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Abstract. The secular equations which were used to exhibit the chaotic behaviour of the solar 
system (Laskar, 1989) are established here in a Hamiltonian framework. The integration of the 
former secular equations over 400 Myr showed that the two resonant arguments 2(ttrJ — w j ) — 
(OJ — OJ) and (m* — τνζ) — (Cl* — OJ) g i v e n m (Laskar, 1990) present both transitions from 
libration to circulation. During the circulation of the first argument, temporary libration of the 
argument (wj — τπ*) — (OJ — OJ) is observed, revealing resonance overlap beetween these two 
resonances, which explains the existence of a large chaotic zone for the motion of the solar system. 

1. Introduction 

In the last 3 years, our vision of the motion of the solar system has changed a lot 

and the idea of a "stable" solar system suffered many outrages. In their integration 

of the motion of the outer planets over 875 Myr, Sussman and Wisdom (1988) 

found a chaotic behaviour for the motion of Pluto, with a Lyapounov exponent of 

1/20 M y r - 1 . Using a different approach, based on perturbation techniques and huge 

algebraic manipulations, I was able to construct an averaged system of second order 

with respect to the masses which represents the secular evolution of the orbits of the 

8 main planets of the solar system (Laskar, 1985, 1986, 1987, 1988). The integration 

of this secular system over 200 Myr revealed that the motion of the solar system is 

chaotic with a Lyapounov exponent reaching 1/5 M y r - 1 (Laskar, 1989). Over such 

time span, this chaotic behaviour affects mainly the inner planets. It was identified 

as the result of two secular resonances among the inner planets which have not been 

identified in any previous theories of the motion of the planets (Laskar, 1990). In 

the present paper, I would like to developped a few points which may be helpful 

for a better understanding of this chaotic behaviour. 

2. Analytical Averaging 

2.1. P L A N E T A R Y THEORY IN P O I N C A R É CANONICAL HELIOCENTRIC VARIABLES 

Although the original computations were made with usual non canonical formal-

ism, it is my strong feeling that the canonical heliocentric variables introduced 

by Poincaré (1896) are more suitable for the elaboration of such analytical work. 

The use of these variables should not change the conclusions and implications of 

the computation which were already done, but they should be essential for a bet-

ter understanding of the dynamical implications of the equations, or for eventual 

higher-order computations. 

Let P 0 j Pi, · · · ι Pn be η + 1 bodies of masses mo, m i , . . . , m n in gravitational 

interaction, and let Ο be their center of mass. For every body P<, we shall denote 

u; := ΟP{. In the barycentric reference frame with origine Ο, the Newton equations 

of motion form a differential system of order 6(n + 1 ) and can be written for each i 
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where Aij =\\ U{ — u ; ||, and G is the constant of gravitation. A canonical set of 

coordinates is (ui,u« = miui)i =i j n and in this set of coordinates the Hamiltonian 

will be 

2 ^ rriü " X T ' 
z=0 0<t<j 

The reduction of the center of mass is achieved generally in the planetary case 
by using the non-canonical heliocentric variables (Γ^,Γ^) with r; = û  — uo and 
rt- = dvi/dt. Actually, canonical heliocentric coordinates are very easy to introduce: 
Let ro = uo, the linear transformation A which transforms the variables (u*) into 
the variables (r^) can be extended to a canonical transformation 

(ui,üi) —> (r<,r<) = (Amf A'1 vu) 

which leads to the very simple expressions 

r 0 = uo 4- üi H h ύ η 

ii = û{ for i φ 0 ' 

The reduction of the center of mass gives ro = 0. In these new variables, the 

expression of the kinetic energy is 

T = i A j l ^ l j 
2h mi 

1 II ri + r 2 + . . 
2 rtiQ 

That is, 

1 n 

T = To + T x with To = - ^ \ \ * i — + — 
mi mo 

mo 
0<i<j 

The computation of the potential is also simple and gives 

U = U0 + U1 with t70 = - G £ ^ i and t7t = - G £ 

i=i T i o<i<j *i 

with Aij = | | Ti -Tj H . 

The full Hamiltonian is thus of the form 

Η = Η0 + εΗι; with H0 = T0 + U0 and εΗι = T x + Ui. 

Ho is integrable and represents the Hamiltonian of a family of disjoint two body 

heliocentric problems: the "planets" of mass m* around the "sun" of mass mo. 
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εΗ\ is the perturbing part of the Hamiltonian resulting from the planets interac-

tions and ε is a small parameter of same order as the planetary masses. It should 

be stressed that the expressions of the complete Hamiltonian in these variables 

are more symetrical and simpler than in Jacobi coordinates. Once the planetary 

problem is expressed as the perturbation of an integrable problem (here a union 

of two body problems) of Hamiltonian Ho> the coordinates which are convenient 

are coordinates which form angle-action coordinates for the integrable unperturbed 

problem. The Hamiltonian can then be expanded with respect to Poincare ellipti-

cal variables (λ, Λ,£, τ;, ρ, g) in a convenient form for planetary equations (Laskar, 

1991). For each planet Pj, \j is the mean longitude, 

2.2. A V E R A G I N G 

With the use of the canonical heliocentric variables, we have thus managed to put 

the Hamiltonian on the form 

where ε is a small parameter of the order of the planetary masses. For simplicity 

of the notations, £ denotes the variables and η the variables Vj>qj. Let us 

make the canonical change of variables depending of time given by the generating 

function 

is its conjugate variable related to the semi major axis and 

JT(A, Λ, η) = Ho(A) + cHx (λ, Λ , £ , η) 

5(λ, Α,ζ}ή) = \·Α + ξ·ή-ΝΑί + Α 0 \ 

We have thus 

Λ = À + Λ 0 ; 

η =ή; 

λ = λ λ - J V t ; 

and the Hamiltonian becomes 

that is, in the new variables 

JT(A, Λ, 177, t) = # o ( A + A 0 ) + eHx (A -f Ni, A + Λ 0 , l ή) - ΝΑ. 
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We have 

dk _ dHi 
~dt ~ ~e~d\' 

Thus, if we choose Λο as the constant part of Λ, the integration constant of Λ is 
zero and Λ becomes of order 1 with respect to ε (this can only be achieved by an 
iterative scheme). By expanding up to order 2 with respect to Λ and by choosing 
for the value of Ν 

we obtain for the new Hamiltonian 

H(X, Λ, & ή, t) = ffo(Ao) + εΗι{λ + Nt,k + A 0 , ξ, ή) + ^ χ τ ( Α ο ) • Λ 2 + 0 ( Λ 3 ) 

(1) 

The constant part Ho(Ao) does not affect the solutions and can be suppressed. 

With this change of variables, which consist to search for a solution in the vicinity 

of the periodic solutions of the unperturbed motion of given semi major axis (or in 

an equivalent way, of given mean motion), we have managed to suppress the zero 

order part of the Hamiltonian, as Λ is now considered to be of the same order as 

the small parameter ε. 

2.3. T H E DIRECT M E T H O D OF P O I N C A R É 

This method of averaging is described in the Méthodes Nouvelles and has often 

being called Krylov-Bogolioubov method. It consists to search a solution in quasi 

periodic form with respect to the angles λ by simple identification, as the existence 

of such a formal change of variables is already given by the Lindstedt-Poincare 

method (Poincaré, 1892). We search directly for a change of variables depending 

on time of the form (λ, A, £, fj) — • (λ, Λ, £, ή) given by 

λ = Â + 5 λ ( λ + 7\Γ*,Λ,ί,τ)) 

Λ = Λ + 5 Α ( Α + ΛΓ*,Λ,£ή) ( 2 ) 

which suppressed the periodic terms depending of A -f Nt in the Hamiltonian. For 
each variable χ = λ,Λ,£,ΐ/, Sx is purely periodic with respect to λ -f and 
expanded as a series S9 = εΞιχ -f ε 2 + Ö ( i 3 ) (the formal existence of such a 
change of variables is obtained with Lindstedt series). Let us consider the differential 
system of equations for the Hamiltonian (1) 

ax " ~ 
~=εΓχ(Χ + Νί,Α,ξ,ή); for χ = λ, Λ, ζ, η 

(3) 
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with 

β Λ = « ^ + 2 ^ ( Α 0 ) · Α + Ο(1»); 

^ Λ = - ε _ ; *F( = * W *Fv = - s w (4) 

The substitution of (2) in (3) gives 

Vi 3 

ε* Σ (* + Α· ^ · * w (Â + Μ , Λ, ê, ή) + 0(e3) 

for j/j = \j, (j, Aj, η). If we choose 

dt 

and 

dS,.. 

[Fx(\ + Nt,k,i,v)}t (5) 

dt 

where { F } F is the purely periodic part of F and (F)t the secular part of F\ we 
obtain, by neglecting terms of order 3, 

This new system is much more simpler as it does not depend of λ + Nt. We have 
also 

ί 
~dt 

^ = FF(FA(A + M , A , ^ ) t + Ä

2 W = 0 

yj ' ' 

which is Poisson's theorem. It derives from the fact that F a is purely periodic an 

can be verified using the expressions of FA (4) and S\yj (5), and expanding H\ in 

Fourier series 

Η^λ + Νί,λ,ξ,ή) = J2<*x(iiv)Eik{'x+ml 
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Λ is thus constant up to order 2 and, from the choice of Λο, we have Λ = 0 and 

(A)t = Λο· The computation of the secular system of order 2 is thus particularly 

simple with the direct method. It may not be the case for higher orders, where a 

more automatic method like Lie series may be used. 

3 . Numerical results 

3.1. A C C U R A C Y OF THE SECULAR SYSTEM 

Once the secular system is obtained, it can be integrated numerically with a very 

large stepsize of about 500 yrs, because all the short periods involving the orbital 

periods of the planets have been removed. I made several numerical integrations 

of this system, which also includes the averaged efFect of relativity and Moon. The 

integration over 200 Myr backward revealed that the motion of the solar system 

and especially the motion of the inner solar system is chaotic, with a Lyapounov 

exponent of about 1/(5 Myr) (Laskar, 1989, 1990). It was then discovered that this 

chaotic behaviour originated in the presence of essentially two secular resonances 

among the planets: θ — 2(g4 - g3) - ( s 4 - s 3 ) and σ — (gx - g5) - (βχ - s2) 

(Laskar, 1990). The argument of θ was found to change several times from libration 

to circulation during the 200 Myr time span, while the argument of σ stayed in 

libration, but with varying amplitude. 

Since this first integration, I extended it forward for another 200 Myr and will 

present here some of the analysis of the output. The main concern, with such an 

averaged system, is not the accuracy of the numerical integration (integrating with 

a 500 yr stepsize over 200 Myr requires only 400000 steps), but the precision of the 

secular system itself, as a truncation is always used. We have to know how good the 

solutions of the secular system are compared to the averaged solutions of the full 

equations of Newton. One way to make an evaluation of the accuracy of the secular 

system is to make comparison with the results of a direct numerical integration 

of the full equations and such a comparison was made (Laskar, 1986), but until 

recently, the only numerical integration which was comparable was the numerical 

ephemeris from JPL DE102 which spans only about 4000 years. Only this year, 

Quinn et αί(1991) issued a numerical integration of the full solar system, including 

efFect of the Moon and general relativity which spanned 3Myr. We made the direct 

comparison of the secular solution La90 from (Laskar, 1990) with a second integra-

tion QTD6 made over 6 Myr by Quinn et al and found a very good quantitative 

agreement with the two solutions (Laskar et al} 1991). Over this time span of 6 

Myr, the curves for the excentricity of the planets were barely distinguishable and, 

even more, over this timespan it was possible to confirm the existence of secular 

resonances in the inner solar system. The validity of all the results on the chaotic 

behaviour of the solar system which were already obtained with the secular theory 

was thus strengthened. Since, Wisdom, using his new integration scheme, issued an 

new integration of the solar system over 100 Myr which also confirms these results 

(Sussman and Wisdom, 1991). 
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3.2. ANALYSIS OF THE 400 M Y R SOLUTION 

It is important to understand the meaning of analysing the solution over such 

an extended time span of 400 Myr. I showed that the motion is chaotic with a 

Lyapounov exponent of l / (5Myr); it means that any computed solution will not 

represent the real solar system after about 100 Myr. Indeed, to obtain a solution 

over such a time span will already require to know all the initial conditions and 

parameters with an accuracy better than 1 0 - 1 0 , and to take into account all the 

perturbations of this size, in the model, or in the integration. In particular, this 

implies to take into account the perturbation of about three dozen of asteroids 

(Williams, 1984). Extending the time span to 120 Myr will require an accuracy of 

1 0 ~ 1 2 and to track several hundreds of asteroids. 

On the other hand, as shown by the comparisons with numerical integrations, 

the solution of the secular system provides a good ephemeris of the solar system 

which can be used over about 10 Myr, as was already stated in (Laskar, 1988). 

But the reason for analysing the solution over 400 Myr is very different: this is a 

tool for a first analysis of the phase space in the region of the solution of the solar 

system. After a few tens of millions years, it does not represent the motion of the 

solar system, but only its possible motion in the chaotic region where it belongs. 

Of course, as stated by Arnold (1963), as the solar system has much more degrés 

of and the diffusion of the orbits can eventually take place in a very large portion 

of the phase space, but this diffusion can be very slow and not very meaningful 

over ages comparable to the age of the universe. On the contrary, in each of the 

projections of the phase space which correspond to the two resonant arguments θ 

and er, the diffusion of the actions is much more rapid. By the numerical analysis 

of the fundamental frequencies, which are then used as parameters for the dynam-

ical description of the system, I showed (Laskar, 1990) that the chaotic region is 

relatively large in the direction of the main frequencies of the inner planets. 

This frequency analysis is efficient and, also, clearly reveals the existence of 

quasi-integrals in the outer solar system and the extent of the chaotic zones. It 

has been applied since to the standard mapping, in order to demonstrate its pow-

er on a much more simple two degrees of freedom problem (Laskar et α/, 1991), 

but I understand that although frequencies are very meaningful for the dynamical 

understanding of the system, actions and physical parameters are more appealing 

for the physical meaning. This is why I present here some of the plots which were 

obtained during the analysis of the solution over 400 Myr. 

3.3. DESCRIPTION OF THE PLOTS 

In figures (1-4) are plotted the eccentricities and inclination for the inner planets 

solutions over 400 Myr, as well as the associated proper modes. Indeed, due to the 

linear coupling (and resonant terms in the expansions), the solutions for any of the 

planets is in first approximation a linear combination of the proper modes (Laskar, 

1987) which are obtained presently by the inverse linear transformation, given in 

(Laskar, 1990). The proper modes are associated to the different planets according 

to the conventional way of numbering the fundamental frequencies, although in 
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la: Eccentricity 
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time (Myr) 

lb: Amplitude of proper mode (gi) 
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lc: Inclination from J2000 (degrees) 
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time (Myr) 

Id: Amplitude of proper mode («i) 
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Fig. 1. Mercury 
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2a: Eccentricity 
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time (Myr) 

2b: Amplitude of proper mode (<;·>) 
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time (Myr) 

2d: Amplitude of proper mode (so) 
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Fig. 2. Venus 
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3a: Eccentricity 
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Fig. 3. The Earth 
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4a: Eccentricity 
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Fig. 4. Mars 

https://doi.org/10.1017/S0074180900090872 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900090872


Fig. 5. The secular resonances 
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f ( S ) = g - i / 2 S , ( s = n ; - n ; , G = a\-wi) 

ΙΟΟπ 200π 300π 

(χ*1-πΙ)-{ηΐ-ηΐ) 

6c 

Fig. 6. Resonance overlap 

Ο 

https://doi.org/10.1017/S0074180900090872 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900090872


14 

many cases the corresponding proper mode is not the dominant terms in the solution 

of the planet. 

The equivalent plots are not given for the outer planets, because their solutions 

are so close to quasi-periodic motion, that a plot will not give any more information 

than the analytic expansions given in (Laskar, 1990). 

The first obvious result is that, on this span of time, we do not assist to a 

very large catastrophic event, like the burst of eccentricity which occurs in the 3:1 

asteroidal resonance (Wisdom, 1983). But let us look more closely to the various 

solutions. 

The solutions for the eccentricity of the Earth and of Venus looks very regular, 

but this is mainly due to the fact that the leading linear terms in these solutions 

are related to the proper modes of Jupiter and Saturn, which behave in a very 

regular way. The chaotic behaviour is much more visible on the amplitudes of the 

proper modes. On the plot of eccentricity, it is nevertheless visible and manifests 

itself by the modulation of the maximum amplitude which reaches nearly 0.01 for 

the Earth. The chaotic efFect on the inclination is more visible, as the inclination 

of the Earth is driven by the proper mode related to a 3 which has an important 

chaotic behaviour (fig 3d). Unfortunately, the plotted inclination is the inclination 

from J2000 reference plane instead of the invariable plane, which induces a con-

stant offset of the inclination. The chaotic behaviour accounts on this variable for 

nearly 1 degree over 200 millions years. The behaviour of Venus is very similar. 

The chaotic efFect on the orbit of Mars is more important (fig.4a-d), as it reaches 

0.02 in eccentricity and more than 1 degree in inclination. The planet for which the 

chaotic behaviour is the most important is Mercury (fig la-d), as the changes in 

eccentricity reach 0.05, while changes in inclination reach more than 2 degrees (fig 

lc). 

These changes observed over 400 Myr are thus very important, as we cannot 

exclude larger changes over a longer time span. The actual large eccentricity and 

inclination of Mercury may even be explained by increase from more moderate 

values through a chaotic route. 

3.4. R E S O N A N C E OVERLAP 

In (Laskar, 1990), it was found that the chaotic behaviour of the inner solar system 

mainly originated in the two secular resonances θ and <r, related to the resonant 

arguments 2(w\ — w$) — (Ω\ — Ω§) and (xn[ — w\) — (Ω* — Ω^). These arguments 

are changing from libration to circulation several times over 400 Myr (fig. 5a-b), 

which is characteristic from chaotic behaviour in the vicinity of the separatrix of a 

resonance. For the first resonance, the argument is in circulation during a long time 

and I searched if it enters into another secular resonance during that time. At the 

begining, several trials were made, but a more systematic approach consists to plot 

the function F(s) — g — 1/2«, where g = w\ — w\ and s — U\ — Ω 3 , versus s (flg. 

6a-c). The temporary libration θ is thus identified as the horizontal portions of the 

curve F(s), which can be considered as resonances 2 : 1 of the arguments g and s. 

Several portions of this curve can also be identified as being in resonance 1 : 1 , which 

mean that we have temporary libration of the argument (τσ\ — trrj) — (Ω4 — Ω 3 ) . 
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All the other parts of the curve seem to have slopes between these two values. The 

existence of temporary librations of the argument g — s can also be seen by a direct 

plot (Fig. 6c). 

From this analysis, we can conclude that the chaotic zone extends from the 

resonance 2g — s to the resonance g — s. We have thus probably resonance overlap 

of these two resonances (Chirikov, 1979), which explains the presence of a large 

chaotic zone which is not restricted to the vicinity of the separatrix of a single 

resonance. 
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Discussion 

P.Goldreich - What are the implications of your secular theory integrations for 

qualitative changes over the age of the solar system? 

J.Laskar - Over the 200 Myr of my integrations, the qualitative changes reflect 

mostly in the change of amplitudes of the proper modes of the different planets. 

When you go back to the planets, due to the mixing of proper modes, the main 

variations of the orbital parameters of the planets mostly cames from the linear 
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theory, but it is modulated by the non-linear chaotic component. For the eccentricity 

of the Earth, it amounts to about 0.01, but in the inclination of Mercury, it goes 

up to a few degrees in inclination over 200 Myr. The chaotic behaviour of the solar 

system is thus the probable explanation of the high inclination of Mercury. For 

longer time spans, it is possible to integrate over a much larger time (my integration 

took only 6 hours in a supercomputer), but due to the exponential divergence of 

the orbits, it will not represent the motion of a solar system. A more difficult study 

would be to obtain a more complete description of the chaotic zone to which our 

solar system belongs. This requires either heavy numerical computations or more 

refined analytical studies. 

C. Williams - How did you the averaging and can you comment on the effect of the 

small divisors? 

J,Laskar - The averaging is a second-order averaging with respect to the masses. 

The small divisors in mean motion, which appear at second order with respect to 

the masses, are thus taken into account. 
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