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Notation. If A and B are sets then A — B = {x | x £A, x $ B). This 
notation is also used if A and B are linear spaces. If X and F are Banach 
spaces an embedding of X into F is a continuous linear mapping u of X onto 
a closed subspace of F which is 1 — 1. In this case X is said to be embedded 
in F. If \ux\ = \x\ for every x Ç X (| . . . | stands for norm), then u embeds X 
isometrically into F. If u is onto then X and Fare isomorphic and if, in addition, 
\ux\ — \x\ for every x 6 X, then X and F are isometric. Then an embedding 
w has a continuous inverse w -1 (4, p. 36) defined on uX and this fact is used 
below without further reference. The conjugate space of X is denoted by X''. 
Unless otherwise noted, all topological spaces considered are Hausdorff spaces. 

1. Introduction. We consider Banach spaces over the real numbers R only. 
Let B be a Banach space with the following property: If X is a subspace 

of a Banach space F and if u is a bounded linear map from X to B, then u has 
a bounded extension u\ from F to B. Such a B is said to have property P , or 
the extension property, and we write (B,P). If ^i can always be taken so that 
\ui\ < t\u\, then B is said to have property P t and we write (B,Pt) (4, pp. 
94-95). If B has the above property subject to the restriction that F be 
separable, B is said to have the separable extension property and we write 
(B,S) and (B,St) in place of (5,P) and (5,P,) respectively. Clearly (J3,P) 
implies (5,5) and (B,Pt) implies (B,St). 

With the above terminology the Hahn-Banach theorem asserts (P,Pi). 
Phillips (13, p. 538) noted that for any set i Jone has (m{H),P^) where m(H) 
is the set of bounded real-valued functions on H with supremum norm. 
Goodner (6) and Nachbin (12) characterized (B,Pi) spaces as spaces iso
metric to a C{H) space with H compact and extremally disconnected, 
provided the unit ball of B has an extreme point.* Kelley (10) removed the 
extreme point assumption. Implicit in the proofs of these characterizations 
was the theorem: 

If Y Z) B and Y/B = R implies there is a projection with norm one from Y 
to B, then (B,Pi). In § 3 a different proof of this is given. In § 4 another repre
sentation of a P i space is given provided it is well situated in a C(H) space 
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*C{H) is the space of bounded continuous functions on H with | / | = sup {\f(h)\\h^H}. 
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where H is compact and extremally disconnected. The condition is that there 
exists a projection p such that if u = 2p — / , then \u\ = 1. 

The following (4, p. 94) are equivalent for a Banach space B: 
(a) (B,P), 
(b) If X Z) B there is a continuous projection p of X onto B. 
(c) If F D J B I and J3i is isomorphic to B there is a continuous projection £ 
of F onto 5 i . 
(d) If B\ is an embedding of B in some m(H), there is a continuous projection 
of m(H) onto 5 i . 

The proofs are similar to calculations in Theorem 7 below. From these 
conditions it is seen that if (B,P), then (B,Pt) for some t since, letting u be an 
isometric embedding of B in some m(H) and p a projection of m(H) onto u(B), 
then if X D F and A is a map of F to B, the map WZJ of F to m{H) has an 
extension z ,̂ |^i| = \uv\. The map u~lpv\ is an extension of y from F to £ , 
and | ^ _ 1 ^ ] | < |W -1 | |£||ZJI| so that \p\ provides a t. 

Akilov observed that if B is a complete Banach lattice whose unit ball has a 
least upper bound y, then (B,P\y\). If F D X, and w is a map from X to 5 , 
substituting the function p,p(x) = \u\\x\y, for the subadditive linear func
tional in the proof of the Hahn-Banach theorem, one shows there exists an 
extension Ui of u and \u±\ < \u\ \y\ (6, p. 94). If H is compact and extremally 
disconnected, then C(H) is a complete Banach lattice whose unit sphere has 
a least upper bound y, y(h) = 1 for all h, and \y\ = 1 (6, p. 103). Hence 
Kelley's result and Akilov's result with |^| = 1 provide complete characteriza
tions of spaces (B,Pi). 

Goodner (6, p. 102) proved that if B is a sublattice of C(H) and p is a pro
jection of C(H) onto B with \p\ = 1, then U(B) has a least upper bound y and 
\y\ = 1. Hence (4, p. 101) there is C(K) for which B is isometric to C(K). 
The important step is to show that p is a positive map, that is, if / > 0, 
then pf > 0. 

THEOREM 1. If B C C{H) and p is a positive projection of C(H) onto B, 
then B is a Banach lattice whose unit sphere has an upper bound. Hence (4, p. 101 ) 
B is isomorphic to C{K) jor some K. If H is compact and extremally disconnected 
then B is a complete lattice and B is isomorphic to a space with property Pi. 

Proof. Define an order in B by saying b is non-negative in B if and only if 
there is an / > 0 in C(H) for which pf = b. Let F be the set of such b. Then 
F is a closed cone (4, p. 97) and so orders B. If b\ and b\ — b are in F, then 
bi and bi — b are non-negative in C(H). Hence b\ > b V 0, where b V 0 
stands for sup (bfi) in the lattice (and b A 0 = inf (6,0)), so pb\ = b\ > 
p (b V 0). Hence p (b V 0) provides a supremum in B for b and 0. Also p (b A 0) 
then provides an infimum so that B is a lattice. If p(b V 0) — p(b A 0) — 
{p{b\ V 0) — p{b\ A 0)) is non-negative in B, it is non-negative in C(H)} 

and sincep(bi V 0) - p{bx A 0) > 0, 
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\p(b V 0) - p(b A 0)| > \p(bx V 0) - p{bi A 0)| 

so that B is a Banach lattice. Also U(B) has an upper bound p{i) 
where i(h) = 1 for all h. If H is compact and extremally disconnected then 
C(H) is a complete lattice. Let 4̂ have an upper bound in B, say b. Then 6 is 
an upper bound for A in C(H) and if x is the supremum of A in C(H), b > #, 
and pb = b ^ px so px is a supremum for 4̂ in £ . 

To prove the last part we have that B is a complete Banach lattice whose 
unit ball has a least upper bound e = £(i). Hence (2$,P|C|). 

Define a new norm on B by letting \\b\\ be the greatest lower bound of all t 
for which — te < # < te. If |£| < 1, then — i < b < i so ||ô|| < 1. Hence 5 is 
isomorphic to B with its new norm (4, p. 37). If b V 0 + ( —i) V 0 > c V 0 
+ ( - c ) V 0 and if te > b V 0 + ( -6 ) V 0, then te > c V 0 + ( - c ) V 0 so 
that ||J V 0 + ( - J ) V 0j| > ||c V 0 + (-c) V 0||. Hence with the new 
norm B is a complete Banach lattice whose unit sphere has a least upper 
bound e, and ||e|| = 1, and so B with its new norm is a P i space. 

Substituting a Banach lattice F for C(H), then the above proof shows that 
B can be given an order in which it is a Banach lattice having a unit if Y has 
and complete if Y is. 

The Banach spaces m, c, c0 are the spaces of bounded sequences, convergent 
sequences, and sequences convergent to 0 respectively. In each case 

| x | = sup I xn I , 
n 

for n (z N. N stands for the positive integers. Clearly c0 C c C w. Phillips 
(13, p. 539; 8) showed there is no continuous projection of m onto c0. His 
main step was (4, p. 32) to show that if u is a map of m to c0, then u2 is a 
compact map. Grothendieck (7, p. 169) proved that if B is a separable sub-
space of C(H) with i J compact and extremally disconnected then there is no 
continuous projection of C(H) to B unless B is finite dimensional. 

Goodner (6, p. 98; 1) showed that no L space whose dimension is greater 
than two has property Pi . In (3) it is shown that a map p from a C(H) space 
to a weakly complete subspace is weakly compact and that p2 is then compact. 
Hence an infinite dimensional weakly complete space cannot have property P . 
In particular, no infinite dimensional reflexive space or L space can have 
property P . 

Sobczyk (15 ) proved that if X D c0 and if X is separable, then there is a 
projection p of X to c0 and \p\ < 2 (see § 3 below). Hence (co, S2). 

These results answer affirmatively Banach's conjecture (2, pp. 192-193) 
that dimi (X) = dimi (F) is not sufficient to prove X is isomorphic to Y. 
Form X = m © c0j where if / = / i + / 2 , / i G w, / 2 G Co, then |/| = max (|/i|, 
I/2I). Then dimi (X) = dimi (m) ; but if u is an isomorphism of m onto X, then 
u~lpu is a projection of m onto ^c0, where £ is the projection pf = /2. Hence 
no such ^ exists and X and m are not isomorphic. Similarly, dimi (C([0, 1])) 
dimiC([0, 1]) © 12), but C([0, 1]) is not isomorphic to C([0, 1]) © 12. In 
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§ 2 it is shown that if (X, Ps) and if dimi (X) = dimi (m), then X is iso
morphic to m. In this section we examine a class of subspaces of certain C(H) 
spaces and show they are isomorphic to the given C(H) space. 

In § 3 we consider separable spaces with property 5 and give new proofs of 
Sobczyk's result and a recent result of McWilliams (11). 

2. A class of subspaces of C(H) isomorphic to C(H). A class of spaces 
was examined in Theorem 1 which includes, up to isomorphism, finite dimen
sional spaces and finite direct sums of P\ spaces. An element of the class was 
found to be isomorphic to a P\ space. In this section the remaining known Pt 

spaces are shown to be isomorphic to P\ spaces. 

DEFINITION. A Banach space of sequences X is a Banach space whose elements 
are sequences x = {xn} of real numbers and if dn is defined on X by dn (x) = xn, 
then {dn} is a uniformly bounded sequence in Xr. 

Notation, If u is a continuous linear mapping from the Banach space X to 
the Banach space F, denote by u' the conjugate mapping 

u'\Y' - > X ' (u'y'(x) = y'(ux) for every x Ç l j ' Ç Y'). 

THEOREM 2. Let X be a Banach space of sequences and let u be an isomorphism 
of X into the Banach space B. Suppose p is a continuous projection from B onto 
uX. Define dt £ X' as above, and let et = (u~lp)fdi. Let {n^ be a subsequence 
of N. If Xi = {x Ç X\ xni = 0, i = 1, 2, . . . ,} is isomorphic to X, then 
Bi = {b £ B\ eni(b) = 0, i = 1, 2, . . . ,} is isomorphic to B. 

Proof. Let v(Xi) = X be the promised isomorphism of Xi onto X and let 
q = 1 — p + uv~lu~lp. 

q:B —* B\\ We have u~lpq = u~lpuv~1u~1p = v~lu~lp since u~lp(l — p) = 0 
and pu = u. Hence eni(qb) = dni{v~lu~lpb) = 0 and so qb 6 Bi for everyô Ç B. 

qB = Bi'.hetbi G B\. Then u~lpb\ = x± G Xi since dni(xi) = {u~lp)'dni(bi) 
= eni(bi) = 0 for each i. Let b = uvu~lpb\. Then 

q((l - p)bx + b) = (1 - p)bx + uv~lu-lp{\ - p)bx + (1 - p)b + uv~lu~lpb 

= (1 - p)bi + 0 + 0 + uv-lu~lpuvu~lpbi = (1 - p)bi + pbx = bx. 

q is 1 — 1: If qb = 0, then (1 — p)b = 0 = uv~lu~xpb, since (1 — p)b Ç 
(1 — p)B and uv~lu~lpb Ç pB. Thus pb = b so that 0 = uv~lu~lpb = uv~l 

u~lb. Since uv~lu~l is 1 — 1, b = 0. Q.E.D. 
If i7 is compact and if there is a sequence {/̂ n} C ^ of distinct elements and if 

hn —-^ ^o^ {hn} 

one constructs an image of CQ in C(fl") as follows. About each hn choose an 
open neighbourhood Un such that Uj P\ Un ^ 0 implies j = w. Select ^ Ç 
C(-H") such that \bn\ — 1 = bn(hn) and 6n(Z0 = 0 if h (£ Un. If x G Co the func
tions J2ik xnbn = fie form a Cauchy sequence in C(H) so that 
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for some g G C(H) and g(hn) = xn for each n £ N. Hence CQ can be embedded 
in C(H) by letting ux = g. 

COROLLARY 2.1. If {hn) is a sequence of distinct elements in a compact space 
H such that hn-^h0 $ {hn}, and if {hni} is a subsequence of {hn} such that {hn) — 
{hni\ is infinite, then Bx = {b G C{H)\b{hni) = 0} is isomorphic to C(H). 

Proof. With the above notation define w from C(H) to Co by (wb)n = 
b(hn) — b(h0). Then p = uw is a projection from C(H) onto u(c0). It is easily 
seen that if X\ = {x Ç Co\xni = 0J, then c0 is isomorphic to Xi. Using the 
notation of Theorem 2 one has that bi £ Bx if and only if eni(i) = 0 since 
i i G -Bi implies 

«n,(*i) = dni(u-lpbi) = dni(wbi) = i i (An,-) = 0 

and if eni(bi) = 0, then bi(hni) = 0 so that i i Ç £ i . 
By Theorem 2 C(H) is isomorphic to 2?i. 

Remarks. With the hypothesis of Corollary 2.1 one can project from C(H) 
onto B\. If q on c0 is defined by 

(a;̂  otherwise, 

define pi by (pib)(h) = (wgw — WÎ£; + l)i(A) — i(/zo) for every b £ B,h £ H. 
If 5i Ç Si , then wii G Xi so that qwb\ = wii and b(ho) = 0 so pi i i = 

uqwbi — wwii + i i = wze;ii — wwii + ii = i i . If i Ç C(H), then 

(uqwb — uwb + b)hni = (qwb)? 

= b(hni) 
= b{hni) 
= b(hni) 
= b(h0) 

so (pib)hni = 0 

and thus p±b £ B\. 

Notation. If W C #deno t e by CV(H) the set of i Ç C(JÎ) such that b(h) = 
0 if h £ W. Thus with the conditions of Corollary 2.1 we have Cm \ (H) is 
isomorphic to C{H). 

THEOREM 3. In any infinite topological H, if C(H) = B © F, wAere £ awd F 
are closed and Y is finite dimensional, there are points h\, . . . ,hn such that B is 
isomorphic to C[hlt . . . . hn}(H). 

Proof. We use induction on n, the dimension of F. If F = (y)*, define 
pf = / — f(hi)x where hi is such that y (hi) y£ 0 and x — (l/y(hi))y. Then 
pf(hi) =f(hi) -f(hi)x(hi) = 0 and pf =f if /(AO = 0. Hence p is a pro
jection of C(JÏ) onto CUl}(iT). (py)A = x(A) — x(hi)x(h) = x(h) — x(h) so 

*(yi* • • • > y»») denotes the subspace of Y generated by yi,..., yn. 

- (uwb)hni + b(hni) 
(uwb)hni 

(wb)ni 

b(hni) + b(h0) 
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px = 0. Hence pB = C{hl}(H). If pb = 0, then b(h) - b(hx)x(h) = 0 for ail 
h so b = b(hi)x. Since 6 and x are in complementary subspaces, b — 0 and 
/> is an isomorphism of B with C{ftl}(£T). 

Assume the theorem t rue if dim ( F ) = n — 1 and let C(JÏ) = 5 © F 
where dim ( F ) = n, say F = (yi, . . . , yn). Then C(H) = B ® (yi) ® 
(j2, . . . , yn) and, by the induction hypothesis , there are points h2, . . . , hn 

such t h a t B ® (yi) is isomorphic to C{h2 , . . . , »„}(JT). Let *; be the isomor
phism. Let vy\ = x and Ai a point a t which x(hi) 5* 0. 

Let /1 = (l /x(/^i))x. Let £ be the projection of 

Cu2 , . . . , hn) (H) onto C U l hn} (H) 

defined by pf = / — f(hi)fi. Consider the m a p pv of B onto 

Cui »„}(#), (pvy = px = x - x(hi)fi = 0). 

If ^v6 = 0, then vb = (vb)(hi)fi or 

, (!*)(*!) G*)(*l) 

^ = —77-T— x = — 7 T T " ^ i -

Since v is an isomorphism (vb) (hi) = 0 so vb = 0 and 6 = 0. 

For some proofs of the next assertions see the remarks following the proof 
of Theorem 6 below. If H is infinite, compact , and extremally disconnected, 
and if hi, . . . , hk are dist inct points of H one can choose open and closed 
neighbourhoods Vt of ht such t h a t Vt P \ Vj = 0 if i 5^ j and such t h a t 
H — (Ui<fc F*) is infinite. If hk+i is not in Uj<fc Vt then an open and closed 
neighbourhood Vk+i of A can be chosen so t h a t Vk+i P \ ( W ^ Vt) = 0 and 
H — ( U j a + i Vt) is infinite. T h u s one can choose a sequence F* of open, 
closed, and mutual ly disjoint sets so t h a t H — ( U ^ F*) is infinite for each k. 
James (8) shows tha t m can be embedded as a subspace mi of C(H) (and so 
(B,Pi) implies B is finite dimensional or not separable) of functions cons tan t 
on each Vt and vanishing off KJtVi. If / £ Wi corresponds to x Ç. m, then 
/(A) = x, if A G F,. 

T H E O R E M . A If H is compact and infinite and if H contains a convergent 
sequence of distinct elements or if H is extremally disconnected then a complement 
of a finite dimensional subspace in C(H) is isomorphic to C(H). 

Proof. Let h/ —> h0, where h/ is a convergent sequence of dist inct points . 
If C(H) = X 0 B where X is finite dimensional and B is closed, then by 
Theorem 3, B is isomorphic to 

C\hi , . . . , hk)(H)> 

for some hi, . . . , hk and, clearly, these hj may be chosen so t h a t h0 9^ hj, j = 
1, . . . , k. By dropping to a subsequence if necessary we can further assume 
t h a t hc, . . . , hjc $ {h/}. Let h" be the sequence 
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, „ )hj iîj<k. 
nj \h'MtiSj>k. 

The subspace of c0 of those x such that Xj = 0 if j < k is isomorphic to c0 

and so by Corollary 2.1 

Cui »*i(-H) 
is isomorphic to C(H). 

If i7 is compact and extremally disconnected construct the sets Vt such that 
hi G Vu i < &• Since those elements of m vanishing on the first k co-ordinates 
form an isomorphic subspace of m, again 

is isomorphic to C(H), by Theorem 2. 

Remarks. The following properties of a compact, extremally disconnected 
i / are needed below. 

If U is open, then U is open. Equivalently: if U and V are disjoint open sets, 
then U r\ V = 0. This property defines an extremally disconnected space. 

If U is an infinite open and closed set in H and if h G U, then U— {h} con
tains an infinite open and closed set. 

Proof. If, for each neighbourhood F of h such that V C U, U — V is finite, 
then each sequence {hn} C U — {h} of distinct elements is open and {hn\ = 
{hn) yj {h}. Thus two such sequences which are disjoint are open and do not 
have disjoint closures. Hence there is a neighbourhood V of h such that 
U - Vis infinite. If/ G C(H) takes the value 1 on U - V, 0 at A, and 0 off 
Z7, then 

WJJWT>^\ 
is infinite, open, and closed. 

THEOREM 5. If H is compact and extremally disconnected and if m is embedded 
in C(H) as a space of functions m constant on each V i where { Vt} is a sequence 
of mutually disjoint open and closed sets, let ht G Vi. Suppose j'(hi) = xt if f 
corresponds to x in the embedding. Then a subspace B of C(H) complementary 
to M is isomorphic to C(H) or is finite dimensional. 

To prove this theorem we use the following: 

LEMMA. / / X = X\ © X2 0 X3 where X is a Banach space and Xi, X2, X% 
are closed subspaces, and if X2 © Xz is isomorphic to X2, then Xi © X2 is 
isomorphic to X. 

Proof. Let u be an isomorphism of X2 onto X2 © X3. Identifying an element 
Xj of Xj with the element x2 © 0 or 0 © x3 in X2 © Xz one has u~l defined 
on Xj to X2. Let pi be the projection of X to Xt given by the decomposition 
X = Xi © X2 © Xz and let w be defined on Xx © X2 by w = pi + up2. 
Then w is linear and continuous. 
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Suppose wf = 0 = pif + up2f. Since pif and up2f are in complementary 
subspaces of X, pif = 0 = up2f and so pif — 0 since u is an isomorphism. 
Since f £ Xi® X2, pif + ^ 2 / = / = 0 s o that w is 1 - 1. 

It remains to show w is onto. Let x = x + x3 where x 6 Xi © X2 and x3 £ 
X3. For some x2 (E X2, wx2 = x3 and let / = pix + u~lp2x + x2. Then w/ — 
= pi2x + piu~lp2x + £ix2 + up2piX + up2u~lp2x + up2x2. Since £i2£ = £i#, 
piu~lp2 = 0, £ix2 = 0, £2£i = 0, then up2pix = 0, £>2w

_1 = w_1, up2u~lp2x = 
^2x. Finally £2x2 = x2 so that up2x2 = wx2 = x3. Thus the equation reduces to 
wf = £iX + p2x + x3 = x + x3 = x. Hence w is onto. 

Proof of Theorem 5. Let w be the embedding of m to in. If £ is defined by 
pf = wx, where Xj = f(hj), then p is a projection of C(iT) onto m. Clearly 
pf = 0 if and only if / Ç C{hi}(H) so that C{hi}(H) is complementary to w. 
Let w be defined on B by ub = / , where 6 = / + x and / Ç C[hi](H), x Ç m. 
Then w is linear, continuous, and 1 — 1 (if 6 = x, then 6 = 0 = x since £ 
and m are complementary). If jf Ç C[hi](H) and if / = b + x, where K - B and 
x G m, then 6 = / + ( —x) so that u is onto. Hence 5 is isomorphic to C}hi\(H) 
and it is enough to show C{hi}(H) is isomorphic to C(H). 

If we can write C(H) = A © rai © m where A, m± are closed subspaces of 

C{hi](H), C[hi}(H) = A ®mi 

and Wi is isomorphic to ra, then it is easily seen that mi © m is isomorphic 
to m, so the lemma will conclude the proof. S ince/ £ C[hi}(H) if and only if 

/ € Cilïï (H) 

and since C{hi}(H) is infinite dimensional, it follows that i f — {ft*} is infinite. 
Suppose now that if V is an open set such that {ft*} C V, then H — V is 

finite. Then if — {ft̂ } is a discrete set and let {ft/} be a sequence of distinct 
points in H — V. Embed c0 in C(H) by letting ux(h) = 0 if ft $ {ft/} and xw if 
ft = ft/. 

To show ux G C(H), clearly ux is continuous at ft if ft £ i J — {hi}. If 
ft G {ft*} choose k such that n > k implies xn < e. Then H — {ft/, . . . , ft/} 
is a neighbourhood of any point in {hf\ and ux(h) < eiî h £ H — {ft/, . . . , 
ft/}. Thus wx is continuous at every point so that ux £ C(H). 

Clearly u is an isomorphism of CQ into C(-H") and we can project from C{hi} 
(H) onto uco, say by q. Then g(l — £) is a projection of C(iJ) onto uco, con
tradicting Grothendieck's Theorem (see the Introduction). 

Hence there is an open set V containing {ft*} such that H — V is infinite. 

life C{H) is such that /(ft) = 0 if ft G jft~} and /(ft) = 1 if he H - V, 

then W = jft|/(ft) > \) is an infinite open and closed set in H — {ft*}. 
Now W in the relative topology is compact and extremally disconnected 

so that we can embed m in C{W). C(W) can then be embedded in 
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by letting 

uf(h) = i m UheW 
UJW lo if A $ W. 

Thus m can be embedded isomorphically in 

Remarks. If i l is compact and extremally disconnected, then C{hi hn} 
and C{hi](H) are complete lattices. They do not have units however, and 
hence they are not in the class considered in Theorem 1, unless {hi ,. . . , hn}, 
{hi} are open and closed. 

We conclude this section with a sufficient condition that a subspace of m be 
isomorphic to m. 

THEOREM 6. Let m = A © B where A and B are closed sub spaces of m. Then 
there are sub spaces m and A\ of m isomorphic to m and A respectively and such 
that m = A\ © m. 

COROLLARY. If (X,PS) and if dimx (X) = dinii (ra), then X and m are 
isomorphic. 

Proof. Since dimi(X) = dimi(ra), X is isomorphic to a subspace A of m 
and m is isomorphic to a subspace mx of X. Both A and Wi are Pt spaces for 
some t so we can write m = A © B and X = mi © F for closed subspaces 
B oî m and Y of X. 

Theorem 6 promises that m = Ai © m where Ai and m are isomorphic to 
A and m respectively. Then X and ^4i are isomorphic, say under u, uX = Ai. 
Then ^4i = wrai ® uY = m^ ® Bi where mi is isomorphic to m. 

Thus we can write m = J3i © m2 © m. Since ra2 is isomorphic to m2 © m, 
Theorem 4 asserts that Bi © ra2 is isomorphic to m. 

Proof of Theorem 6. Loosely, the proof proceeds thus. 
m = A © B = mi © ra2 © . . . = (Ax © Si) © (4 2 © B2) © . . . = 
= ^ i © (Bx © 42) © CB2 © ^3) © • . . = Ai © mi © m2 © . . . = 
= A1 © m. The 4̂ ;-, Bh mjf fnjf m are isomorphic to A, S, m, m, m respectively. 

Choose subsequences at = {ni\ n*?, . . . } of N (the positive integers) such 
that at r\ a3- = 0 if i ^ j , i = 1,2, . . . ; and such that \J&i = N. Define 
qt,Si on m to m by qtf(j) = 0 if j iat and/ ( ; ) if j 6 a*; Sif(nf) = 0 if i ^ k 
and / ( j ) if i = k. Then g^f = st and s* is an isomorphism of mt = <?*(w) 
with m. 

Let 4 , = s<(4) and B , = Si(B)(m = A ® B). Then w, = -4* © Bt. Up 
is the projection pm = A} (1 — £)m = B, then r* = Sips^qt and z>* = 
s*(l — p)si~

1qi are projections of m onto At and £* respectively. 
L e t m = {/|nCf) = 0 } . 
Since m = A1 © m and since A1 is isomorphic to A the proof is finished if m 

is shown to be isomorphic to m. 
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Define v, u on rn torn by vf(j) = vrfij) if j G a{ and w/(w/) = /(w/+1). Then 
w = (1 — z;)w + v is the isomorphism desired, as follows. One easily shows 
that qtv = vt and then that v2 = v so that y and 1 — v are projections. The 
following identities are also easily proved. rj(j) = (1 — v)f(j) if j € a*; 
#$i+i = v , Çi^(l — v) = wr^+i; qtuv = uvi+\. Hence (1 — v)u(l — v) = 
u{\ — v)\ uvu = uv. For example, 

vuvf(n)) = ViUvf(n)) = s*(l — p)sj1qiuvf(n)) = 5^(1 — p)s^1uvi+if(n]) 

(since qtuv = uvi+i) 

= st(l - p)s^usi+1(l - P)s7+iqi+if(n)) 

= st(l - p)s^1si(l - p)s~£iqi+if(n]) 

(since usi+i = st) 

= ^ ( 1 - p)s^iqi+if(n)) = usi+1(l - p)s~iliqi+if(n)) 

= uvi+if(n)) = I>Ï+I/(«Î+ 1) = vf(nfx) = uvf(n]). 

Clearly w is linear and continuous. 
w is 1 — 1: Let wf = 0 = vf + (1 — v)uf. Then vf and (1 — v)uf are in 

complementary subspaces of m so vf = 0 = (1 — v)uf. Then (1 — v)f = / a n d 
so (1 — v)uf = (1 — z;)w(l — #)/ = u(\ — z/)/ = w/. Thus uf = 0. Since 
ufiuj1) = 0 = / (w/+ 1 ) it follows that / G wi\. (uf = 0 if and only if / G wx). 
Since (1 — v)f = f, then 

(l-v)f(n]) = (l-Vi)f(n)) = f(n)) 

= / 0 if i > 1 = i (1 - »i)/(»j) if i > 1 n _ . f ,. 
1(1 - ^ / (n j ) if i = 1 1(1 - ^ / (n}) if i = 1 U V l" ^ ' 

and so (1 — z;)/ = (1 — ui)/ = f or z^/ = 0. Then 

(ri + fli)/ = sips^qif + si(l — p)s^1q1f = Si((p + 1 — p)s^1q1f) = qxf = f 

since / G mi. Thus r-J = / and since / G m, r i / = 0. Thus w is 1 — 1. 
w w onto: L e t / G w and define h by kinf) = (1 — v)f(nj

i~l) if i > 1 and 0 
if i = 1. Then wfe = (1 — z/)/ and let g = h — vh + vf. Then rig = r ^ — rYvh 
+ riz;/ = 0 as follows: rjt = S\pSi~lqih = 0 since qji = 0 (h vanishes on ai). 

rivfi{j) = (1 ~~ v)vf\(j) = 0 f° r every / i and j , so r^A = r&f = 0. Finally 

wg = wh — wvh + wvf = vh — vh + vf + (1 — v)uh — (1 — v)uvh + (1 — v) 

uvh = vf + (1 — v)f = / 

once it is known that (1 — v)uv = 0 which was shown above. Q.E.D. 

3. Separable Banach spaces and property S. 

THEOREM 7. The following are equivalent if B is separable. 

(a) (B,S) 
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(b) If X D B and if X is separable, then there is a continuous projection from 
X onto B. 

(c) (B,St) for some t. 

(d) For every embedding u(B) of B into C([0,1]) there is a continuous projection 
from C([0,1]) onto u(B). 

Proof. If (a), X D B, and X is separable, then the identity map / from B 
to B has a continuous extension u from x to B which is then a continuous 
projection of X onto B. If (b) and if u is an isometry from B onto £1, let Xi 
be separable and Xi~2) B\. Then there is an X 3 B and an isometry ^i of 
X with Xi which agrees with u on B (6, pp. 90, 91). If p is a projection of X 
onto B, then Uipux~

l is a projection of Xx onto 2?i. Hence (b) is preserved up 
to isometry. Since B is separable, it can be embedded isometrically in m (2, 
p. 187), say under u. Suppose there is no t for which (B,St). Then, for every 
positive integer w, there is a space Xn, a separable space Yn 3 Xn, and a map 
un from Xw to B, such that |wn| = 1 and if wn is a map from Fw to B, which 
extends un, then \wn\ > n. The maps uun from Xw to uB are also maps from 
Xn to m and hence have extensions wn from Fw to m with |ww| = \uun\ = 1. 
Each ?£>WFW is separable. Hence the sets uB and \JnwnYn generate a separable 
subspace F of m and, from the above calculation, there is a projection £ of Y 
onto wi2. The map u~lpwn is an extension to Yn of ww and \u~lpwn\ < |/>|. 
This contradicts the assumption that \u~1pwn\ must be greater than n, for 
every n. Hence (b) implies (c). Clearly c implies a. 

If uB is an embedding of B into C([0,1]), then u~l has an extension w. 
Then uw is a continuous projection of C([0,1]) on uB. Now assume (d). If 
Y Z) B and Fis separable we can embed Fin C([0,1]) (2, p. 185), and let u be 
such an embedding. By (d) there is a continuous projection p from C([0,1]) 
onto uB, u~xpu is a continuous projection of F onto B. Q.E.D. 

The next theorem shows that no infinite dimensional separable Banach 
space has property S\. 

THEOREM 8. Let B have the following property. If Y ~2) X and if Y/X is one 
dimensional, then a continuous linear map u from X to B has an extension U\ 
such that |wi| = \u\. Then (5,Pi). 

Proof. Suppose A Z) X and uX —•» B is continuous and linear. Let F denote 
the set of pairs (Y,w) such that F 3 X and w is an extension of u, w: Y —» X, 
such that \w\ = \u\. Order Fby saying (Y,w) > (Yi,Wi) if F D Fxand W\ = w 
on Yi. One easily shows a simply ordered subset of F has an upper bound ; so 
by Zorn's Lemma choose a maximal element (Y,w). If F =j= 4̂ and if a G 
A — F, then there is an extension of w, wh from Fi to B, with |^ i | = \w\ 
where Fi is the subspace of A generated by F and a ( Fi / F is one dimensional). 
This contradicts maximality of (Y,w) so Y = A. Since |w| = |w| and since 
A, X, and u are arbitrary, we have (B,Pi). 
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COROLLARY 8.1. If B is separable and (5,Si), then B is finite dimensional. 

Proof. Let u be an isometric embedding of B in nt, and suppose that Y/X 
is one dimensional and v:X -+ B. We can write Y — (y) ® X for some y G Y, 
where (y) is the subspace of F generated by y. Since (m,Pi) uv has an extension 
Vi'.Y—> m such that |^i| = \vu\. V\Y is contained in the subspace Z of m 
generated by uB and z/iy. This subspace is separable. If (B,Si), then (uB,Si) 
and there is a projection p from Z to uB such that |^| = 1. Then u~lpvi is an 
extension of v such that | ^ - 1 ^ i | = |z;|. Thus B has the property of Theorem 8. 
The only separable such B are finite dimensional. Q.E.D. 

The space c of convergent sequences has a variant of property Si\ if c C X 
and if X is separable, then there is a subspace Ci of c, isometric to c, and a 
projection £ of X onto Ci with |^| = 1. 

Sobczyk (15) proved that if c0 C X C rn where X is separable then there is a 
projection p from X onto c0 such that |p| < 2. McWilliams (11) proved an 
analogous result for c, the space of convergent sequences with supremum 
norm, with \p\ < 3. In both cases the authors showed / = 2 and t = 3 were 
the best possible t. From Theorem 7 it follows easily that (coA) and (c,S3). 

These results are proved below, with the help of Theorem 7, as corollaries to: 

THEOREM 9. Let H = [0,1] and let K be a closed subset of H. Then there are 
projections p and r of C(H) onto CK(H) and X respectively, where X is the sub-
space of C{H) of functions constant on K. Moreover p and r can be chosen so 
that \p\ < 2, \r\ < 3. 

Proof. H — K is open and so is a countable union of sets (ft*fe*) where ht 

and kt are in K; and ft is in II — K if ht < ft < kt for some i. Let 

(/(ft) if ft G i^ 
(af)* = { ^ f E i ^ 1 (* - *<) +/(A<) if * G (MO. 

Then \qf\ < sup {|/(ft)| |ft G i£} < |/| and q2f = qf. Hence g is a projection 
of norm 1. If qf = 0, then/(ft) = 0 if ft is in K and if / = 0 on K, then qf = 0. 
Hence / — q = p is a projection of C(H) onto CK(H) of norm at most two. 

Let e be the identically one function on H. Then qe = e so pe = 0. Define 
a projection £i of C(H) onto (e) by pifQi) = f(k)e, where & is fixed in i£. 
Then \pi\ = 1 and pif — 0 for every/ G CK(H). Since pf = 0 for every/ G (g) 
we have that ££i = pip = 0 and so p + pi = r is a projection with 
M < \P\ + \Pi\ < 3, of C{H) onto X. 

COROLLARY 9.1. (co,S2), (c,S3). 

Proof. Let Ci be either c0 or c and let w embed Ci isometrically into C(H). 
Then w' is an isomorphism of (wc±y with c\ and \wrx'\ = \xr\ for every x' G 
(wci)'. If di G Ci' is defined by dt(x) = x* for every x G Ci, let et G (wci)' such 
that w'ei = dt. Then |e*| = \dt\ = 1 and each ei is an extreme point of the 
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unit ball of (wci)'. Hence (14, p. 104) et can be extended to an extreme point 
/ / of the unit ball of (C(H))r. T h e n / / is of the form ± ehi for some hu where 
emU) = /(*«) for every / G C(H) (4, p. 85). For x € ch 

wx(h)t = ehi(wx) = ±f/(wx) = ±ei{wx) = ± dt(x) = ± #<. 

Let i£ = {hi} — {hf}. Then i£ 4: 0 since a convergent subsequence of ht con
verges to a point in i J — {hi} (il xt = 1/i, then wx(hi) = dzl/i while wx(h) 
= Oil h £ K). 

If Ci = to let p be a projection of CC£T) onto CK(H) such that |^| < 2. If 
f Ç CK(H) one easily shows that / / ( / ) —* 0 as i —> oo and we define v\CK(H) 
—> Co by (z//)* = / / ( / ) . Then zew£ is the desired projection of C(I^) onto ẑ Co 
and |wz/£| < \w\ \v\ \p\ = \p\ < 2. 

If ci = c, let r be a projection of C(H) onto X, the subspace of C(H) of 
functions constant on K, such that \r\ < 3. Again one shows / / ( / ) converges 
(i —» oo ) and that if v is defined by (vf) t = / / ( / ) , then ww is a projection with 
norm at most three from C(H) onto wc. 

From Theorem 7 (d) the corollary follows. 

COROLLARY 9.2. Let Y be separable and let X C Y- If {xn
f} C X' is such 

that Xi (x) —> x'(x) for every x G X, then the sequence {x/} can be extended to a 
sequence {y/} such that y/(y) —» y'(y) for every y £ Y (and so yr is an extension 
of x'). Moreover the extensions y/ can be chosen so that \y/\ < 3 |x/ | . 

Proof. The mapping u from X to c defined by (ux)t = x/(x) for every 
x £ X has an extension U\ to Y such that \u-\ < 3 \u\. Let y/ = U\d\. One 
easily shows the y/ have the desired properties and converge pointwise on Y 
(weak-star) to a yf G Y' which extends x'. 

Remarks. One can reverse the steps of Corollary 9.2 to show (c,S3). McWil-
liams' result that 3 is the best t possible so that (c,St) then shows that the 
3 in the corollary is the best possible. Since c is Pt for no t one cannot in 
general extend sequences of pointwise convergent linear functionals so that 
the extensions are pointwise convergent. 

If F i s separable, X C Y, and xn
r G X' is a pointwise convergent sequence; 

choose extensions yn
r and a subsequence// = yn- such that n^jf/ is a point-

wise convergent sequence and \y/\ = \x/\ lor every i. Using such sequences 
we can prove 

THEOREM 10. If Y Z) c and if Y is separable, then there is a subspace c\ of c 
such that Ci is isometric to c and a projection p of Y onto cif such that \p\ = 1. 

Proof. Each dt (as in the proof of the above corollary) can be extended to a 
linear functional y( in Y' such that \y(\ = \di\ = 1. Since Y is separable 
choose a subsequence {yn/} of {y/} which is pointwise convergent and so that 
ni+i > %i for each i. Define u: Y —>c by (uy)n = yn/(y) if nt < n < ni+i. 
Let Ci be the subspace of c of sequences f lor which fni = fni+i = . . . = fm+i-i 
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for every i. Clearly uY C C\. If / G ch then {uf)n = yn/(f), nt < n < ni+u 
= n̂,-Cf) = /n» = /w so that uf = f and u is a projection of F onto Ci with 
\u\ = 1. 

It remains to show Ci is isometric to c. Define v from c to Ci by (*//)„ = ft if 
tii K n < tii+i. Then z;/ G Ci and \vf\ = |/|. If / G Ci let g be that element of c 
defined by g(i) = f(nx). Then (vg)n = gt = / n i = /„ if w* < n < wi+i. Thus 
vg = f and y is onto. 

4. Involutions of norm one in C(K) where K is compact and 
extremally disconnected. Kelley constructs a compact, extremally dis
connected H from the extreme points of the unit ball of B' if (B,Pi) and shows 
that B is isometric to C(H). In this section it is shown that if B is "conveniently 
situated in a C(K) space, with K compact and extremally disconnected, then 
the representation space H can be taken to be an open and closed subset of K. 

The following theorem is due to Stone (4, p. 86). Eilenberg (5) established 
the theorem for arbitrary topological H. 

THEOREM (Stone). If u is an isometry from C{L) onto C(K), where L and K 
are compact, then there is a homeomorphism w of K with L, and an element a of 
C(K) such that (uf)(k) = a{k)f(irk) and a takes only the values ± 1 . 

If K = L, then ir is a homeomorphism of K with K. This is the case con
sidered below. 

If 7T2 = 1 (the identity mapping), then w induces a linear mapping u of 
C{K) onto C(K) such that \u\ = 1 and u2 = 1 (such a wis called an involution). 
The map p = (1 — u)/2 is a projection and \p\ = |1 — p\ = 1. Moreover p 
(C(K)) = B, where B is the subspace of C(K) for which b G B if and only 
if ub = b, (1 — p)C(H) = X is the subspace x G X if and only if wx = — x. 

LEMMA. With the notation above there are disjoint subsets H and W of K such 
that H \J W = K and B,X are isometric to CW(K) and CH(K) respectively. 

Before proceeding with the proof an example will show why K is chosen to 
be extremally disconnected. Let K be the set of rationals of the form l/n, n a 
positive integer, and 0 using the relative topology of the reals. Let T be defined 
by 

*<°> = °' *G0 = 2^T ' ' G Ï ^ T ) = (£) 
for n > 1. Then w is a homeomorphism of K and TT2 = I. Let u be the induced 
involution. Then (uf)h = f(irh) and |w| = 1. Both B and X are infinite 
dimensional, and so W and H must both be infinite. The space K does not 
permit such a decomposition though it is a totally disconnected space. 

Proof of the Lemma. Let g be the set oîU CL K such that £/ is open and there 
is an x G X such that x(k) > 0 if k G £/. Order g by inclusion. If F is a simply 
ordered subset of % let F = W ^ ^ [/. 
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For each U G F choose xv such that xn(k) > 0 if k G Uy \xn\ < 1, and xv 

G X. The collection x^, U £ F is bounded above in C(K), and since C(i£) is 
a complete lattice, let y be the least upper bound of this collection. Clearly 
y(k) > 0 if k G F so that y(&) > 0 if & 6 "T which is an open set. 

Now irVC\ V = 0 a s follows: If K ^ r F H F , then TT& G F H T T F . Let 
* € ft, ft € F. Then irk G ft where ft G F for some ft. So either ft D ft 
or ft D ft since F is simply ordered. Suppose ft D ft. Then 7r&, K ft 
and Xc72(&) = — Xc72(7r̂ ) (since wx^ = —xU2) which is a contradiction to 
W * ' ) > 0 if *' G ft. 

Since TV and F are open and disjoint, TTV C\V = 0. One easily checks that 
TV = wV. Define f by 

( y(k) if k G V 
f(k) = \ -y(?ck) if k G TV 

{ 0 otherwise, 

Then it is easily seen that / G X and f(k) > 0 if k G F. Thus F has an upper 
bound and by Zorn's lemma let W be a. maximal element of j£~ 

As above W P\ irW = 0 and IF and irW are open. Hence TF P\ 7rFF = 0 
and TTW = irW. Define / by 

f(k) = \ - 1 if * G TW T h e n / G C(X) 
[ 0 otherwise, 

a n d / G X. Moreover/(£) > 0 if k G TT and since TF is open and IF is maximal, 
W = W. 

The next step is to show x{k) = 0 if k i W U irW (K - (W U TTIF) is the 
set of fixed points of ir). Assume, by way of contradiction, that k G W W irW 
exists such that x(k) > 0. Now X" — (W KJ wW) is open and closed and we 
choose an open and closed subset L of K — (W W wW) such that x(fe) > 0 on 
L. Letting 

(xWdktLKJirL 
U ' \ 0 otherwise, 

one checks that Xi € X and (xi + / ) (k) > 0 if k £ IF W Z,, where / is the 
function 

f 1 if k € IF 
/(*) = - j - l if * 6 xTf 

[ 0 otherwise. 

Since xi + / is in X, this contradicts the choice of W as maximal. If x(k) < 0 
repeat the above using — x. Thus x(fc) = 0 if k $ W W T I F . 

Let H = K — W so that iT is open and closed. Define y on X by 

, , , M /*(*) if k e w 
(vx)ik)=\0iîk(W 
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and let v on B be defined by 

fb(k) like H 
VU\K) — \ 

If/ £ CH(K), then let 

Vm=\0\ik(H. 

j(k) if k e w 
x(k) =i -i(irk) if k € TTW 

0 otherwise. 

Then x £ X and z/# = / so v is onto. If / G CV(X) let 

//(Jfe) ilk e H 

Then b e B and zrô = / . One easily checks that \vx\ = \x\, \vb\ = \b\ iî x £ X, 
b G B. 

Eilenberg (5, p. 577) showed that for any topological H if C(H) = B ® X 
and if |/| is the maximum of |ô| and \x\, where b is in B, x is in X, and f = b + x, 
then there are sets K and M such that K P\ M is empty, K W ikf = H, and 
£ Ç CK(H), x G CV (X). In this case the map u defined by u(b + x) = b — x, 
for x in X and b in B, is an involution and \u\ = 1. Not every u with \u\ = 1 
yields a decomposition of this type. As an example let H be the set of integers. 
Define u on m(H) by (uf)h = f( — h). There is a C(K) isometric to m(H) 
with K compact and extremally disconnected. The decomposition of C(K) 
induced by the involution of C(K) which corresponds to u is not the above 
type. From the lemma we can prove the following: 

THEOREM 11. Let K be compact and extremally disconnected and u an involution 
of C(K) with \u\ = 1. Let p be the projection (I + u)/2, pC(K) = B and 
(I — p) C{K) = X. Then there is an H and V with H C\ V empty, H\J V 
= K, and B is isometric to CV(K) while X is isometric to CH(K). 

Proof. Let uf(k) = a(k)f(irk) where a{k) = ± 1 for every k (see Stone's 
theorem above). Let U = \k\a(k) = 1}, W = {k\a(k) = - 1 } . Then U, W 
are open and closed, disjoint, and U \J W = K. Also if k Ç U and wk Ç W, 
then u2f(k) = a(k)uf(irk) = a(k)a{irk)f(k) (since 7r2& = k) = —f{k) which is 
a contradiction to u1 — I if we choose/ such that/(fe) =t= 0. Hence irU = U, 
irW = W. Define W\ on B by 

, ( h , jb(k) iîke u 
Wim=\oitkew. 

Then W\b £ £ (using that irU = U, irW = W) and we denote W\B by B\. 
Similarly, define W\ on X and denote the image W\X by Xi. Eve ry / Ç CW(K) 
is clearly of the form bi + Xi for some bx £ Bi and Xi Ç X1 and w restricted 
to CW(K) is such that u2 = I and |w| = 1. Identify CW{K) with C(f/) by 
letting /(*) = f(h) ii he U, fih) = 0 if h $ U, where / £ C(C/); there are 
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subsets VhHh of U which are open, closed, disjoint and Vi U Hi = [/, and 
such that Bi and Xi are isometric to CVl[}w{K) and CHivw(K) respectively. 

Defining w2 on B by 

Uh. (b(k) iikeW 
W f 6 ( * ) B = \ o i f * e J7f 

and similarly on X, and denoting w2B by £ 2 and w2X by X2} then w restricted 
to CV(K) is such that u1 = 7. Here the set of fixed points of u is X2 and 
-S2 = {/ G Cu(K)\uf = — / } . Reversing the roles of 5 and X in the lemma 
there are subsets V2 and i72 of W which are open, closed, disjoint, and V2 U H2 

= W and such that B2 is isometric to CV2[JU(K) and X2 is isometric to 

Let Pi and v2 be isometric mappings of Bi and Z?2 onto CFlUTF(i^) and 
CV2[JU(K) respectively. Now B = Bx 0 B2 and if b = bi + b2 with ôi Ç 5 i 
and b2 Ç J52, then |6| = max (|6i|, |ô2|). Define v on 5 by vb = Vibi + v2b2. 
Then v is onto CFlUTr(X) © CV2UC7(i£) = CFlUF2(X) and \v\b\ + v2b2\ 
= max (|̂ Z>i|, |^ô2|) = |Z>|. Similarly, X is isometric to CHl[JH2(K). Put 
7 = 7i U 72, H = Hi U i72. 
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