
Esterle algebra. This is achieved with a transfinite construction of length�1, utilizing
the morass functions from the gap-one morass to complete the construction of size
ℵ2 by commutativity with morass maps. Using the techniques of this argument, we
construct a term function with a transfinite argument of length�1 and utilize morass-
commutativity with the embeddings of a gap-2 morass to complete the construction
of an R-monomorphism from the finite elements of a standard ultrapower of R over
� to the Esterle algebra in the Cohen extension adding ℵ3 generic reals.

The technical obstacles to such a construction may be reduced to conditions
we call morass-extendibility. This paper is dependent on the results of [3] and [4],
in which term functions are constructed that are forced to be order-preserving
functions. In this paper we construct a term function that is forced to be order-
preserving and is simultaneously an R-linear ring-monomorphism.

§2. Preliminaries. In our initial construction we use a simplified (�1, 1)-morass.
We construct a function on terms in the forcing language for adding ℵ2 generic
reals that is forced, in all generic extensions, to be an R-monomorphism from
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the finite elements of R�/U , where U is a a non-principal ultrafilter meeting
certain technical conditions, into the Esterle algebra, E . In some sense we follow
the classical route to such constructions—extension by transcendental elements in
an inductive construction of length �1. We will require commutativity with morass
maps to construct a function on a domain of cardinality ℵ2 making only ℵ1 many
explicit commitments. However with each commitment of the construction, there
are uncountably many future commitments implied by commutativity with morass
maps.

In [13] D. Velleman defines a simplified (�1, 1)-morass.

Definition 2.1 (Velleman)(Simplified(�1, 1)-morass). A simplified (�, 1)-
morass is a structure

M = 〈(�α | α ≤ �1), (Fα� | α < � ≤ �1)〉

that satisfies the following conditions:
(P0) (a) �0 = 1, ��1 = �2, (∀α < �1) 0 < �α < �1.
(b) Fα� is a set of order-preserving functions f : �α → �� .
(P1)

∣∣Fα� ∣∣ ≤ � for all α < � < �1.
(P2) If α < � < �, then Fα� = {f ◦ g | f ∈ F�� , g ∈ Fα�}.
(P3) If α < �1, then Fα(α+1) = {id � �α, fα} where fα satisfies:

(∃�α < �α) fα � �α = id � �α and fα(�α) ≥ �α.

(P4) If α ≤ �1 is a limit ordinal, �1, �2 < α, f1 ∈ F�1α and f2 ∈ F�2α , then there is
� < α, � > �1, �2, and there is f′

1 ∈ F�1� , f
′
2 ∈ F�2� , g ∈ F�α such that f1 = g ◦ f′

1
and f2 = g ◦ f′

2.
(P5) For all α > 0, �α =

⋃
{f[�� ] | � < α, f ∈ F�α}.

Simplified gap-1 morasses, as well as higher gap simplified morasses, are known to
exist in L.

We will construct, by an inductive argument of length �1, a function between
sets of terms in the forcing language adding ℵ2 generic reals. We interpret the
morass functions on ordinals as functions between terms in the forcing language
and require that the set of terms under construction satisfy certain commutativity
constraints with the morass functions. It is implicit that any commitment to an
ordered pair of terms in the construction is de facto a commitment to uncountably
many commitments to ordered pairs in mutually generic extensions. In [3] we worked
explicitly with terms in the forcing language. We wish to simplify the details of the
construction by working with objects in a forcing extension, where that is possible.

Notation 2.2 (P(A)). If A is a set of ordinals, we let P(A) be the poset adding
generic reals indexed by the ordinals of A. That is,

P(A) := Fn(A× �, 2),

the finite partial functions from A× � to 2.

Notation 2.3 (P	). IfM is a simplified (�1, 1) – morass , and 	 ≤ �1, we letP	 be
the poset that adds generic reals indexed by �	(the ordinal associated with the vertex,
	, in M).
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Let M be a transitive model of ZFC, � be an ordinal and P be the poset adding
generic reals indexed by � , then P(�) = Fn(� × �, 2).

We use the notion of strict level of a term in the forcing language defined in [3],
and apply it to objects in a forcing extension.

Definition 2.4 (Strict level). Let α ≤ � ≤ �2 be ordinals and 
 ∈MP(�) be a
term in the forcing language adding generic reals indexed by � . Then 
 has strict
level α provided that:

1. There is a term 
̄ ∈MP(α) such that � 
̄ = 
.
2. For any � < α, and term, 
̄ ∈MP(�), � 
 �= 
̄.

Alternatively, for � < α < � , we consider P(�) as the product forcing P(�) ×
P(α \ �) × P(� \ α). Suppose G(�) is P(�)-generic over M and G is P(α \ �)-
generic overM [G(�)], and H is P(� \ α)-generic overM [G(�), G ]. We say that an
object in a forcing extension, a ∈M [G(�), G,H ], has strict level α if and only if
there is a 
 ∈MP(α) with strict level α, such that 
G(�)G = a. If a ∈M [G(�), G,H ]
has strict level α, then for any � < α, a /∈M [G(�)].

Not every term in the forcing language has strict level. However, every object in a
forcing extension is the interpretation of a term of strict level. Consequently in our
construction we pass freely between objects of strict level α in a generic extension
and terms ofMP(α).

Many of the constraints required for commutativity with morass maps are
expressed in terms of the strict level of objects in a forcing extension (or
correspondingly, terms in a forcing language). For instance, in Section 5 we define a
term function to be level if the strict level of any term in the domain equals the strict
level of its image under the function. Such maps will commute with morass maps in
the manner required by our construction.

§3. Constructing an R-monomorphism on a real-closed field. We wish to construct
a function between sets of terms in the forcing language for adding ℵ2 generic
reals, that is forced in all generic extensions to be an order-preserving R-linear
monomorphism from the finite elements of an non-principal ultrapower ofR,R�/U
to E .

Definition 3.1 (Archimedean valuation). If x and y are non-zero elements of a
real-closed field, they have the same Archimedean valuation, x ∼ y, provided that
there are m, n ∈ N such that

|x| < n · |y|

and

|y| < m · |x| .

If |x| < |y| and x � y, then x has Archimedean valuation greater than y.

Archimedean valuation induces an equivalence relation on the non-zero elements
of a real-closed field (RCF). The non-zero real numbers have the same valuation.
Elements with the same valuation as a real number are said to have real valuation.
In a non-standard real-closed field, elements with valuation greater than a real

https://doi.org/10.1017/jsl.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.28


DISCONTINUOUS HOMOMORPHISMS OF C (X ) WITH 2ℵ0 > ℵ2 669

valuation are infinitesimal. The finite elements of a real closed field are the
infinitesimal elements and those with real valuation.

At any stage of the construction, we will have defined a partial function on R�/U ,
so we extend the definition of an R-monomorphism to include a partial function
that may not have all real numbers in its domain.

Definition 3.2 (R-monomorphism). Let X and Y be subrings of real-closed
fields that contain a real-closed subfield of R, and let R0 = R ∩ X = R ∩ Y . A
function, φ : X → Y , is an R-monomorphism if it is an order-preserving ring-
monomorphism such that φ �R0= id �R0 .

It is a result of B. Johnson [10] that �1-ordered real-closed fields with cardinality
ℵ1 are R-isomorphic in models of ZFC+CH. This result strengthens the classical
result that ℵ1-saturated real closed fields of cardinality ℵ1 are isomorphic. We review
some of the basic results from this work, which we require for extension of these
results to higher powers of the continuum.

Definition 3.3 (Full subfield). LetD∗ be a field extending R. A subfieldD ⊆ D∗

is full iff for every finite element, r + � ∈ D, where r ∈ R and � is infinitesimal, r ∈ D.

We will need to extend two results due to B. Johnson [10] to meet the requirement
of R-linearity in the context of constructing term functions using a morass.

Lemma 3.4 (B. Johnson). Assume that D and I are full real-closed subfields
of �1-ordered real-closed fields D∗(⊇ R) and I ∗(⊇ R) (resp.), φ : D → I is an
R-monomorphism, and r ∈ R. Then there is an extension of φ, φ∗, that is an
R-monomorphism of the real closure of the field generated by D and r, F (D, r),
onto the real closure of the field generated by I and r, F (I, r). Furthermore
F (D, r)(and consequently, F (I, r)) is full.

Lemma 3.5 (B. Johnson). Let D,D∗, I, I ∗ and φ be as in Lemma 3.4, x ∈ D∗ and
assume that the real closure of the field generated by D and x, F (D,x), is full. Let
y ∈ I ∗ be such that

(∀d ∈ D)(d < x ⇐⇒ φ(d ) < y).

Then there is an R-monomorphism extending φ, φ∗ : F (D,x) → I ∗, such that
φ∗(x) = y.

§4. The Esterle algebra. We define the Esterle algebra [6] and review some basic
properties.

Definition 4.1 (S�1). S�1 is the lexicographic linear-ordering with domain {s :
�1 → 2 | s has countable support and the support of s has a largest element }.

Definition 4.2 (G�1). G�1 is the ordered group with domain {g : S�1 → R | g
has countable well-ordered support}, lexicographic ordering, and group operation
pointwise addition.

We define an ordered algebra of formal power series, E . The universe of E is the
set of formal power series,

∑
�<� α�x

a� , where:
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1. � < �1.
2. (∀� < �)α� ∈ R.
3. {a� | � < �} is a countable well-ordered subset of G�1 and �1 < �2 < � ⇒
a�1 < a�2 .

The ordered algebra, E , is isomorphic to the set of functions, with countable well-
ordered support, fromG�1 toR. The lexicographic order linearly-orders E . Addition
is pointwise and multiplication is defined as follows: Suppose a =

∑
�<�1
α�x

a� and
b =

∑
κ<�2
�κx

bκ are members of E . Let

C = {c | (∃� < �1)(∃κ < �2) c = a� + bκ}.

Then

a · b =
∑
c∈C

((
∑

a�+bκ=c

α� · �κ)xc).

Definition 4.3 (Esterle algebra, E). The Esterle algebra, E , is {f : G�1 → R | f
has countable well-ordered support}. E is lexicographically ordered, with pointwise
addition, and multiplication defined above.

R may be embedded in E by α �−→ αxe , where e is the group identity in
G�1 . Exponents in G�1 larger than e (called positive exponents) correspond to
infinitesimal Archimedean valuations, and those smaller than e (called negative
exponents) correspond to infinite valuations. The finite elements of E are those
with leading exponent ≥ e. The Archimedean valuations of the Esterle algebra are
represented by the group of exponents of E .

Theorem 4.4 (J. Esterle [6]). E is an �1-ordered real-closed field.

A norm, ‖ ‖, on an algebra A is submultiplicative if for any a, b ∈ A,

‖a · b‖ ≤ ‖a‖ · ‖b‖.

Theorem 4.5 (G. Dales [2], J. Esterle [8]). The set of finite elements of E bears a
non-trivial submultiplicative norm.

It is a standard result of model theory that if U is a non-principal ultrafilter on
�, the ultrapower R�/U is an ℵ1-saturated real-closed field. Any two ℵ1-saturated,
or �1-ordered, real-closed fields with cardinality of the continuum are isomorphic
in models of ZFC+CH.

Theorem 4.6 (B.Johnson [10]). (CH) If U is a non-principal ultrafilter, there is an
R-monomorphism from the finite elements of R�/U into E .

Hence CH implies that there is a non-trivial submultiplicative norm on the
infinitesimal elements of R�/U .

We turn our attention to terms in a forcing language MP that are forced to
be members of the Esterle algebra. In [3] and [4], we found sufficient conditions
for morass constructions. The aggregate of these conditions were characterized
as morass-definability and gap-2 morass-definability. The central theorem of the
papers were that morass-definable �1-orderings are order-isomorphic in the Cohen
extension adding ℵ2 generic reals of a model of ZFC + CH containing a simplified
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(�1, 1)-morass; and gap-2 morass definable �1-orderings are order-isomorphic in
the Cohen extension adding ℵ3 generic reals of a model of ZFC + CH containing
a simplified (�1, 2)-morass.

In the definitions that follow, we assume P is the poset adding generic reals indexed
by an ordinal, α.

Definition 4.7 (Countable support). Let M be a transitive model of ZFC and G
be P-generic over M andS ⊆ α. Then x ∈M [G ] has support S if there is 
 ∈MP(S)

such that 
G = x. If there is a countable S ⊆ α, and 
 ∈MP(S) such that 
G = x,
then we say that x has countable support.

Forα < �1, every element ofM [G(α)] has countable support. The definition may
be generalized to posets adding arbitrary sets of ordinals. We note the possibility
of confusion with the support of power series in E treated as functions from G�1

to R, exponents in G�1 treated as functions from S�1 to R and transfinite binary
sequences of S�1 . Presumably the context will clarify the use of terminology.

Definition 4.8 (Level-dense). Let κ be an ordinal, P = P(κ), TX ∈MP be
forced to be a linear-ordering and X ⊆MP be a set of terms of strict level for the
domain of TX . X is level-dense if for x, y ∈ X , where the support of x and the
support of y are disjoint, and G is P-generic over M, there is z ∈ X ∩M such that
M [G ] |= x < z < y.

Definition 4.9 (Upward level-dense). Let P be the poset that adds generic reals
indexed by an ordinal κ and � ≤ κ. Let TX ∈MP be forced to be a linear-ordering,
and X ⊆MP be a set of terms of strict level for the domain of TX . X is upward
level-dense provided that for every x, y, z ∈ X and p ∈ P, in which z has strict
level α ≤ � with p � x < z < y, there is a term w ∈ X of strict level � such that
p � x < w < y.

If � < � ≤ �2 and f ∈ F�� , then f is an order-preserving injection from �� to �� .
We define a function g : P(��) → P(��) as follows. If x ∈ P(��), then x is a finite
partial function from �� × � → 2. That is, x is composed of finitely many ordered
triples, 〈α, n, s〉 where α ∈ �� , n ∈ � and s is either 0 or 1. For x ∈ P(��), let g(x) =
{〈f(α), n, s〉 | 〈α, n, s〉 ∈ x}. Then g : P(��) → P(��) replaces forcing conditions of
P(��) with forcing conditions ofP(��). Finally, we define, by recursion, a function h :
MP(�� ) →MP(��) such that for any term, 
 ∈MP(�� ), h(
) = {〈h(�), g(q)〉 | 〈�, q〉 ∈

}. We will refer to h as the index replacement function onMP(�� ) induced by f. For
notational convenience we use f for both the order monomorphism on �� , and the
index replacement function it induces.

Definition 4.10 (Morass-closed). Suppose 〈(�α | α ≤ �1), (Fα� | α < � ≤ �1)〉
is a simplified (�1, 1)-morass, 	 < � ≤ �1 and X ⊆MP . We say that X is morass-
closed at stage 	 beneath � if for any f ∈ F	� and x ∈ X ∩MP	 , f(x) ∈ X ∩MP� .
If for any 	 < �, X is morass-closed at stage 	 beneath �, then X is morass-closed
beneath �. If X is morass-closed at stage 	 beneath �1, then X is morass-closed at
stage 	.

Morass-closure extends naturally to structures with operations and relations,
with the following useful consequence. Let X be a morass-closed structure at stage 	
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beneath �. Suppose that S is a set of terms for the universe of X that is morass-closed
at stage 	 beneath �. If R is a binary relation of X we may consider R as terms in the
forcing language that are comprised of ordered pairs of members of S with forcing
conditions. That is, for s, t ∈ S ∩MP	 and p ∈ P	 , the term 〈〈s, t〉, p〉 ∈ R just in
case p � sRt. For the structure to be morass-closed at stage 	 beneath �, the relation
R must be morass-closed at stage 	 beneath �. If p ∈ P	 , f ∈ F	�, s, t ∈ S ∩MP	
and p � sRt, then f(p) � f(s)Rf(t). Similarly for operations. For instance, if
+ is a morass-closed operation of X ; s, t, u ∈ S ∩MP	 and p � s + t = u, then
f(p) � f(s) + f(t) = f(u).

Definition 4.11 (Morass-definable). Let G be P generic over M and
〈X,+, ·, <〉 ∈M [G ] be a linearly-ordered ring. X is morass-definable if there is
a set of terms T ⊆MP satisfying:

1. T is a morass-closed set of terms with strict level.
2. The linear order is morass-closed.
3. The ring operations are morass-closed.
4. T is level dense and upward level dense.
5. Every term of T has countable support.

The satisfaction of the first three conditions of the definition implies that the
structure, 〈X,+, ·, <〉, is morass-closed.

We say that an object in a forcing extension satisfies the definitions above provided
that there are terms in the forcing language that satisfy the definitions and that are
interpreted as the object of interest. For instance, in any forcing extension of M,
M [G ], the interpretation of 〈R,+, ·, <〉 is morass-definable. In earlier papers see
[3, 4] we showed that certain ultrapowers of R over � were also morass-definable.

Let E ⊆MP be the set of terms of strict level for elements in the Esterle algebra
in the forcing language of the poset P. It is routine to check that E is morass-closed
and that every element of the Esterle algebra is the interpretation of a term with
countable support.

Lemma 4.12. The Esterle algebra is level dense.

Proof. Let a, b ∈MP be terms of strict level for elements of the Esterle algebra
bearing disjoint supports. Let G be P-generic over M andM [G ] |= a < b. We wish
to show that a and b are separated in M [G ] by an element of E ∩M . We work in
M [G ]. Let �1 and �2 be countable ordinals and

a =
∑
�<�1

α�x
a�

and

b =
∑
�<�2

��x
b� .

If a and b are equal on a partial sum2 then that partial sum is in M so subtracting
the largest common partial sum of a and b, we may assume that a and b differ on

2We intend for “partial sum” to mean initial partial sum.
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the first term of the sums, and

α0x
a0 �= �0x

b0 .

If a0 = b0, then a0 ∈M and there is q ∈ Q such that

α0 < q < �0.

Then qxa0 ∈M and

a < qxa0 < b.

Hence we assume that a and b have distinct Archimedean valuations.
We consider the case a0 < b0. Then the sign of b – a is determined by the sign of

α0. Hence α0 < 0. It is sufficient to prove that there is an element of E ∩M that has
valuation between a0 and b0. Let

a0 = f : S�1 → R

and

b0 = g : S�1 → R.

If a0 and b0 are equal on an initial segment of their supports, then this initial segment
is in the ground model. We can therefore assume that a0 and b0 either have distinct
least members, or have the same least member of their supports, s ∈M , and

f(s) < g(s).

In the latter case there is q ∈ Q such that

f(s) < q < g(s).

Then {(s, q)} ∈M and

a0 < {(s, q)} < b0.

Hence we have left to consider the case in which sa0 is the least member of the
support of a0, sb0 is the least member of the support of b0 and sa0 �= sb0 . If either
sa0 or sb0 are in M we can find a member of G�1 ∩M that is a valuation between
a0 and b0. So we may assume that neither sa0 nor sb0 are in M. As we shall see, it is
sufficient to show that between any distinct elements of S�1 from mutually generic
extensions, there is a member of S�1 in the ground model. We assume without loss
of generality that sb0 < sa0 (the case sa0 < sb0 is altogether similar). Treating sb0 and
sa0 as countable subsets of �1, let � be the least element of sa0 that is not a member
of sb0 . Let Δ = sa0 ∩ �. Then Δ = sb0 ∩ � ∈M . We note that b0(�) > 0, otherwise
b0 < a0, contrary to assumption. Let

sc0 = Δ ∪ {�}.
Then sc0 ∈M and

sb0 < sc0 < sa0 .

Let c0 ∈M be defined so that, for � < �,

b0(�) = c0(�)

https://doi.org/10.1017/jsl.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.28


674 BOB A. DUMAS

and

0 < c0(�) < b0(�).

Then c0 ∈M and

a0 < c0 < b0.

Since a < b, the coefficient of a0 > 0. Let q ∈ Q and 0 < q < a0. Then qxc0 ∈M
and

a < qxc0 < b.

Therefore E is level dense. �
Lemma 4.13. The Esterle algebra is upward level-dense.

Let α ≤ � ≤ �2. Suppose x, y, z ∈MP , with x < z < y, and z has strict level α.
It is sufficient to show that there is an element w ∈ E of strict level � such that

x < w < y.

Assume that G ×H is P(α) × P(� \ α)-generic, and work in M [G ]. Then z ∈
M [G ]. If x and y have an identical partial sums, then z must share that partial sum,
and the partial sum is inM [G ]. We may subtract the largest partial sum shared by
x and y and pass to x and y that disagree on the first term of the formal power
series. If x and y have the same Archimedean valuation, a, then the first term of z
has valuation a. Let r ∈ R be of strict level � and lie between the initial coefficients
of x and y. Let w = r · xa . Then w has strict level � and

x < w < y.

So we assume that x and y have distinct valuation. If x and z have the same valuation,
a, and the initial coefficient of x is negative, let r ∈ R be negative and greater than
the initial coefficient of x and have strict level � . If the initial coefficient of x is
positive, let r be positive and greater than the initial coefficient of x and have strict
level � . In either case, let w = r · xa . Then w has strict level � and

x < w < y.

The cases for x and y having the same valuation are similar.
If x and y have distinct valuation, let r ∈ R be positive and have strict level � . Let

w = r · z. Then w has strict level � and

x < w < y.

Therefore E is upward level dense.

Theorem 4.14. The Esterle algebra is morass-definable.

Proof. Let T be the set of terms of strict level in MP(�3) for elements of the
Esterle algebra. We note that every element of the Esterle algebra in a P(�2)-
generic extension of a transitive model of ZFC has countable support. Hence the
interpretation of T in any generic extension will be the Esterle algebra. T is clearly
morass-closed. By Lemma 4.12, E is level dense. By Lemma 4.13, E is upward level
dense. Therefore the Esterle algebra is morass-definable. �
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§5. Extendible functions. We use a simplified gap-1 morass to construct a function
between sets of terms of a forcing language adding Cohen generic reals so that the
interpretation of that function in a generic extension will satisfy certain conditions.
We require the term function under construction to satisfy properties so that
commutativity with morass maps will automatically extend the function on a
countable domain to a function on an uncountable domain. Throughout this section
we assume M is a transitive model ofZFC + CH that contains a simplified (�1, 1)-
morass.

Definition 5.1 (Level term function). Let � be an ordinal, X ⊆MP(�) a set
of terms having strict level and φ : X →MP(�). Then φ is a level term function
provided that the range of φ is a set of terms of strict level, and for any x ∈ X , the
strict level of x and the strict level of φ(x) are equal.

Definition 5.2 (Morass-commutative term function). Assume:

1. 〈(�α | α ≤ �1), (Fα� | α < � ≤ �1)〉 is a simplified (�1, 1)-morass.
2. 	 < 	̄ ≤ �1.
3. X ⊆MP	̄ is morass closed at stage 	 beneath 	̄.
4. φ : X →MP	̄ .

If � ∈ F		̄ , thenφ commutes with � provided that for everyx ∈ X ∩MP	 , �[φ(x)] =
φ(�[x]). A function φ : X →MP	̄ is morass-commutative at stage 	 beneath 	̄ if for
every � ∈ F		̄ , φ commutes with �. If φ is morass-commutative at stage 	 beneath
�1, then φ is morass-commutative at stage 	.

In order to extend an R-monomorphism by commutativity with a splitting map
we must satisfy both algebraic and order constraints.

In the next section we show that the morass-commutative extension of an
R-monomorphism, satisfying certain technical constraints (extendibility), may be
extended to an R-monomorphism satisfying those same constraints. The technical
constraints are those required for an inductive construction along the vertices of a
simplified morass.

We state the technical conditions that permit the inductive construction of the
following sections.

Definition 5.3 (Standard term for a subset of �). A standard term for a subset
of �, x ∈MP , is a term of strict level such that for each (
, p) ∈ x, 
 is a canonical
term for a natural number.

Definition 5.4 (Standard term for an ultrafilter). Let U ⊂MP be a morass-
closed set of standard terms for subsets of � such that, for all α ≤ �1, U ∩MPα is
forced to be an ultrafilter in all P(α)-generic extensions of M. Then U is a standard
term for an ultrafilter.

We will refer to an ultrapower of R over a standard ultrafilter U as a standard
ultrapower. We restrict our attention to functions from terms for a standard
ultrapower of R to terms for elements of the Esterle algebra.

Definition 5.5 (Extendible function). Let 	 < �1, X,Y ⊆MP	 have elements
of strict level and φ : X → Y ∈MP	 be a level term function. Then φ is extendible
provided that the following are satisfied:
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1. It is forced that X is a subring of a standard ultrapower of R that has countable
transcendence degree over R.

2. Y is forced to be a subset of the Esterle algebra.
3. It is forced that Y is closed under partial sums. That is, every initial series of a

power series of Y is a member of Y.
4. Y contains canonical forcing terms for every real coefficient appearing in a

power series of Y.
5. φ is forced to be an R-isomorphism.

If 	 is a vertex of a morass, �	 is the ordinal associated with 	 and � ∈ F		+1 is the
splitting function on �	 then X ∪ �[X ] is morass-closed at stage 	 beneath 	 + 1.
We will show that if φ is an extendible term function on X, then φ ∪ �[φ] may be
extended to extendible term function.

§6. Commutative extensions of extendible term functions. In the inductive con-
struction of the following sections we will need technical lemmas of two types: those
insuring that commutativity with morass maps may be used to extend extendible
functions to extendible functions, and those allowing the extension of the domain by
a specified element to an extendible function. Throughout this section we assume:

1. P is the poset adding generic reals indexed by �2.
2. � is a splitting map on � < �1 with splitting point � = 0. That is, � : � → �1

and �[�] ∩ � = ∅.
3. G(�) is P(�)-generic over M.
4. H is P[�(�)]-generic overM [G ].
5. φ : X → Y ∈MP(�) is an extendible function.

We wish to show that the extension of φ ∪ �[φ] to the ring generated by X ∪ �[X ]
is extendible.

6.1. Splitting maps and algebraic independence. The central result of this
subsection states, roughly, that a subset of a field in a generic extension that is
algebraically independent (AI) over the restriction of the field to the ground model,
will be AI over the restriction of an extension field to a mutually generic extension.
It will follow that the union of an AI subset of a field in a generic extension with
its morass “split” in a mutually generic extension will be AI over the restriction of
the field to the ground model. We consider the special case in which a morass-
map, �,“splits” a poset P(�), for some ordinal �. Then there is � < � so that
the poset P(�) = P(�) × P(� \ �). Then �(�) = � ∪ (�[�] \ �), � ∩ �[�] = �, and
�(P(�)) = P(�) × P(�[�] \ �). Hence we may consider the case in which G(�) is
P(�)-generic over M, and we are forcing overM [G(�)]. Then

�[� \ �] ∩ (� \ �) = ∅.
Hence, without loss of generality, we may assume that the splitting point is � = 0.

Lemma 6.1. Let P be the poset adding generic reals indexed by �2, G be P-generic
over M and F be a morass-definable field inM [G ]. Let � < �1, P0 be the poset adding
generic reals indexed by �,G0 be theP0-generic factor of G, and � be a splitting map on
� (with splitting point �). If � = {x1, ... , xn} ⊆ (F ∩M [G0)]) is linearly independent
(LI) overM ∩ F , then � is LI overM [G(�[�])] ∩ F .
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Proof. Let M, P, F, �, �, �, and G satisfy the hypotheses of the lemma. As
discussed at the beginning of this section, without loss of generality, we assume that
� = 0. LetH = G(�[�]). So H isP(�[�])-generic overM [G0]. We observe that, since
F is morass-definable, it is the interpretation in M [G ] of a set of terms with strict
level, T. For anyα < �2, the interpretation ofT ∩MP(α) is justF ∩M [G(α)], and is
a subfield of F. Assume � ⊆ (F ∩M [G0)]) is linearly dependent overF ∩M [H ] and
that {y1, ... yn} ∈M [H ] (all non-zero) are such that

∑n
i=1 xi · yi = 0 inM [G0][H ].

For 1 ≤ i ≤ n, let xi ∈MP(�) and yi ∈MP(�[�]) be terms for xi and yi , respectively.
Then there is (p, q) ∈ G0 ×H such that, in M, (p, q) �

∑n
i=1 xi · yi = 0. We force

beneath (p, q).
Let � be countable, Q0 be a poset for adding countably many generic reals

indexed by � \ � andH0 beQ0-generic overM [G0] such that (p, q0) ∈ G0 ×H0, and
the orthogonal complement of x = (x1, ... , xn) in F n ∩M [H0], x⊥

0 , has maximum
possible dimension, m, in F n ∩M [H0], where 0 < m < n. Let q0 ∈ H0 force that the
x⊥ has dimension m, where q0 < q. Let � be a splitting map on Q0 with splitting
point � = �. Let Q1 = �(Q0), q1 = �(q0) < �(q) and x⊥

1 = �(x⊥
0 ). So Q1 and Q0

are disjoint. If H1 is Q1-generic over M [G0][H0] and q1 ∈ H1, then in M [H1], x⊥
1

has dimension m. Furthermore, inM [H0][H2], x⊥ has dimension m. Then x⊥
0 = x⊥

1
are elements of mutually generic extensions of M, and are thereby members of M.
Therefore x⊥, computed in M has dimension m > 0, and the components of x are
linearly dependent over F ∩M . �

Lemma 6.2. Let M, P,F, G, �, �, and � satisfy the hypotheses of Lemma 6.1, and
H = G(�[�]). Assume x̄ = 〈x1, ... , xn〉 ∈M [G(�)] and ȳ = 〈y1, ... , yn〉 ∈M [H ]
are such that

M [G ][H ] |=
n∑
i=1

xi · yi = 0.

Then inM [H ], ȳ is in the span of vectors overF n ∩M , all of which are orthogonal to x̄.

Proof. Let M [G ][H ] |=
∑n
i=1 xi · yi = 0. Let A0 be the row-reduced echelon

form of the orthogonal complement of x̄, x̄⊥, computed in M [G ]. We force over
ground model, M. Let (p, q) ∈ G ×H be such that (p, q) �

∑n
i=1 xi · yi = 0. We

force below (p, q). Let �1 ≥ �(�), Q1 = P(�(�1) \ �) and H1 be Q1-generic over
M [G ] be such that the dimension of x̄⊥ computed in M [H1], x̄⊥1 , is maximal for
all possible choices of �1 and H1 (where q ∈ H1). Let A1 ∈M [H1] have row space
equal to x̄⊥1 and be in row-reduced echelon form. Since we are forcing below (p, q),
A1 has a non-zero row.

Let the rank of A1 be m. In any generic extension ofM [G ] by a poset for adding
countably many ordinals, the rank of x̄⊥ computed in that extension is no greater
than m. Let q1 ∈ Q1 and q1 � (A1 is in row-reduced echelon form with row space
equal to x̄⊥ and Rank(A1) = m).

Let � be a splitting function on �1 with splitting point �. Let Q2 = P(�(�) \ �)
andH2 be Q2 generic overM [G ][H1] with q2 = �(q1) ∈ H2. Let A2 = �(A1). Then
q2 � A2 is in row-reduced echelon form with row space equal to x̄⊥, and has rank m.
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Since m is the maximum possible rank for x̄⊥, and row-reduced echelon form is
canonical,

M [G ][H1][H2] |= A1 = A2.

A1 and A2 are in mutually generic extensions ofM [G ], so

A1 = A2 ∈M [G ].

But A1 ∈M [H1] and A2 ∈M [H2], so A1 ∈M . Then ȳ is in the row space of A1.
Hence ȳ is in the span of vectors in F n ∩M . �

Corollary 6.3. Let F, G, and H satisfy the hypotheses of Lemma 6.1. If � ⊆
M [G ] ∩ F is algebraically independent (AI) overM ∩ F , then� is AI overM [H ] ∩ F .

Proof. Let �∗ be the multiplicative semi-group generated by the elements of �.
Then �∗ is LI overM ∩ F . By Lemma 6.1, �∗ is LI overM [H ] ∩ F . Therefore � is
AI overM [H ] ∩ F . �

Corollary 6.4. Let F, G, �, �, and H satisfy the hypotheses of Lemma 6.1. Assume
that it is forced in all P(�)-generic extensions of M that � = {x1, ... , xn} ⊆MP(�) is
AI overM ∩ F . Then � ∪ �[�] is forced in all P-generic extensions of M to be AI over
M ∩ F . In particular, valG(� ∪ �[�]) is AI overM ∩ F .

Proof. F is morass-closed, so in all P(�[�])-generic extensions of M, �[�] is AI
overM ∩ F . By Corollary 6.3, �[�] is AI overM ∩ F inM [G ]. Suppose there is a
nontrivial linear combination (over M ∩ F ) of distinct elements of the semigroup
generated by � ∪ �[�] that equals 0. By Corollary 6.3, � is AI overM [H ] ∩ F . This
implies that there is a nontrivial linear combination (over M ∩ F ) of elements of
the semigroup generated by �[�] that equals 0. However, �[�] is AI overM ∩ F , so
valG(� ∪ �[�]) is AI overM ∩ F . �

Lemma 6.5. Let X be a subring of finite elements of a standard ultrapower of R,
R�/U and Y ⊆ E . Let X ∗ be the ring generated by X ∪ �[X ], where � is a splitting
function. If φ : X → Y is an extendible R-monomorphism, then there is an extendible
R-monomorphism, φ∗ : X ∗ → Y ∗, extending φ and �[φ].

Proof. Without loss of generality we assume that the splitting point of �,
� = 0. An element of X ∗ may be expressed as

∑n
i=1 xi · �(yi), for some n ∈ N,

and x1, ... , xn, y1, ... , yn ∈ X . Let S be the set of expressions of this form. We define
a function � : S → E where

�

(
n∑
i=1

xi · �(yi)

)
=

n∑
i=1

φ(xi) · �(φ(yi)).

Let � : S → X ∗ be the natural quotient map from the expressions of S to X ∗. The
kernel of � is the set of expressions of S that sum to 0 in X ∗. � defines a ring
homomorphism on X ∗ if and only if, for any s in the kernel of �,

�(s) = 0.

https://doi.org/10.1017/jsl.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.28


DISCONTINUOUS HOMOMORPHISMS OF C (X ) WITH 2ℵ0 > ℵ2 679

For i ≤ n let zi = �(yi) and s =
∑n
i=1 xi · zi be in the kernel of �. Then in X ∗,

n∑
i=1

xi · zi = 0.

Let

x̄ = (x1, ... , xn) ∈ Xn ∩M [G ],

ȳ = (y1, ... , yn) ∈ Xn ∩M [G ],

and

z̄ = (z1, ... , zn) ∈ �([X ])n ∩M [H ].

By Lemma 6.2, z̄ is in the span of elements ofXn ∩M that are orthogonal to x̄. Let
{b1, ... , bm} be an LI set of vectors of Xn ∩M orthogonal to x̄ that contains z̄ in its
span. Let 〈·, ·〉 be the dot product and (α1, ... , αm) ∈ �([X ])n ∩M [H ] be such that

m∑
i=1

αi · bi = z̄.

Let φ̄ : Xn → En be defined by

φ̄(s1, ... , sn) = (φ(s1), ... , φ(sn)).

Recall that for a splitting map �, �(φ) : �[X ] → E is defined so that � and φ
commute. Then

�(〈x̄, z̄〉) =

〈
φ̄(x̄), �(φ̄)

(
m∑
i=1

αi · bi

)〉
=

m∑
i=1

�(αi) · 〈φ̄(x̄), �(φ̄)(bi)〉.

However, bi ∈ Xn ∩M for all i ≤ n, so

�(φ̄)(bi) = φ̄(bi).

Hence
m∑
i=1

�(αi) · 〈φ̄(x̄), �(φ̄)(bi)〉 =
m∑
i=1

�(αi) · 〈φ̄(x̄), φ̄(bi)〉 =
m∑
i=1

�(αi) · φ(〈x̄, bi〉).

For all i ≤ m, bi ⊥ x̄. So for all i ≤ m,

φ(〈x̄, bi〉) = 0

and �(〈x̄, z̄〉) = 0. Therefore � defines a ring homomorphism on X ∗, φ∗, that
extends φ ∪ �(φ) to X ∗.

Assume that x̄, ȳ ∈M [G ] ∩ Xn, z̄ = �(ȳ) and

〈x̄, z̄〉 �= 0.

We consider X as a vector space over M ∩ X . Let B be a basis for X over
M ∩ X . There is a finite subset of basis vectors, X ′ = {x′1, ... , x′m} ⊆ B so that
every component of x̄ is in the span ofX ′. Hence 〈x̄, ȳ〉 may be expressed as a linear
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combination of X ′ over �[X ]. For 1 ≤ i ≤ m, let z ′i be the sum of coefficients of x′i
in the linear combination over X ′. Then z ′i ∈ �[X ] and

m∑
i=1

x′i · z ′i =
n∑
i=1

xi · zi �= 0.

Then {φ(x′1), ... , φ(x′m)} is LI over φ[X ] ∩M . By Lemma 6.1, {φ(x′1), ... , φ(x′m)}
is LI over E ∩M [H ]. Therefore

n∑
i=1

φ∗(xi · zi) =
m∑
i=1

φ∗(x′i · z ′i ) �= 0.

Thus φ∗ is a monomorphism.
We show thatφ∗ isR-linear. Let r ∈ R ∩ X ∗. Since X is a subring of finite elements

of R�/U , every element of X may be expressed as the sum of a real number and an
infinitesimal.

Then there are x1 ... , xn, y1, ... yn ∈ X such that

r =
n∑
i=1

xi · �(yi).

For 1 ≤ i ≤ n, each xi and yi may be written as ri + �i and si + �i , resp., where for
ri , si ∈ R and �i , �i are infinitesimal. So

n∑
i=1

ri · �(si) = r

and
n∑
i=1

ri · �(�i) + �(si) · �i + �i · �(�i) = 0.

Since φ is extendible, for 1 ≤ i ≤ n, φ(ri) = ri and φ(�i) is infinitesimal in E .
Therefore ri ∈ X . Similarly, si ∈ X . Hence r is in the ring generated by (R ∩ X ) ∪
(�[R ∩ X ]). So φ∗(r) = r, and φ∗ is R-linear.

We show that φ∗ is order-preserving. For n ∈ N and x1, ... , xn, y1, ... , yn ∈ X , we
show that

∑n
i=1 xi · �(yi) > 0 iff

∑n
i=1 φ

∗(xi) · φ∗(�(yi)) > 0.
If n = 1, then the sign of x1 · �(y1) is the sign of the product of the leading

coefficients of x1 and �(y1), which are preserved by φ∗. So

x1 · �(y1) > 0 ⇐⇒ φ(x1) · �(φ(y1)) > 0.

Assume that n ≥ 2, and
n∑
i=1

xi · �(yi) > 0.

Let

y = φ∗
(
n∑
i=1

xi · �(yi)

)
=

∑
�<�

α�x
a� .
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By assumption, φ[X ] is a ring of finite elements of E that is closed under partial sums
and contains all coefficients that appear in members of the range of φ. Since φ is
extendible, there are b0 ∈M [G ] ∩G�1 and c0 ∈M [H ] ∩G�1 such that xb0 ∈ φ[X ],
xc0 ∈ �[φ[X ]], b0, c0 ≥ e (in G�1) and

a0 = b0 + c0.

Let u, v ∈ X be such that

φ(u) = xb0

and

�(φ(v)) = xc0 .

Let X̂ be the ring generated by X, 1/u and 1/v in R�/U . Let � : X̂ → E be the
unique ring homomorphism extending φ satisfying �(1/u) = 1/φ(u) = x–bo ∈ E
and �(�(1/v)) = x–c0 ∈ E . Then � is extendible. Hence the extension of � to
the ring homomorphism, �∗, on the ring generated by X̂ ∪ �[X̂ ] is an R-linear
monomorphism. Furthermore, since φ is an R-linear order-monomorphism, φ
extends uniquely to an R-linear order-preserving field monomorphism on the field
generated by X̂ . Hence � and �[�] are R-monomorphisms on X̂ and �[X̂ ], resp.
Then

�∗

(
(1/u) · (�(1/v)) ·

(
n∑
i=1

xi · �(yi)

))
=

α0 + x–a0 · φ∗
(
n∑
i=1

xi · �(yi)

)
=

α0 + x–a0 ·
(
�∑
�=1

α�x
a�

)
=

α0 +
�∑
�=1

α�x
a�–a0 .

For 1 ≤ i ≤ n, (1/u) · (�(1/v)) · xi · �(yi) is finite. Therefore, for 1 ≤ i ≤ n,

(1/u) · (�(1/v)) · xi · �(yi) = ri · �(si) + �i · �(si) + ri · �(�i) + �i · �(�i),

where ri , si ∈ R ∩ X and (1/u) · �i , �(1/v) · �(�i) ∈ X̂ are infinitesimal. If the ith
term is infinitesimal, then ri = 0 = si . Hence,

α0 =
n∑
i=1

ri · si .

Since �∗ is R-linear, the real part of (1/u) · (�(1/v)) ·
∑n
i=1 xi · �(yi) is α0, and

therefore α0 > 0. Furthermore, �∗((1/u) · �(1/v)) > 0. Hence

�∗

(
n∑
i=1

xi · �(yi)

)
= φ∗

(
n∑
i=1

xi · �(yi)

)
> 0.

Therefore φ∗ is order-preserving and φ∗ is extendible. �
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Lemma 6.6. Let:
1. 	̄ < 	 ≤ �1.
2. D ∈M [G	̄ ] be a subring of a standard ultrapower of R over �.
3. φ : D → E ∈M [G	̄ ] be an extendible R-monomorphism on D.
4. D∗ =

⋃
�∈F	̄,	 �[D].

Then there is a unique extendible R-monomorphism, φ∗, on the ring generated by D∗

which, for any � ∈ F	̄	 , extends �[φ].

Proof. If 	 = 	̄ + 1, then the result follows from Lemma 6.5.
If there is no limit ordinal �, 	̄ < � ≤ 	. Then there is n ∈ � such that

	 = 	̄ + n.

By Lemma 6.5, for any extendible φ : D → E and splitting function �, the
ring monomorphism on the ring generated by D ∪ �[D] extending φ ∪ �[φ] is
extendible. By n iterated applications of Lemma 6.5, there is a unique extendible
R-monomorphic extension of φ, φ∗ ⊃

⋃
�∈F	̄	 �[φ], to the ring generated by⋃

�∈F	̄	 �[D].
So assume there is a limit ordinal �, 	ᾱ < � ≤ 	α . Let � be the least limit ordinal

greater than 	ᾱ . Let

D� =
⋃
�∈F	̄,�

�[D].

Let D∗
� be the ring generated by D�, We show that there is an extendible R-

monomorphism of D∗
� which, for any � ∈ F	̄�, extends �[φ].

Let F be a finitely generated subring ofD∗
� . Let {d1, ... , dn} generate F, �1, ... , �n ∈

F	̄,� and for all i ≤ n, ci ∈ D be such that

di = �i(ci).

By condition P4 in the definition of the simplified morass, there is N ∈ �, g ∈
F	ᾱ+N,� and f1, ... , fn ∈ F	ᾱ ,	ᾱ+N such that, for i ≤ n,

�i = g ◦ fi .
For each m < n, let hm be the splitting function of F	̄+m,	̄+m+1. By Lemma 6.5,
φ ∪ h1[φ] may be extended to an extendible R-monomorphism. Furthermore this
ring monomorphism may be extended by the splitting functions h2 through hm. Let
� be the function on

⋃
�∈F	̄� �[D] resulting after the n splits. Then � is extendible

and fi(ci) is in the domain of � for all i ≤ n. Therefore g ◦ � is an R-linear order
monomorphism and is the restriction of φ∗ to a ring containing F. Thus

φ∗� =
⋃
�∈F	̄�

�[φ]

is a well-defined extendible R-monomorphism of D∗
� .

By an inductive argument on 	, invoking condition P2, and the results above
at limits and Lemma 6.5 at successor ordinals, it is straightforward to show that⋃
�∈F�,	 �[φ∗� ] has a unique extension to an extendible R-monomorphism of the ring

generated by
⋃
�∈F�,	 �[D∗

� ]. �
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6.2. Extensions by a specified element. Because ordered subrings of real closed
fields have unique extensions to real closed subfields, we will be able to restrict our
attention to extending domains of extendible functions by algebraically independent
elements. We wish to prove analogues of Johnson’s theorems that extendible
functions may be extended by a specified element. Throughout the arguments of this
section, we will commonly use x to represent an element of F, and also to represent
the variable in the power series representations of member of E . Presumably the
context will make clear which use is intended.

If X is a subring of a ring R andZ ⊂ R, we letX [Z] be the subring of R generated
by X ∪ Z.

Lemma 6.7. Suppose φ : X → Y is an extendible function, r ∈ R and r is
transcendental over X. Then there is an extension of φ to an extendible function,
� : X [r] → Y [r].

Proof. Since φ is extendible, X is full and for all r0 ∈ R ∩ X , φ(r0) = r0 · xe
(where e is the group identity of E). Then the real closure of X is full and the set
of real numbers of the real-closure of X is the real closure of R ∩ X . Let X ∗ be the
real closure of X and φ∗ : X ∗ → E be the unique R-monomorphism extending φ to
X ∗. Then for all r0 ∈ R ∩ X ∗, φ(r0) = r0 · xe . If r is transcendental over X, then r
is transcendental over X ∗. The real closure of Y and X ∗ contain precisely the same
real numbers and are full. By Lemma 3.4, there is an R-monomorphic extension of
φ∗, �∗, to the real closure of the field generated by X [r]. Let � = �∗ �X [r]. Then �
is extendible. �

Lemma 6.8. Suppose φ : X → Y is an extendible function and x∗ ∈ R�/U is
transcendental over X. Then there is X̄ ⊇ X , with x∗ ∈ R�/U in the real closure
of X̄ , and extendible � : X̄ → E extending φ.

Proof. If x∗ ∈ R, then apply Lemma 6.7. Assume x∗ /∈ R. If x∗ is not
infinitesimal, then x∗ = r + �, where r ∈ R and � is infinitesimal. If r /∈ X , then
we may extend φ to an extendible function, φ∗ : X [r] → Y [r]. We consider the case
in which r ∈ X . Since X is extendible, x∗ – r = � ∈ X . Therefore we may assume
that x∗ is infinitesimal. Let (l, u) be the gap formed by x∗ in X, L = φ[l ] and
U = φ[u]. The Esterle algebra is an �1-ordering, so there is y ∈ E that witnesses the
gap (L,U ). By application of Johnson’s Lemma 3.5, there is y ∈ E that witnesses
the gap (L,U ) and such that the real closure of the field extending Y [y] is full.
Although the existence of such an element can be used to advantage, the element y
may fail to have some of the properties we require for a morass construction.

Let � < �1 be the strict level of x∗. We seek an element of E that witnesses the gap
(L,U ) and is a candidate for the image of x∗. The candidate must have strict level
� and be transcendental over Y, among other requirements. The Esterle algebra is
level dense and upward level dense, so by Lemma 4.5 of [3] there is y ∈ E , with the
strict level �, such that for all z ∈ X ,

x∗ < z ⇐⇒ y < φ(z).

Let Z be the countable set of real coefficients appearing in power series of Y [y].
Then by iterated applications of Lemma 6.7 there is an extendible extension of φ to
φ∗ : X [Z] → Y [Z]. Let X ∗ = X [Z] and Y ∗ = Y [Z]. If x∗ is in the real-closure of
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X ∗, let X̄ = X ∗ and � : X̄ → E be the unique ring monomorphism extending φ∗.
Then � is extendible. So we assume that x∗ is transcendental over X ∗.

It is possible that Y ∗[y] is not closed under partial sums. We show that there is
y∗ ∈ E that witnesses (L,U ) and such that Y ∗[y∗] is full and closed under partial
sums.

Case 1: There is a largest partial sum of y that is a member of Y ∗.
We include in this case that the first term of y is a monomial not inY ∗. Let t be the

largest partial sum of y that is also a member of Y ∗ and s = (φ∗)–1(t) ∈ X ∗. Then
y – t /∈ Y ∗ and x∗ – s /∈ X ∗. We shift our attention to the gap formed by x∗ – s in
X ∗. Then for all z ∈ X ∗

x∗ – s < z ⇐⇒ y – t < φ(z).

If x∗ – s were algebraic over X ∗, then it would be in the real-closure of X ∗.
Since X ∗ is a ring, and s ∈ X ∗, this would imply that x∗ is in the real-closure of
X ∗, contrary to assumption that x∗ is transcendental over X ∗. Therefore x∗ – s is
transcendental over X ∗. We claim that x∗ – s must have an Archimedean valuation
distinct from the Archimedean valuations of members of X ∗. Let y – t ∈ E have
leading term αxa . Then α ∈ Z ⊆ Y ∗. If xa were in the range of φ∗, then t + αxa ∈
Y ∗ would be a partial sum of y, contrary to assumption. So a must be a valuation
distinct from the valuations of Y ∗. Therefore x∗ – s must have a valuation distinct
from the valuations of members of X ∗.

Let (L∗, U ∗) be the gap formed by y – t in Y ∗. If α > 0, then it is sufficient to
show that there is c ∈ G�1 such that xc has strict level � and witnesses the gap
(L∗, U ∗). The case α < 0 is altogether similar. Let y0 = xa . The strict level of y0

equals the strict level of a ∈ G�1 . It is straightforward to see that there is b ∈ G�1

such that:
1. b is positive.
2. Any element of the support of b is greater than any element of the support of

any exponent occurring in any power series of Y ∗.
3. b has strict level �.
The exponent b ∈ G�1 is greater than 0 but less than any positive exponent inY ∗.

Furthermore, b is greater than the constant 0 function, the additive identity of G�1

(and the valuation of standard reals in E). However b is greater than any positive
valuation occurring in Y ∗. Consequently xb is less than any infinitesimal of Y ∗. Let
c = a + b. Then,

1. xc witnesses the gap (L,U ).
2. xc is transcendental over X.
3. xc has strict level �.
4. The subring of E generated by Y ∗ ∪ {xc} is full and is closed under partial

sums.
Let � : X ∗[x∗] → Y ∗[xc ] be the unique R-monomorphism extending φ such that

�(x∗) = t + xc.

Then � is extendible.
Case 2: There is no largest partial sum of y that is a member of Y ∗.
Let D be the well-ordering by ascending valuation of the exponents of y. Then

D has a countable order-type. Let D′ be the smallest initial segment of D such that
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y �D′ (the partial sum of y with exponents from D′) is not a member of Y. Let
y′ = y �D′ . Then y′ witnesses the gap (L,U ). The strict level of y′ is no greater
than �. If the strict level of y′ equals �, let � : X ∗[x∗] → Y ∗[y′] be the unique
R-monomorphism extending φ such that

�(x∗) = y′.

Otherwise, let a ∈ G�1 be an exponent of E that has strict level � and is greater
than all exponents occurring in Y ∗. Let

y∗ = y′ + xa.

Then y∗ witnesses the gap (L,U ) and has strict level �. Let �∗ : X ∗[x∗] → Y ∗[y∗]
be the unique R-monomorphism extending φ such that

�(x∗) = y∗.

Then �∗ satisfies the conditions for an extendible function, except closure of the
range of �∗ under partial sums. In particular y′ and xa are not in the range of �∗.
Let (L∗, U ∗) be the gap formed by xa in Y ∗[y∗]. We observe that xa is infinitesimal
with respect to every member of Y ∗[y∗]. Since F is level dense and upward level
dense, there is a positive element of F, �, with strict level � that is infinitesimal
with respect to all elements of X ∗[x∗]. Therefore there is an R-monomorphism,
� : X ∗[x∗, �] → Y ∗[y∗, xa ], extending �∗ and such that

�(�) = xa.

We note that y′ ∈ Y ∗[y∗, xa ] and

Y ∗[y∗, xa ] = Y ∗[y′, xa ].

ThenY ∗[y′, xa ] is closed under coefficients and partial sums, so � is extendible. �

These results permit a simplification of the construction. Given an extendible
R-monomorphism, φ : D → E , we may extend φ to an R-monomorphism of D[R],
and then extend by algebraically independent infinitesimals.

§7. An R-monomorphism from the finite elements of R�/U into the Esterle
algebra. In the Cohen extension adding ℵ2 generic reals, we construct a level
R-monomorphism, φ, from the finite elements of a standard ultrapower of R into
E . This construction differs significantly from the construction of Woodin [15]. The
construction of Woodin relies on the fact that in the Cohen extension by ℵ2-generic
reals of a model of ZFC + CH , any cut of E has a countable, cofinal subcut. As
Woodin observes, this argument is not generalizable to models of ZFC with higher
powers of the continuum. Our construction yields a monomorphism that is level,
and therefore is sensitive to the “complexity” (with respect to the index of Cohen
reals) of the elements of the ultrapower and the Esterle algebra. Consequently,
for any � ≤ �2, φ ∩M [G(�)] is an R-monomorphism of R�/U ∩M [G(�)] to
E ∩M [G(�)].

Theorem 7.1. Suppose M is a transitive model of ZFC+CH containing a simplified
(�1, 1)-morass and P is the poset adding generic reals indexed by ordinals less than
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�2. Let G be P-generic over M, F ∈M [G ] be the ring of finite elements of a standard
ultrapower of R over �, and E ∈M [G ] be the Esterle algebra computed in M [G ].
Then there is a level R-monomorphism, φ : F → E .

Proof. For each 	, α ≤ �1, letG	 be the factor of G adding generic reals indexed
by �	 (the ordinal associated with the vertex 	 in the morass), andG(α) be the factor
of G adding generic reals indexed by α. Let

F	 = F ∩M [G	 ],

F (α) = F ∩M [G(α)].

In Lemma 3.3 of [4], it is proved that, given a simplified (�2, 1)-morass, any countable
subset of �3 is in the image of a single morass map from a vertex below �2. The
proof does not depend on �2 and generalizes to simplified (�n, 1)-morasses. Since
every element of F has countable support, we observe that F (�1) =

⋃
	<�1
F	 and,

since any countable subset of �2 is a subset of the range of a morass map from
F	�1 (	 < �1),F�1 =

⋃
	<�1,�∈F	�1

�[F	 ] = F . Any commitment to the construction
entails uncountably many subsequent commitments by way of commutativity with
morass maps. Terms for members of F are in the image of morass maps from lower
vertices of the morass. �

Definition 7.2 (Morass generator). If � < α ≤ �1, � ∈ F�α , x ∈MP� , and y =
�(x) ∈MPα , then x is a morass ancestor of y and y is a morass descendant of x. If
x has no morass ancestors, then we say x is a morass generator.

Let X be a a set of strict terms for members ofF (�1) that is forced to be a maximal
algebraically independent subset of morass-generators. We may assume that every
member of X has Archimedean valuation 0 (is in R) or is infinitesimal. We note that
the morass-closure of X beneath�1 contains a transcendental basis for F. Although
the morass-closure of X has cardinality ℵ2 inM [G ], X has cardinality ℵ1.

Let 〈xα | α < �1〉be a well-ordering of X. Let 〈	α | α < �1〉be a weakly ascending
transfinite sequence of countable ordinals such that xα ∈M [G	α ]. We will construct
by transfinite recursion (on �1) an ascending sequence of functions (ordered by
inclusion), 〈φα : Dα → Eα | α < �1〉, such that for all α < �1,

1. xα ∈ Dα .
2. Dα is morass-closed beneath 	α .
3. φα : Dα → Eα is extendible.

At each stage of the construction, α < �1, the domain of φα extends⋃
�<α,f∈F�α

f(D�), so that it contains xα and is morass-closed beneath 	α , and φα
is extendible.

Case: α = 0.
Let x∗ = x0 have strict level � ≤ 	0, 	 be the least ordinal such that � ∈ �	 , and

X0 = 〈x0,n〉 be a maximal algebraically independent sequence of morass descendents
of x∗ ∈M [G	0 ]. Then X0 is countable, and possibly finite. If 	 ≤ � < 	0 and
x′ ∈M [G�] is a morass-descendent of x∗, then since id ���∈ F�	0 , x′ is a morass-
descendent of x∗ in M [G	0 ], and x′ ∈ X0. Since x∗ has strict level � ∈ �	 , for
� ∈ F		0 , the strict level of �(x∗) = �(�). If y, z ∈ X0 both have the same strict
level, then morass functions in F		0 that witness that y and z are morass descendents
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ofx∗, must agree up to� ≤ �	 , andy = z. Therefore all members ofX0 have pairwise
distinct strict levels.

We construct a sequence of R-monomorphisms, 〈φ0,n〉, with the order-type ofX0,
such that, for all n less than the order-type of X0,

1. D0,0 = Q[x0,0].
2. D0,n[x0,n+1] ⊆ D0,n+1.
3. φ0,n : D0,n → E ∈M [G	0 ].
4. For all m < n, φ0,m ⊆ φ0,n.
5. φ0,n is extendible.

Let z = x0,0, and � be the strict level of z. We may assume that z is positive. If z ∈ R,
let D0,0 = Q[z] and φ0,0 : D0,0 → E be the identity restricted to D0,0.

If z is infinitesimal, let a ∈ G�1 be positive and have strict level �, and

y = xa ∈ E .
Let D0,0 = Q[z] and φ0,0 : D0,0 → E be the R-linear ring monomorphism such that

φ0,0(z) = y.

Let N ∈ � and assume that 〈φ0,n | n ≤ N 〉 satisfies conditions 1–5 above (below
N + 1). If X0 has length N + 1, Then D0 = D0,N and φ0 = φ0,N . Otherwise φ0,N is
extendible and Lemmas 6.7 and 6.8 apply. Let z = x0,N+1. If z ∈ R, let

D0,N+1 = D0,N [z]

and

φ∗ = φ0,N ∪ {(z, z)}.
By Lemma 6.7, there is an R-monomorphic extension of φ∗, φ0,N+1 : D0,N+1 → E .
The sub-ring of E generated by a set closed under partial sums and coefficients is
closed under partial sums and coefficients so φ0,N+1 is extendible.

If z is non-standard, let R0 be the set of reals contained in the smallest full, real
closure ofD0,N ∪ {z}. By Lemma 6.7 there is an extendible level R-monomorphism
extending φ0,N , φ∗ : D0,N [R0] → E . Let

D0,N+1 = D0,N [R0, z].

Then D0,N+1 ∈M [G	0 ]. By Lemma 6.8 there is an extendible extension of φ∗,

φ0,N+1 : D0,N+1 → E .
Let

D0 =
⋃
n∈�
D0,n

and

φ0 =
⋃
n∈�
φ0,n.

Then the morass descendants of x0 (in M [G	0 ]) are elements of D0, and φ0 is
extendible.

Assume α a successor.
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Let α = ᾱ + 1. Assume that 〈D� | � < α〉 and 〈φ� | � < α〉 have been defined so
that for all � < � ≤ ᾱ,

1. x� ∈ D� .
2. D� ⊆ D� and D� is morass-closed beneath 	� .
3. φ� ⊆ φ� .
4. φ� : D� → E is an extendible R-monomorphism.

If 	α = 	ᾱ , then we may argue as in the previous case. Let 〈xα,n〉 be an enumeration
of a maximal AI set of morass descendants of xα inM [G	α ]. We may extend Dᾱ to
Dα containing the morass descendants of xα , and φᾱ to φα : Dα → E so that for all
� < � ≤ α,

1. D� ⊆ D� and D� is morass-closed beneath 	� .
2. φ� ⊆ φ� .
3. φ� is extendible.

If 	ᾱ < 	α , then by Lemma 6.6 there is an extendibleR-monomorphismφ∗ extending⋃
�∈F	ᾱ 	α

�[φᾱ] to the ring generated by
⋃
�∈F	ᾱ 	α

�[Dᾱ], D∗. Let D′ be ring
generated by D∗ and the morass descendants of xα in M [G	α ]. Let R0 be the
real numbers of the smallest full extension of the real closure of D′. Then the real
closure of D′[R0] is full. Let

Dα = D′[R0].

By the preceding case, there is an extendible R-monomorphism φα : Dα → E with
φα ⊇ φ∗.

Finally, assume α < �1 is a limit ordinal.
If there is � < α such that 	α = 	� then we may proceed as in the case α = 0 to

define Dα and φα .
So we assume that 	� < 	α for all � < α. Let

� =
⋃
�<α

	� .

If � = 	α , then let

D∗ =
⋃
�<α

(
⋃

�∈F	� 	α

�[D� ]).

Let D be a finitely generated subring of D∗ with generators {d1, ... , dn}. Then there
is � < α,

C = {c1, ... , cn}

and for, i ≤ n, morass functions �i ∈ F	� 	α such that

�i(ci) = di .

By condition P4 of Definition 2.1, there is 	� ≤ � < �,f1, ... , fn ∈ F	� � and g ∈ F��
such that for all i ≤ n,

�i(ci) = g ◦ fi(ci) = di .
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By Lemma 6.6 there is an extendible R-monomorphism φ∗ on the ring generated
by

⋃
�∈F	� �

�[φ� ]. It follows that there is an extendible R-monomorphism on the

ring generated by
⋃
�<α(

⋃
�∈F	� 	α

�[D� ]) extending
⋃
�<α(

⋃
�∈F	� 	α

�[φ� ]). We

may then proceed as in earlier cases to define an extendible R-monomorphism
φα : Dα → E , with Dα containing the morass descendants of xα inM [G	α ].

Finally, assume that

lim
�<α
	� = � < 	α.

By the previous argument, there is an extendible φ∗ :
⋃
�<α(

⋃
�∈F	� �

�[D� ]) → E
extending the morass images inM [G�] of theφ� . By Lemma 6.6 there is an extendible
R-monomorphism φ′α : D′

α → E such that

D′
α ⊇

⋃
�<α

(
⋃

�∈F	� 	α

�[D� ])

and

φ′α ⊇
⋃
�<α

(
⋃

�∈F	� 	α

�[φ� ]).

We proceed as in earlier cases to extend φ′α to an extendible R-monomorphism,
φα : Dα → E , where Dα extends D′ and contains a maximal AI set of morass-
descendants of xα inM [G	α ].

Let D�1 =
⋃
α<�1

(
⋃
�∈F	α�1

�[Dα]) and φ�1 =
⋃
α<�1

(
⋃
�∈F	α�1

�[φα]). Then

D�1 is a subring of F and contains the morass-closure of X (a maximal algebraically
independent subset of F). Additionally, φ�1 : D�1 → E is an R-monomorphism on
a domain that contains a transcendental basis for F. Therefore φ�1 extends uniquely
to an R-monomorphism, φ : F → E .

Theorem 7.3. Suppose M is a transitive model of ZFC + CH containing a
simplified (�1, 1)-morass andM [G ] is the Cohen extensions adding ℵ2 generic reals.
Then if X is an infinite compact Hausdorff space in M [G ], there is a discontinuous
homomorphism of C (X ) inM [G ].

Proof. By Corollary 6.9 of [3], any non-principal ultrafilter on � in M may be
extended to a standard ultrafilter in the Cohen extension adding ℵ2-generic reals.
If U is a standard ultrafilter, then there is a level R-monomorphism from the finite
elements of R�/U into E . Hence the finite elements of R�/U bear a non-trivial
submultiplicative norm. The theorem follows from results of B. Johnson [10]. �

§8. Discontinuous homomorphisms of C (X ) in a Cohen extension adding
ℵ3-generic reals. We turn to generic extensions adding more than ℵ2 generic
reals. We require a simplified (�1, 2)-morass for the next construction (Velleman
[14]). The simplified (�1, 2)-morass will allow us to use morass maps to construct an
R-monomorphism from the finite elements of a standard ultrapower to E in a model
with ℵ3 generic reals in a manner similar to Theorem 7.1. The construction of a
term function on a domain with cardinality ℵ3, requiring only ℵ1 many explicit
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commitments, allows us to exploit that standard ultrapowers and E are �1-orderings.
We will rely heavily on the definitions and results of D. Velleman [14] in this section.

Definition 8.1 (D. Velleman) (Simplified (κ, 2)-morass). The structure
〈−→ϕ ,−→G ,−→� ,−→F 〉 is a simplified (κ, 2)-morass provided it has the following properties:

1. 〈−→ϕ ,−→G 〉 is a neat simplified (κ+, 1)-morass.
2. ∀α < � ≤ κ, Fα� is a family of embeddings (see page 172 [14]) from 〈〈ϕ� | � <
�α〉, 〈G�� | � < � ≤ �α〉〉 to 〈〈ϕ� | � < ��〉, 〈G�� | � < � ≤ ��〉〉.

3. ∀α < � < κ (
∣∣Fα� ∣∣ < κ).

4. ∀α < � < � ≤ κ (Fα� = {f ◦ g | f ∈ F�� , g ∈ Fα�}). Here f ◦ g is defined
by:

(f ◦ g)� = fg(�) ◦ g� for � ≤ �α,

(f ◦ g)�� = fg(�)g(�) ◦ g�� for � < � ≤ �α.

5. ∀α < κ, Fαα+1 is an amalgamation (see page 173 [14]).
6. If �1, �2 < α ≤ κ, α a limit ordinal, f1 ∈ F�1α and f2 ∈ F�2,α , then

∃�(�1, �2 < � < α and ∃f′
1 ∈ F�1� ∃f′

2 ∈ F�2� ∃g ∈ F�α(f1 = g ◦ f′
1 and

f2 = g ◦ f′
2)).

7. If α ≤ κ and α is a limit ordinal, then:
(a) �α =

⋃
{f[�� ] | � < α, f ∈ F�α}.

(b) ∀� ≤ �α , ϕ� =
⋃
{f�̄ [ϕ�̄ ] | ∃� < α(f ∈ F�α , f(�̄) = �)}.

(c) ∀� < � ≤ �α , G�� =
⋃
{f�̄�̄[G�̄ �̄] | ∃� < α (f ∈ F�α , f(�̄) = � , f(�̄) = �)}.

Theorem 8.2. Let M be a transitive model of ZFC + CH containing a simplified
(�1, 2)-morass, andM [G ] be a generic extension of M addingℵ3 generic reals. Let X be
an infinite compact Haussdorf space inM [G ], and C (X ) be the algebra of continuous
real-valued functions of X inM [G ]. Then there is a discontinuous homomorphism of
C (X ) inM [G ].

Proof. Let M be a transitive model of ZFC + CH containing a simplified
(�1, 2)-morass, 〈−→ϕ ,−→G ,−→� ,−→F 〉. Let P be the poset adding generic reals indexed
by �3, and G be P-generic over M. Then 〈−→ϕ ,−→G 〉 is a simplified (�2, 1)-morass,
and below �1, 〈−→ϕ ,−→G 〉 satisfies the axioms of a simplified (�1, 1)-morass. Hence,
by Lemma 3.3 of [4], any countable subset of �3 is in the image of a single morass
map of

−→
G . The construction of Theorem 7.1 below �1 can be completed in M. In

particular, if U0 ∈M is a non-principal ultrafilter in M, then by Corollary 6.9 of
[4], there is U ⊆MP(�1), a standard term for an ultrafilter below �1, that is forced
to extendU0. Furthermore, the morass-closure ofU , U, is a standard ultrafilter. By
Theorem 6.4 of [4], R�/U is a gap-2 morass-definable �1-ordering.

We construct a level term function from the finite elements of a standard
ultrapower to the Esterle algebra, that is closed under morass-embeddings and
is forced to be an R-monomorphism. For α < �1, let Xα = (R�/U ) ∩MPα and
Yα = E ∩MPα . We considerXα and Yα as the restrictions of R�/U and E , resp., to
the forcing language adding generic reals indexed by ϕ�α . In any P-generic extension
of M,M [G ], the interpretation of Xα inM [G ] is the interpretation of Xα inM [Gα]
where Gα is the factor of G that is Pα-generic over M.
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It is sufficient to construct a level, morass-commutative term injection from X�1

to Y�1 that is forced to be an R-monomorphism. The closure under embeddings,
f�� , where � < �1 and f ∈ F��1 , of this term function will be the term function we
seek.

Let {x� | � < �1} ⊆ X�1 be a transfinite sequence of terms of strict level for a
maximal algebraically independent set of morass-generators for the infinitesimal
elements of X�1 , such that xα ∈ Xα for all α < �1.

We will inductively construct a transfinite sequence of morass-commutative term
functions 〈F� : D� → E� | � < �1〉 that satisfies the following for all α ≤ � < �1:

1. D� ⊆ X�� is a subring of finite elements of a standard ultrapower of R, that is
morass-closed beneath �� .

2. E� ⊆ Y�� is full and closed under partial sums.
3. Dα ⊆ D� and Eα ⊆ E� .
4. x� ∈ D� .
5. F� is a level term function that is forced to be an R-monomorphism.
6. f�α [Fα] ⊆ F� for all f ∈ Fα� .

We call a sequence of term functions satisfying these conditions an extendible
sequence beneath � . We argue be induction on � < �1.

Base Case: � = 0.
Let y0 be a positive infinitesimal monomial ofY0 having the same strict level as x0,

and R0 be the reals of the ground model. LetD0 be the ring generated by R0 ∪ {x0},
R0[x0], andE0 = R0[y0]. We observe thatE0 is closed under partial sums. Therefore,
there is an R-monomorphism, F0 : D0 → E0, with F0(x0) = y0.

Successor Case: � = � + 1. Let 〈Fα : Dα → Eα | α ≤ �〉 be an extendible
sequence satisfying conditions 1–6 above. Let D∗ be the ring generated by
{g�� [D� ] | g ∈ G����}. Then D∗ is generated by the union of the images of D�
under the second components of left-branching embeddings of F�� . Let h be the
right-branching embedding of F�� andD′ be the ring generated byD∗ and h�� [D� ].

By Lemma 5.2 of [4],
⋃
{f�� [F� ] | f ∈ F��} is a level term function that is

forced to be an order-preserving injection. Since F� is R-linear, for any f ∈ F�� ,
f�� [F� ] is R-linear. Therefore

⋃
{f�� [F�� ] | f ∈ F��} is R-linear. If f ∈ F�� , then

f�� : �� → �� is order-preserving. If f is left-branching, then f�� ∈ G���� . If f is
right branching, then f� is order-preserving. By Lemma 6.6,

⋃
{f�� [F� ] | f ∈ F��}

extends to a homomorphism, F ′ : D′ → E . Therefore there is a unique extendible
R-monomorphism, F ∗ : D∗ → E .

Let B be a transcendental basis of D� over R�/U ∩M . Let D be the ring
generated by B and D� ∩M . Let V be the semigroup generated by B. Because
F�� is a set of compatible embeddings, Lemma 6.1 applies and, treating D as a
vector space (over the field generated by D� ∩M ), V is a basis of elements of strict
level for D. Therefore, if F : D → E is the naturally induced R-linear extension of⋃
f∈F��

f�� [F� ], the image of V under F is a linear independent subset of E over
E� ∩M . Therefore F is a linear transformation and an R-monomorphism of D.

We argue along the lines of Lemma 6.5 to show that F ′ is forced to be order-
preserving. By Lemma 6.5, F ′ �D∗ is forced to be order-preserving. If z ∈ D′, there
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is n ∈ N, x1, ... , xn ∈ D∗ and y1, ... , yn ∈ f�� [D� ] such that z =
∑n
i=1 xi · yi . We

show that
∑n
i=1 xi · yi > 0 iff

∑n
i=1 F

′(xi) · F ′(yi) > 0.
If n = 1, then the sign of x1 · y1 is the sign of the product of the leading coefficients

of F ′(x1) and F ′(y1). However, F ′ is R-linear. So

x1 · y1 > 0 ⇐⇒ F ′(x1) · F ′(y1) > 0.

Assume that n ≥ 2, and
n∑
i=1

xi · yi > 0.

Let

z = F ′

(
n∑
i=1

xi · yi

)
=

∑
�<�

α�x
a� .

By assumption, the range of F ′ is closed under partial sums, so there are elements
u1, ... , uj , uj+1, ... uk, v1, ... , vk ∈ Y such that:

1. z =
∑k
i=1 ui · vi .

2. For i ≤ j, every term in the power series expansion of ui · vi has power less
than a0.

3. For j < i ≤ k, every term of the power series expansion of ui · vi has power at
least a0.

Every term of z, expressed as a power series of E , has valuation no less than a0,
therefore

j∑
i=1

ui · vi = 0

and

z =
k∑

i=j+1

ui · vi .

If j < i ≤ k, then si = ui · vi has valuation no less than a0 in G�1 . If the leading
terms of si has exponent greater than a0, then si has Archimedean valuation less
than z. Let S be the set of all terms of all si , for all 1 ≤ j ≤ i , having exponent a0

and T be the set of all terms of all si , 1 ≤ i ≤ j, with exponent greater than a0.
S is nonempty and every element of T has Archimedean valuation less than every
element of S.

There are b0, c0 ∈ G�1 such that xb0 is in the range of F ∗ and xc0 is in the range
of f�� [F� ] and

a0 = b0 + c0.

Let u ∈ D∗ and v ∈ f�� [D� ] be such that

F ′(u) = xb0

and

F ′(v) = xc0 .
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We observe that the ordered ringD′ has a unique extension to the field closure of
D′, D̄. Treated as a field map, the unique monomorphic extension of F ′, F̄ : D̄ → E ,
is an R-linear field monomorphism of D′. We have previously observed that F ′ is
an R-linear monomorphism, and F ∗ ∪ f�� [F� ] is an order-preserving injection. So

F ′

(
n∑
i=1

xi · yi

)
= F ′

⎛
⎝ k∑
i=j+1

ui · vi

⎞
⎠

and

F̄

⎛
⎝ k∑
i=j+1

ui/u · vi/v

⎞
⎠ = α0 +

∑
0<�<�

α�x
(a�–a0).

The real number, α0, is in the domain F̄ , so F̄ (α0) = F ′(α0) = α0. The range of F ′

is closed under partial sums, so both
∑

0<�<� α�x
a
� and xa0 are in the range of F ′.

Thus
∑

0<�<� α�x
a�–a0 is in the range of F̄ . Let

� =
∑

0<�<�

α�x
a�–a0 .

Every term of � is infinitesimal (has Archimedean valuation greater than elements
of R). F̄ is order preserving on D′, so F̄ –1(�) is infinitesimal. Hence

n∑
i=1

(xi · yi)/(u · v) = α0 + F̄ –1(�)

and the
∑n
i=1 xi · yi > 0 iff α0 > 0 iff F ′(

∑n
i=1 xi · yi) > 0.

Therefore F ′ : D′ → E is an R-monomorphism, in which the range of F ′ is full
and contains all partial sums of the range of F ′. Let D̂ = D′[R][x� ], computed in
M [G(��)]. By application of Lemma 6.7, we may extend F ′ to F̂ : D̂ → E , to a level
R-monomorphism. Assume that x� /∈ D′[R]. By Lemma 6.8, there is D� ⊃ D′[R],
with x� ∈ D� , and an extension of F̂ , F� : D� → E , such that F� is an extendible
function.

Limit Case: Suppose � is a limit ordinal. LetD′ =
⋃
�<� ∪({f�� [D� ] | f ∈ F��}).

Then D′ is a subring of D�1 and has countable transcendence degree over R. By
condition 6 of Definition 8.1 it is straightforward to verify that F ′ : D′ → E defined
by F ′ =

⋃
�<� ∪({f�� [F� ] | f ∈ F��}) is an extendible function. SinceD′ is full, we

may apply Lemma 6.7 to extend F ′ to an R-monomorphism ofD′[R] (computed in
M [G�� ]). LetD� be the ringD′[R][x� ]. Then by Lemma 6.8 there is an extension of
F ′, F� : D� → E that is an extendible function. Let F = {f�1 [F�1 ] | f ∈ F�1�2}. By
Lemma 3.3 of [4], the domain of F is forced to be the finite elements of R�/U . �

Corollary 8.3. Let M be a transitive model of ZFC + V = L containing a
simplified (�2, 2)-morass, and M [G ] be a generic extension of M adding ℵ4 generic
reals. Let X be an infinite compact Haussdorf space in M [G ]. Then there is a
discontinuous homomorphism ofC (X ), the algebra of continuous real-valued functions
on X inM [G ].
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Proof. Let M be a transitive model of ZFC + V = L containing a simplified
(�2, 2)-morass, 〈−→ϕ ,−→G ,−→� ,−→F 〉. Let P be the poset adding generic reals indexed by
�4, and G be P-generic over M. Then 〈−→ϕ ,−→G 〉 is a simplified (�3, 1)-morass, and
below �2, 〈−→ϕ ,−→G 〉 satisfies the axioms of a simplified (�2, 1)-morass. LetG�2 be the
factor of G that adds generic reals indexed by�2. By a routine extension of Theorem
6.4 of [4] there isU ⊆MP(�2), a standard term for an ultrafilter that is morass-closed
below �2. Furthermore, the morass-continuation of U , U, is a standard ultrafilter
that is gap-2 morass-closed. By Theorem 6.4 of [4], R�/U ∈MP is a gap-2 morass-
definable �1-ordering.

We adapt the argument of Theorem 8.2 to the (�2, 2)-morass. The argument is
altogether similar except for one detail. The transfinite construction we require will
necessarily be of order-type �2. Hence it is not enough that E is an �1-ordering
to extend the term function by ℵ2 many specified terms. Here we use Woodin’s
argument [15], that in the generic extension adding ℵ2 generic reals to L, all cuts
of E bear countable cofinal subcuts. We will construct a morass-closed, level term
function from the finite elements of a standard ultrapower, R�/U , to the Esterle
algebra that is forced to be an R-monomorphism.

For α < �2, let Xα = (R�/U ) ∩MPα and Yα = E ∩MPα . We consider Xα and
Yα as the restrictions of R�/U and E , resp., to the forcing language adding generic
reals indexed by ϕ�α . In any P-generic extension of M,M [G ], the interpretation of
Xα inM [G ] is the interpretation of Xα inM [Gα] where Gα is the factor of G that is
Pα-generic over M.

We construct a morass-commutative level term injection from X�2 to Y�2 that
is forced to be an R-monomorphism. The closure under embeddings, f�� where
f ∈ F��2 , of this function will be the term function we seek.

Let B = {x� | � < �2} ⊆ X�2 be a transfinite sequence of terms of strict level for
a maximal algebraically independent set of infinitesimal elements of X�2 , such that
xα ∈ Xα for all α < �2.

We may inductively construct a transfinite sequence of morass-commutative term
functions 〈F� : D� → E� | � < �2〉 that satisfies the following for all α ≤ � < �2:

1. D� ⊆ X�� is a subring of finite elements and is morass-closed beneath �� .
2. E� ⊆ Y�� is full and closed under partial sums.
3. Dα ⊆ D� and Eα ⊆ E� .
4. x� ∈ D� .
5. F� is a level, morass-commutative term function that is forced to be an

R-monomorphism.
6. f�α [Fα] ⊆ F� for all f ∈ Fα� .

The proof is similar to the proof of Theorem 8.2 with only minor modifications.
Given an extendible sequence 〈F� : D� → E� | � < �〉, where � is a successor
ordinal, we may construct an extendibleR-monomorphism,F ′, that extendsf�� [F� ]

for all � < � and f ∈ F�� . By Lemma 6.7 we may extend F ′ to F̂ , a level R-
monomorphism of the ring generated by the domain of F ′ and the real numbers of
M [G�� ]. If x� is not in the domain of F̂ , then by Woodin’s argument that all gaps
of the Esterle algebra inM [G�2 ] are (�,�∗)-gaps, we may apply Johnson’s Lemma
3.5 and Lemma 6.8. Then there isD� extending the domain of F̂ , with x� ∈ D� , and

https://doi.org/10.1017/jsl.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.28


DISCONTINUOUS HOMOMORPHISMS OF C (X ) WITH 2ℵ0 > ℵ2 695

an extension of F̂ , F� : D� → E such that 〈F� : D� → E� | � ≤ �〉 is an extendible
sequence. The argument for � a limit is similar. �

§9. Pressing the continuum. The techniques of this paper, [3] and [4] depend on
the construction of functions between sets of terms in the forcing language of Cohen
extensions, utilizing commutativity with order-preserving injections of indexing
ordinals of the Cohen poset. Having presented the details of the construction
of level term functions using simplified gap-1 and gap-2 morasses, it is relatively
straightforward to see how these constructions extend to simplified higher (finite)
gap morasses.

A simplified (κ, n + 1)-morass, for κ a regular cardinal and integer n, is a family of
embeddings between fake simplified (κ, n)-morass segments that satisfies properties
analogous to those relating a simplified (�1, 2)-morass to embeddings between fake
simplified (�1, 1)-morass segments. Central to the utility of these constructions is
that the embeddings are may be considered as order-preserving injections between
ordinals. For a thorough treatment of simplified finite gap morasses, including an
inductive definition, see Szalkai [12].

Higher gap morasses will allow the extension of results of this paper and [4] to
Cohen extensions adding more thanℵ4 generic reals. The definition of gap-2 morass-
definable �1-orderings and �1-ordered real-closed fields (resp.) are easily generalized
to gap-n morass-definable �1-orderings and �1-ordered real-closed fields (resp.).

Acknowledgments. I would like to thank the referee for many helpful suggestions,
particularly a simpler proof of Lemma 6.1.
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