PROJEGTIONS IN CERTAIN CONTINUOUS FUNCTION SPACES C(H) AND SUBSPACES OF $\mathbf{G}(\mathrm{H})$ ISOMORPHIC WITH $\mathrm{C}(\mathrm{H})$

DAVID W. DEAN

Notation. If A and B are sets then $A-B=\{x \mid x \in A, x \notin B\}$. This notation is also used if A and B are linear spaces. If X and Y are Banach spaces an embedding of X into Y is a continuous linear mapping u of X onto a closed subspace of Y which is $1-1$. In this case X is said to be embedded in Y. If $|u x|=|x|$ for every $x \in X(|\ldots|$ stands for norm), then u embeds X isometrically into Y. If u is onto then X and Y are isomorphic and if, in addition, $|u x|=|x|$ for every $x \in X$, then X and Y are isometric. Then an embedding u has a continuous inverse $u^{-1}(4, \mathrm{p} .36)$ defined on $u X$ and this fact is used below without further reference. The conjugate space of X is denoted by X^{\prime}. Unless otherwise noted, all topological spaces considered are Hausdorff spaces.

1. Introduction. We consider Banach spaces over the real numbers R only.

Let B be a Banach space with the following property: If X is a subspace of a Banach space Y and if u is a bounded linear map from X to B, then u has a bounded extension u_{1} from Y to B. Such a B is said to have property P, or the extension property, and we write (B, P). If u_{1} can always be taken so that $\left|u_{1}\right| \leqslant t|u|$, then B is said to have property P_{t} and we write $\left(B, P_{t}\right)$ (4, pp. $94-95)$. If B has the above property subject to the restriction that Y be separable, B is said to have the separable extension property and we write (B, S) and $\left(B, S_{t}\right)$ in place of (B, P) and $\left(B, P_{t}\right)$ respectively. Clearly (B, P) implies (B, S) and (B, P_{t}) implies $\left(B, S_{t}\right)$.

With the above terminology the Hahn-Banach theorem asserts $\left(R, P_{1}\right)$. Phillips (13, p. 538) noted that for any set H one has $\left(m(H), P_{1}\right)$ where $m(H)$ is the set of bounded real-valued functions on H with supremum norm. Goodner (6) and Nachbin (12) characterized (B, P_{1}) spaces as spaces isometric to a $C(H)$ space with H compact and extremally disconnected, provided the unit ball of B has an extreme point.* Kelley (10) removed the extreme point assumption. Implicit in the proofs of these characterizations was the theorem:

If $Y \supset B$ and $Y / B=R$ implies there is a projection with norm one from Y to B, then $\left(B, P_{1}\right)$. In § 3 a different proof of this is given. In § 4 another representation of a P_{1} space is given provided it is well situated in a $\mathrm{C}(H)$ space

[^0]where H is compact and extremally disconnected. The condition is that there exists a projection p such that if $u=2 p-I$, then $|u|=1$.

The following (4, p. 94) are equivalent for a Banach space B:
(a) (B, P),
(b) If $X \supset B$ there is a continuous projection p of X onto B.
(c) If $Y \supset B_{1}$ and B_{1} is isomorphic to B there is a continuous projection p of Y onto B_{1}.
(d) If B_{1} is an embedding of B in some $m(H)$, there is a continuous projection of $m(H)$ onto B_{1}.

The proofs are similar to calculations in Theorem 7 below. From these conditions it is seen that if (B, P), then $\left(B, P_{t}\right)$ for some t since, letting u be an isometric embedding of B in some $m(H)$ and p a projection of $m(H)$ onto $u(B)$, then if $X \supset Y$ and v is a map of Y to B, the map $u v$ of Y to $m(H)$ has an extension $v_{1},\left|v_{1}\right|=|u v|$. The map $u^{-1} p v_{1}$ is an extension of v from Y to B, and $\left|u^{-1} p v_{1}\right| \leqslant\left|u^{-1}\right||p|\left|v_{1}\right|$ so that $|p|$ provides a t.

Akilov observed that if B is a complete Banach lattice whose unit ball has a least upper bound y, then $\left(B, P_{|y|}\right)$. If $Y \supset X$, and u is a map from X to B, substituting the function $p, p(x)=|u||x| y$, for the subadditive linear functional in the proof of the Hahn-Banach theorem, one shows there exists an extension u_{1} of u and $\left|u_{1}\right| \leqslant|u||y|(\mathbf{6}$, p. 94). If H is compact and extremally disconnected, then $C(H)$ is a complete Banach lattice whose unit sphere has a least upper bound $y, y(h)=1$ for all h, and $|y|=1$ (6, p. 103). Hence Kelley's result and Akilov's result with $|y|=1$ provide complete characterizations of spaces (B, P_{1}).

Goodner (6, p. 102) proved that if B is a sublattice of $C(H)$ and p is a projection of $C(H)$ onto B with $|p|=1$, then $U(B)$ has a least upper bound y and $|y|=1$. Hence (4, p. 101) there is $C(K)$ for which B is isometric to $C(K)$. The important step is to show that p is a positive map, that is, if $f \geqslant 0$, then $p f \geqslant 0$.

Theorem 1. If $B \subset C(H)$ and p is a positive projection of $C(H)$ onto B, then B is a Banach lattice whose unit sphere has an upper bound. Hence (4, p. 101) B is isomorphic to $C(K)$ for some K. If H is compact and extremally disconnected then B is a complete lattice and B is isomorphic to a space with property P_{1}.

Proof. Define an order in B by saying b is non-negative in B if and only if there is an $f \geqslant 0$ in $C(H)$ for which $p f=b$. Let F be the set of such b. Then F is a closed cone (4, p. 97) and so orders B. If b_{1} and $b_{1}-b$ are in F, then b_{1} and $b_{1}-b$ are non-negative in $C(H)$. Hence $b_{1} \geqslant b \vee 0$, where $b \vee 0$ stands for $\sup (b, 0)$ in the lattice (and $b \wedge 0=\inf (b, 0)$), so $p b_{1}=b_{1} \geqslant$ $p(b \vee 0)$. Hence $p(b \vee 0)$ provides a supremum in B for b and 0 . Also $p(b \wedge 0)$ then provides an infimum so that B is a lattice. If $p(b \vee 0)-p(b \wedge 0)-$ $\left(p\left(b_{1} \vee 0\right)-p\left(b_{1} \wedge 0\right)\right)$ is non-negative in B, it is non-negative in $C(H)$, and since $p\left(b_{1} \vee 0\right)-p\left(b_{1} \wedge 0\right) \geqslant 0$,

$$
|p(b \vee 0)-p(b \wedge 0)| \geqslant\left|p\left(b_{1} \vee 0\right)-p\left(b_{1} \wedge 0\right)\right|
$$

so that B is a Banach lattice. Also $U(B)$ has an upper bound $p(i)$ where $i(h)=1$ for all h. If H is compact and extremally disconnected then $C(H)$ is a complete lattice. Let A have an upper bound in B, say b. Then b is an upper bound for A in $C(H)$ and if x is the supremum of A in $C(H), b \geqslant x$, and $p b=b \geqslant p x$ so $p x$ is a supremum for A in B.

To prove the last part we have that B is a complete Banach lattice whose unit ball has a least upper bound $e=p(i)$. Hence ($B, P_{|e|}$).

Define a new norm on B by letting $\|b\|$ be the greatest lower bound of all t for which $-t e \leqslant b \leqslant t e$. If $|b| \leqslant 1$, then $-i \leqslant b \leqslant i$ so $\|b\| \leqslant 1$. Hence B is isomorphic to B with its new norm (4, p. 37). If $b \vee 0+(-b) \vee 0 \geqslant c \vee 0$ $+(-c) \vee 0$ and if $t e \geqslant b \vee 0+(-b) \vee 0$, then $t e \geqslant c \vee 0+(-c) \vee 0$ so that $\|b \vee 0+(-b) \vee 0\| \geqslant\|c \vee 0+(-c) \vee 0\|$. Hence with the new norm B is a complete Banach lattice whose unit sphere has a least upper bound e, and $\|e\|=1$, and so B with its new norm is a P_{1} space.

Substituting a Banach lattice Y for $C(H)$, then the above proof shows that B can be given an order in which it is a Banach lattice having a unit if Y has and complete if Y is.

The Banach spaces m, c, c_{0} are the spaces of bounded sequences, convergent sequences, and sequences convergent to 0 respectively. In each case

$$
|x|=\sup _{n}\left|x_{n}\right|,
$$

for $n \in N . N$ stands for the positive integers. Clearly $c_{0} \subset c \subset m$. Phillips (13, p. $539 ; 8$) showed there is no continuous projection of m onto c_{0}. His main step was (4, p. 32) to show that if u is a map of m to c_{0}, then u^{2} is a compact map. Grothendieck (7, p. 169) proved that if B is a separable subspace of $C(H)$ with H compact and extremally disconnected then there is no continuous projection of $C(H)$ to B unless B is finite dimensional.

Goodner (6, p. $98 ; \mathbf{1}$) showed that no L space whose dimension is greater than two has property P_{1}. In (3) it is shown that a map p from a $C(H)$ space to a weakly complete subspace is weakly compact and that p^{2} is then compact. Hence an infinite dimensional weakly complete space cannot have property P. In particular, no infinite dimensional reflexive space or L space can have property P.

Sobczyk (15) proved that if $X \supset c_{0}$ and if X is separable, then there is a projection p of X to c_{0} and $|p| \leqslant 2$ (see § 3 below). Hence (c_{0}, S_{2}).

These results answer affirmatively Banach's conjecture (2, pp. 192-193) that $\operatorname{dim}_{1}(X)=\operatorname{dim}_{1}(Y)$ is not sufficient to prove X is isomorphic to Y. Form $X=m \oplus c_{0}$, where if $f=f_{1}+f_{2}, f_{1} \in m, f_{2} \in c_{0}$, then $|f|=\max \left(\left|f_{1}\right|\right.$, $\left|f_{2}\right|$. Then $\operatorname{dim}_{1}(X)=\operatorname{dim}_{1}(m)$; but if u is an isomorphism of m onto X, then $u^{-1} p u$ is a projection of m onto $u c_{0}$, where p is the projection $p f=f_{2}$. Hence no such u exists and X and m are not isomorphic. Similarly, $\operatorname{dim}_{1}(C([0,1]))$ $\left.\operatorname{dim}_{1} C([0,1]) \oplus 1_{2}\right)$, but $C([0,1])$ is not isomorphic to $C([0,1]) \oplus 1_{2}$. In
$\S 2$ it is shown that if $\left(X, P_{s}\right)$ and if $\operatorname{dim}_{1}(X)=\operatorname{dim}_{1}(m)$, then X is isomorphic to m. In this section we examine a class of subspaces of certain $C(H)$ spaces and show they are isomorphic to the given $C(H)$ space.

In § 3 we consider separable spaces with property S and give new proofs of Sobczyk's result and a recent result of McWilliams (11).
2. A class of subspaces of $C(H)$ isomorphic to $C(H)$. A class of spaces was examined in Theorem 1 which includes, up to isomorphism, finite dimensional spaces and finite direct sums of P_{1} spaces. An element of the class was found to be isomorphic to a P_{1} space. In this section the remaining known P_{ι} spaces are shown to be isomorphic to P_{1} spaces.

Definition. A Banach space of sequences X is a Banach space whose elements are sequences $x=\left\{x_{n}\right\}$ of real numbers and if d_{n} is defined on X by $d_{n}(x)=x_{n}$, then $\left\{d_{n}\right\}$ is a uniformly bounded sequence in X^{\prime}.

Notation. If u is a continuous linear mapping from the Banach space X to the Banach space Y, denote by u^{\prime} the conjugate mapping

$$
u^{\prime}: Y^{\prime} \rightarrow X^{\prime}\left(u^{\prime} y^{\prime}(x)=y^{\prime}(u x) \text { for every } x \in X, y^{\prime} \in Y^{\prime}\right)
$$

Theorem 2. Let X be a Banach space of sequences and let u be an isomorphism of X into the Banach space B. Suppose p is a continuous projection from B onto $u X$. Define $d_{i} \in X^{\prime}$ as above, and let $e_{i}=\left(u^{-1} p\right)^{\prime} d_{i}$. Let $\left\{n_{i}\right\}$ be a subsequence of N. If $X_{1}=\left\{x \in X \mid x_{n_{i}}=0, i=1,2, \ldots,\right\}$ is isomorphic to X, then $B_{1}=\left\{b \in B \mid e_{n_{i}}(b)=0, i=1,2, \ldots,\right\}$ is isomorphic to B.

Proof. Let $v\left(X_{1}\right)=X$ be the promised isomorphism of X_{1} onto X and let $q=1-p+u v^{-1} u^{-1} p$.
$q: B \rightarrow B_{1}$: We have $u^{-1} p q=u^{-1} p u v^{-1} u^{-1} p=v^{-1} u^{-1} p$ since $u^{-1} p(1-p)=0$ and $p u=u$. Hence $e_{n_{i}}(q b)=d_{n_{i}}\left(v^{-1} u^{-1} p b\right)=0$ and so $q b \in B_{1}$ for every $b \in B$.
$q B=B_{1}$: Let $b_{1} \in B_{1}$. Then $u^{-1} p b_{1}=x_{1} \in X_{1}$ since $d_{n i}\left(x_{1}\right)=\left(u^{-1} p\right)^{\prime} d_{n i}\left(b_{1}\right)$ $=e_{n_{i}}\left(b_{1}\right)=0$ for each i. Let $b=u v u^{-1} p b_{1}$. Then

$$
q\left((1-p) b_{1}+b\right)=(1-p) b_{1}+u v^{-1} u^{-1} p(1-p) b_{1}+(1-p) b+u v^{-1} u^{-1} p b
$$

$$
=(1-p) b_{1}+0+0+u v^{-1} u^{-1} p u v u^{-1} p b_{1}=(1-p) b_{1}+p b_{1}=b_{1}
$$

q is $1-1$: If $q b=0$, then $(1-p) b=0=u v^{-1} u^{-1} p b$, since $(1-p) b \in$ $(1-p) B$ and $u v^{-1} u^{-1} p b \in p B$. Thus $p b=b$ so that $0=u v^{-1} u^{-1} p b=u v^{-1}$ $u^{-1} b$. Since $u v^{-1} u^{-1}$ is $1-1, b=0$. Q.E.D.

If H is compact and if there is a sequence $\left\{h_{n}\right\} \subset H$ of distinct elements and if

$$
h_{n} \xrightarrow{n \rightarrow \infty} h_{0} \notin\left\{h_{n}\right\}
$$

one constructs an image of c_{0} in $C(H)$ as follows. About each h_{n} choose an open neighbourhood U_{n} such that $U_{j} \cap U_{n} \neq \phi$ implies $j=n$. Select $b_{n} \in$ $C(H)$ such that $\left|b_{n}\right|=1=b_{n}\left(h_{n}\right)$ and $b_{n}(h)=0$ if $h \notin U_{n}$. If $x \in c_{0}$ the functions $\sum_{1}{ }^{k} x_{n} b_{n}=f_{k}$ form a Cauchy sequence in $C(H)$ so that

$$
g_{k} \xrightarrow{k \rightarrow \infty} g
$$

for some $g \in C(H)$ and $g\left(h_{n}\right)=x_{n}$ for each $n \in N$. Hence c_{0} can be embedded in $C(H)$ by letting $u x=g$.

Corollary 2.1. If $\left\{h_{n}\right\}$ is a sequence of distinct elements in a compact space H such that $h_{n} \rightarrow h_{0} \notin\left\{h_{n}\right\}$, and if $\left\{h_{n i}\right\}$ is a subsequence of $\left\{h_{n}\right\}$ such that $\left\{h_{n}\right\}$ $\left\{h_{n_{i}}\right\}$ is infinite, then $B_{1}=\left\{b \in C(H) \mid b\left(h_{n_{i}}\right)=0\right\}$ is isomorphic to $C(H)$.

Proof. With the above notation define w from $C(H)$ to c_{0} by $(w b)_{n}=$ $b\left(h_{n}\right)-b\left(h_{0}\right)$. Then $p=u w$ is a projection from $C(H)$ onto $u\left(c_{0}\right)$. It is easily seen that if $X_{1}=\left\{x \in c_{0} \mid x_{n_{i}}=0\right\}$, then c_{0} is isomorphic to X_{1}. Using the notation of Theorem 2 one has that $b_{1} \in B_{1}$ if and only if $e_{n_{i}}(b)=0$ since $b_{1} \in B_{1}$ implies

$$
e_{n i}\left(b_{1}\right)=d_{n_{i}}\left(u^{-1} p b_{1}\right)=d_{n_{i}}\left(w b_{1}\right)=b_{1}\left(h_{n_{i}}\right)=0
$$

and if $e_{n i}\left(b_{1}\right)=0$, then $b_{1}\left(h_{n i}\right)=0$ so that $b_{1} \in B_{1}$.
By Theorem $2 C(H)$ is isomorphic to B_{1}.
Remarks. With the hypothesis of Corollary 2.1 one can project from $C(H)$ onto B_{1}. If q on c_{0} is defined by

$$
(q x)_{j}=\left\{\begin{array}{l}
0 \text { if } j \in\left\{n_{i}\right\} \\
x_{j} \text { otherwise }
\end{array}\right.
$$

define p_{1} by $\left(p_{1} b\right)(h)=(u q w-u w+1) b(h)-b\left(h_{0}\right)$ for every $b \in B, h \in H$.
If $b_{1} \in B_{1}$, then $w b_{1} \in X_{1}$ so that $q w b_{1}=w b_{1}$ and $b\left(h_{0}\right)=0$ so $p_{1} b_{1}=$ $u q w b_{1}-u w b_{1}+b_{1}=u w b_{1}-u w b_{1}+b_{1}=b_{1}$. If $b \in C(H)$, then

$$
\begin{aligned}
(u q w b-u w b+b) h_{n_{i}} & =(q w b)_{n_{i}}-(u w b) h_{n_{i}}+b\left(h_{n_{i}}\right) \\
& =b\left(h_{n_{i}}\right)-(u w b) h_{n i} \\
& =b\left(h_{n_{i}}\right)-(w b)_{n_{i}} \\
& =b\left(h_{n_{i}}\right)-b\left(h_{n_{i}}\right)+b\left(h_{0}\right) \\
& =b\left(h_{0}\right) \\
\text { so } \quad\left(p_{1} b\right) h_{n_{i}} & =0
\end{aligned}
$$

and thus $p_{1} b \in B_{1}$.
Notation. If $W \subset H$ denote by $C_{W}(H)$ the set of $b \in C(H)$ such that $b(h)=$ 0 if $h \in W$. Thus with the conditions of Corollary 2.1 we have $C_{\left\{h_{n_{i}}\right\}}(H)$ is isomorphic to $C(H)$.

Theorem 3. In any infinite topological H, if $C(H)=B \oplus Y$, where B and Y are closed and Y is finite dimensional, there are points h_{1}, \ldots, h_{n} such that B is isomorphic to $C_{\left\{h_{1}, \ldots, h_{n}\right\}}(H)$.

Proof. We use induction on n, the dimension of Y. If $Y=(y)^{*}$, define $p f=f-f\left(h_{1}\right) x$ where h_{1} is such that $y\left(h_{1}\right) \neq 0$ and $x=\left(1 / y\left(h_{1}\right)\right) y$. Then $p f\left(h_{1}\right)=f\left(h_{1}\right)-f\left(h_{1}\right) x\left(h_{1}\right)=0$ and $p f=f$ if $f\left(h_{1}\right)=0$. Hence p is a projection of $C(H)$ onto $C_{\left\{h_{1}\right\}}(H)$. $(p y) h=x(h)-x\left(h_{1}\right) x(h)=x(h)-x(h)$ so

[^1]$p x=0$. Hence $p B=C_{\left\{h_{1}\right\}}(H)$. If $p b=0$, then $b(h)-b\left(h_{1}\right) x(h)=0$ for all h so $b=b\left(h_{1}\right) x$. Since b and x are in complementary subspaces, $b=0$ and p is an isomorphism of B with $C_{\left\{h_{1}\right\}}(H)$.

Assume the theorem true if $\operatorname{dim}(Y)=n-1$ and let $C(H)=B \oplus Y$ where $\operatorname{dim}(Y)=n$, say $Y=\left(y_{1}, \ldots, y_{n}\right)$. Then $C(H)=B \oplus\left(y_{1}\right) \oplus$ $\left(y_{2}, \ldots, y_{n}\right)$ and, by the induction hypothesis, there are points h_{2}, \ldots, h_{n} such that $B \oplus\left(y_{1}\right)$ is isomorphic to $C_{\left\{h_{2}, \ldots, h_{n}\right\}}(H)$. Let v be the isomorphism. Let $v y_{1}=x$ and h_{1} a point at which $x\left(h_{1}\right) \neq 0$.

Let $f_{1}=\left(1 / x\left(h_{1}\right)\right) x$. Let p be the projection of

$$
C_{\left\{h_{2}, \ldots, h_{n}\right\}}(H) \text { onto } C_{\left\{h_{1}, \ldots, h_{n}\right\}}(H)
$$

defined by $p f=f-f\left(h_{1}\right) f_{1}$. Consider the map $p v$ of B onto

$$
C_{\left\{h_{1}, \ldots, h_{n}\right\}}(H),\left(p v y=p x=x-x\left(h_{1}\right) f_{1}=0\right) .
$$

If $p v b=0$, then $v b=(v b)\left(h_{1}\right) f_{1}$ or

$$
v b=\frac{(v b)\left(h_{1}\right)}{x\left(h_{1}\right)} x=\frac{(v b)\left(h_{1}\right)}{x\left(h_{1}\right)} v y_{1} .
$$

Since v is an isomorphism $(v b)\left(h_{1}\right)=0$ so $v b=0$ and $b=0$.
For some proofs of the next assertions see the remarks following the proof of Theorem 6 below. If H is infinite, compact, and extremally disconnected, and if h_{1}, \ldots, h_{k} are distinct points of H one can choose open and closed neighbourhoods V_{i} of h_{i} such that $V_{i} \cap V_{j}=\phi$ if $i \neq j$ and such that $H-\left(\cup_{i \leqslant k} V_{i}\right)$ is infinite. If h_{k+1} is not in $\cup_{i \leqslant k} V_{i}$ then an open and closed neighbourhood V_{k+1} of h can be chosen so that $V_{k+1} \cap\left(\cup_{i \leqslant k} V_{i}\right)=\phi$ and $H-\left(\cup_{i \leqslant k+1} V_{i}\right)$ is infinite. Thus one can choose a sequence V_{i} of open, closed, and mutually disjoint sets so that $H-\left(\cup_{i \leqslant k} V_{i}\right)$ is infinite for each k. James (8) shows that m can be embedded as a subspace m_{1} of $C(H)$ (and so (B, P_{1}) implies B is finite dimensional or not separable) of functions constant on each V_{i} and vanishing off $\overline{U_{i} V_{i}}$. If $f \in m_{1}$ corresponds to $x \in m$, then $f(h)=x_{i}$ if $h \in V_{i}$.

Theorem. 4 If H is compact and infinite and if H contains a convergent sequence of distinct elements or if H is extremally disconnected then a complement of a finite dimensional subspace in $C(H)$ is isomorphic to $C(H)$.

Proof. Let $h_{j}{ }^{\prime} \rightarrow h_{0}$, where $h^{\prime}{ }^{\prime}$ is a convergent sequence of distinct points. If $C(H)=X \oplus B$ where X is finite dimensional and B is closed, then by Theorem 3, B is isomorphic to

$$
\left.C_{\left\{h_{1}\right.}, \ldots, h_{k}\right\}(H),
$$

for some h_{1}, \ldots, h_{k} and, clearly, these h_{j} may be chosen so that $h_{0} \neq h_{j}, j=$ $1, \ldots, k$. By dropping to a subsequence if necessary we can further assume that $h_{\mathrm{f}}, \ldots, h_{k} \notin\left\{h_{j}{ }^{\prime}\right\}$. Let $h^{\prime \prime}$ be the sequence

$$
h_{j}^{\prime \prime}= \begin{cases}h_{j} & \text { if } j \leqslant k \\ h_{j-k}^{\prime} & \text { if } j>k\end{cases}
$$

The subspace of c_{0} of those x such that $x_{j}=0$ if $j \leqslant k$ is isomorphic to c_{0} and so by Corollary 2.1

$$
C_{\left\{h_{1}, \ldots, h_{k}\right\}}(H)
$$

is isomorphic to $C(H)$.
If H is compact and extremally disconnected construct the sets V_{i} such that $h_{i} \in V_{i}, i \leqslant k$. Since those elements of m vanishing on the first k co-ordinates form an isomorphic subspace of m, again

$$
C_{\left\{h_{1}, \ldots, n_{k}\right\}}(H)
$$

is isomorphic to $C(H)$, by Theorem 2 .
Remarks. The following properties of a compact, extremally disconnected H are needed below.

If U is open, then \bar{U} is open. Equivalently: if U and V are disjoint open sets, then $\bar{U} \cap \bar{V}=\phi$. This property defines an extremally disconnected space.

If U is an infinite open and closed set in H and if $h \in U$, then $U-\{h\}$ contains an infinite open and closed set.

Proof. If, for each neighbourhood V of h such that $V \subset U, U-V$ is finite, then each sequence $\left\{h_{n}\right\} \subset U-\{h\}$ of distinct elements is open and $\overline{\left\{h_{n}\right\}}=$ $\left\{h_{n}\right\} \cup\{h\}$. Thus two such sequences which are disjoint are open and do not have disjoint closures. Hence there is a neighbourhood V of h such that $U-V$ is infinite. If $f \in C(H)$ takes the value 1 on $U-V, 0$ at h, and 0 off U, then

$$
\overline{\left\{h^{\prime} \left\lvert\, \bar{f}\left(h^{\prime}\right)>\frac{1}{2}\right.\right\}}
$$

is infinite, open, and closed.
Theorem 5. If H is compact and extremally disconnected and if m is embedded in $C(H)$ as a space of functions \bar{m} constant on each V_{i} where $\left\{V_{i}\right\}$ is a sequence of mutually disjoint open and closed sets, let $h_{i} \in V_{i}$. Suppose $f\left(h_{i}\right)=x_{i}$ if f corresponds to x in the embedding. Then a subspace B of $C(H)$ complementary to \bar{m} is isomorphic to $C(H)$ or is finite dimensional.

To prove this theorem we use the following:
Lemma. If $X=X_{1} \oplus X_{2} \oplus X_{3}$ where X is a Banach space and X_{1}, X_{2}, X_{3} are closed subspaces, and if $X_{2} \oplus X_{3}$ is isomorphic to X_{2}, then $X_{1} \oplus X_{2}$ is isomorphic to X.

Proof. Let u be an isomorphism of X_{2} onto $X_{2} \oplus X_{3}$. Identifying an element x_{j} of X_{j} with the element $x_{2} \oplus 0$ or $0 \oplus x_{3}$ in $X_{2} \oplus X_{3}$ one has u^{-1} defined on X_{j} to X_{2}. Let p_{i} be the projection of X to X_{i} given by the decomposition $X=X_{1} \oplus X_{2} \oplus X_{3}$ and let w be defined on $X_{1} \oplus X_{2}$ by $w=p_{1}+u p_{2}$. Then w is linear and continuous.

Suppose $w f=0=p_{1} f+u p_{2} f$. Since $p_{1} f$ and $u p_{2} f$ are in complementary subspaces of $X, p_{1} f=0=u p_{2} f$ and so $p_{2} f=0$ since u is an isomorphism. Since $f \in X_{1} \oplus X_{2}, p_{1} f+p_{2} f=f=0$ so that w is $1-1$.

It remains to show w is onto. Let $x=\bar{x}+x_{3}$ where $\bar{x} \in X_{1} \oplus X_{2}$ and $x_{3} \in$ X_{3}. For some $x_{2} \in X_{2}, u x_{2}=x_{3}$ and let $f=p_{1} \bar{x}+u^{-1} p_{2} \bar{x}+x_{2}$. Then $w f=$ $=p_{1}{ }^{2} \bar{x}+p_{1} u^{-1} p_{2} \bar{x}+p_{1} x_{2}+u p_{2} p_{1} \bar{x}+u p_{2} u^{-1} p_{2} \bar{x}+u p_{2} x_{2}$. Since $p_{1}{ }^{2} \bar{x}=p_{1} \bar{x}$, $p_{1} u^{-1} p_{2}=0, p_{1} x_{2}=0, p_{2} p_{1}=0$, then $u p_{2} p_{1} \bar{x}=0, p_{2} u^{-1}=u^{-1}, u p_{2} u^{-1} p_{2} \bar{x}=$ $p_{2} \bar{x}$. Finally $p_{2} x_{2}=x_{2}$ so that $u p_{2} x_{2}=u x_{2}=x_{3}$. Thus the equation reduces to $w f=p_{1} \bar{x}+p_{2} \bar{x}+x_{3}=\bar{x}+x_{3}=x$. Hence w is onto.

Proof of Theorem 5. Let w be the embedding of m to \bar{m}. If p is defined by $p f=w x$, where $x_{j}=f\left(h_{j}\right)$, then p is a projection of $C(H)$ onto \bar{m}. Clearly $p f=0$ if and only if $f \in C_{\left\{h_{i}\right\}}(H)$ so that $C_{\left\{h_{i}\right\}}(H)$ is complementary to m. Let u be defined on B by $u b=f$, where $b=f+x$ and $f \in C_{\left\lfloor h_{i 3}\right\}}(H), x \in \bar{m}$. Then u is linear, continuous, and $1-1$ (if $b=x$, then $b=0=x$ since B and \bar{m} are complementary). If $f \in C_{\left\{h_{i}\right\}}(H)$ and if $f=b+x$, where $b \in B$ and $x \in \bar{m}$, then $b=f+(-x)$ so that u is onto. Hence B is isomorphic to $C_{\left.\mid h_{i}\right]}(H)$ and it is enough to show $C_{\left\{h_{i}\right\}}(H)$ is isomorphic to $C(H)$.

If we can write $C(H)=A \oplus m_{1} \oplus \bar{m}$ where A, m_{1} are closed subspaces of

$$
C_{\left\{h_{i}\right\}}(H), C_{\left\{h_{i}\right\}}(H)=A \oplus m_{1}
$$

and m_{1} is isomorphic to m, then it is easily seen that $m_{1} \oplus \bar{m}$ is isomorphic to m, so the lemma will conclude the proof. Since $f \in C_{\{h i\}}(H)$ if and only if

$$
f \in C_{\left\{h_{i}\right\}}(H)
$$

and since $C_{\left\{h_{i}\right\}}(H)$ is infinite dimensional, it follows that $H-\overline{\left\{h_{i}\right\}}$ is infinite.
Suppose now that if V is an open set such that $\overline{\left\{h_{i}\right\}} \subset V$, then $H-V$ is finite. Then $H-\overline{\left\{h_{i}\right\}}$ is a discrete set and let $\left\{h_{n}{ }^{\prime}\right\}$ be a sequence of distinct points in $H-V$. Embed c_{0} in $C(H)$ by letting $u x(h)=0$ if $h \notin\left\{h_{n}{ }^{\prime}\right\}$ and x_{n} if $h=h_{n}{ }^{\prime}$.

To show $u x \in C(H)$, clearly $u x$ is continuous at h if $h \in H-\overline{\left\{h_{i}\right\}}$. If $h \in \overline{\left\{h_{i}\right\}}$ choose k such that $n>k$ implies $x_{n}<\epsilon$. Then $H-\left\{h_{1}{ }^{\prime}, \ldots, h_{n}{ }^{\prime}\right\}$ is a neighbourhood of any point in $\overline{\left\{h_{j}\right\}}$ and $u x(h)<\epsilon$ if $h \in H-\left\{h_{1}{ }^{\prime}, \ldots\right.$, $\left.h_{n}{ }^{\prime}\right\}$. Thus $u x$ is continuous at every point so that $u x \in C(H)$.

Clearly u is an isomorphism of c_{0} into $C(H)$ and we can project from $C\left\{n_{i}\right\}$ (H) onto $u c_{0}$, say by q. Then $q(1-p)$ is a projection of $C(H)$ onto $u c_{0}$, contradicting Grothendieck's Theorem (see the Introduction).

Hence there is an open set V containing $\left\{h_{i}\right\}$ such that $H-V$ is infinite. If $f \in C(H)$ is such that $f(h)=0$ if $h \in\left\{h_{i}\right\}$ and $f(h)=1$ if $h \in H-V$, then $W=\overline{\left\{h \left\lvert\, f(h)>\frac{1}{2}\right.\right\}}$ is an infinite open and closed set in $H-\overline{\left\{h_{i}\right\}}$.

Now W in the relative topology is compact and extremally disconnected so that we can embed m in $C(W) . C(W)$ can then be embedded in

$$
C_{\left\{h_{i}\right\}}^{-}(H) \subset C(H)
$$

by letting

$$
u f(h)= \begin{cases}f(h) & \text { if } h \in W \\ 0 & \text { if } h \notin W\end{cases}
$$

Thus m can be embedded isomorphically in

$$
C_{\left\{n_{i}\right\}}(H) .
$$

Remarks. If H is compact and extremally disconnected, then $C_{\left\{h_{i}, \ldots, h_{n}\right\}}$ and $C_{\left\{h_{i}\right\}}(H)$ are complete lattices. They do not have units however, and hence they are not in the class considered in Theorem 1, unless $\left\{h_{1}, \ldots, h_{n}\right\}$, $\left\{h_{i}\right\}$ are open and closed.

We conclude this section with a sufficient condition that a subspace of m be isomorphic to m.

Theorem 6. Let $m=A \oplus B$ where A and B are closed subspaces of m. Then there are subspaces \bar{m} and A_{1} of m isomorphic to m and A respectively and such that $m=A_{1} \oplus \bar{m}$.

Corollary. If $\left(X, P_{s}\right)$ and if $\operatorname{dim}_{1}(X)=\operatorname{dim}_{1}(m)$, then X and m are isomorphic.

Proof. Since $\operatorname{dim}_{1}(X)=\operatorname{dim}_{1}(m), X$ is isomorphic to a subspace A of m and m is isomorphic to a subspace m_{1} of X. Both A and m_{1} are P_{t} spaces for some t so we can write $m=A \oplus B$ and $X=m_{1} \oplus Y$ for closed subspaces B of m and Y of X.

Theorem 6 promises that $m=A_{1} \oplus \bar{m}$ where A_{1} and \bar{m} are isomorphic to A and m respectively. Then X and A_{1} are isomorphic, say under $u, u X=A_{1}$. Then $A_{1}=u m_{1} \oplus u Y=m_{2} \oplus B_{1}$ where m_{2} is isomorphic to m.

Thus we can write $m=B_{1} \oplus m_{2} \oplus \bar{m}$. Since m_{2} is isomorphic to $m_{2} \oplus \bar{m}$, Theorem 4 asserts that $B_{1} \oplus m_{2}$ is isomorphic to m.

Proof of Theorem 6. Loosely, the proof proceeds thus.
$m=A \oplus B=m_{1} \oplus m_{2} \oplus \ldots=\left(A_{1} \oplus B_{1}\right) \oplus\left(A_{2} \oplus B_{2}\right) \oplus \ldots=$
$=A_{1} \oplus\left(B_{1} \oplus A_{2}\right) \oplus\left(B_{2} \oplus A_{3}\right) \oplus \ldots=A_{1} \oplus \bar{m}_{1} \oplus \bar{m}_{2} \oplus \ldots=$
$=A_{1} \oplus \bar{m}$. The $A_{j}, B_{j}, m_{j}, \bar{m}_{j}, \bar{m}$ are isomorphic to A, B, m, m, m respectively.
Choose subsequences $a_{i}=\left\{n_{1}{ }^{i}, n_{2}{ }^{i}, \ldots\right\}$ of N (the positive integers) such that $a_{i} \cap a_{j}=\phi$ if $i \neq j, i=1,2, \ldots$; and such that $\cup_{i} a_{i}=N$. Define q_{i}, s_{i} on m to m by $q_{i} f(j)=0$ if $j \notin a_{i}$ and $f(j)$ if $j \in a_{i} ; s_{i} f\left(n_{j}{ }^{k}\right)=0$ if $i \neq k$ and $f(j)$ if $i=k$. Then $q_{i} s_{i}=s_{i}$ and s_{i} is an isomorphism of $m_{i}=q_{i}(m)$ with m.

Let $A_{i}=s_{i}(A)$ and $B_{i}=s_{i}(B)(m=A \oplus B)$. Then $m_{i}=A_{i} \oplus B_{i}$. If p is the projection $p m=A,(1-p) m=B$, then $r_{i}=s_{i} p s_{i}^{-1} q_{i}$ and $v_{i}=$ $s_{i}(1-p) s_{i}^{-1} q_{i}$ are projections of m onto A_{i} and B_{i} respectively.

Let $\bar{m}=\left\{f \mid r_{1}(f)=0\right\}$.
Since $m=A_{1} \oplus \bar{m}$ and since A_{1} is isomorphic to A the proof is finished if \bar{m} is shown to be isomorphic to m.

Define v, u on m to m by $v f(j)=v_{i} f(j)$ if $j \in a_{i}$ and $u f\left(n_{j}{ }^{i}\right)=f\left(n_{j}{ }^{i+1}\right)$. Then $w=(1-v) u+v$ is the isomorphism desired, as follows. One easily shows that $q_{i} v=v_{i}$ and then that $v^{2}=v$ so that v and $1-v$ are projections. The following identities are also easily proved. $r_{i} f(j)=(1-v) f(j)$ if $j \in a_{i}$; $u s_{i+1}=s_{i} ; \quad q_{i} u(1-v)=u r_{i+1} ; \quad q_{i} u v=u v_{i+1}$. Hence $(1-v) u(1-v)=$ $u(1-v) ; u v u=u v$. For example,

$$
\operatorname{vuvf}\left(n_{j}^{i}\right)=v_{i} u v f\left(n_{j}^{i}\right)=s_{i}(1-p) s_{i}^{-1} q_{i} u v f\left(n_{j}^{i}\right)=s_{i}(1-p) s_{i}^{-1} u v_{i+1} f\left(n_{j}^{i}\right)
$$

(since $q_{i} u v=u v_{i+1}$)

$$
\begin{aligned}
& =s_{i}(1-p) s_{i}^{-1} u s_{i+1}(1-p) s_{i+1}^{-1} q_{i+1} f\left(n_{j}^{i}\right) \\
& =s_{i}(1-p) s_{i}^{-1} s_{i}(1-p) s_{i+1}^{-1} q_{i+1} f\left(n_{j}^{i}\right)
\end{aligned}
$$

(since $u s_{i+1}=s_{i}$)

$$
\begin{aligned}
& =s_{i}(1-p) s_{i+1}^{-1} q_{i+1} f\left(n_{j}^{i}\right)=u s_{i+1}(1-p) s_{i+1}^{-1} q_{i+1} f\left(n_{j}^{i}\right) \\
& =u v_{i+1} f\left(n_{j}^{i}\right)=v_{i+1} f\left(n_{j}^{i+1}\right)=v f\left(n_{j}^{i+1}\right)=u v f\left(n_{j}^{i}\right) .
\end{aligned}
$$

Clearly w is linear and continuous.
w is $1-1$: Let $w f=0=v f+(1-v) u f$. Then vf and $(1-v) u f$ are in complementary subspaces of m so $v f=0=(1-v) u f$. Then $(1-v) f=f$ and so $(1-v) u f=(1-v) u(1-v) f=u(1-v) f=u f$. Thus $u f=0$. Since $u f\left(n_{j}{ }^{i}\right)=0=f\left(n_{j}{ }^{i+1}\right)$ it follows that $f \in m_{1} .\left(u f=0\right.$ if and only if $\left.f \in m_{1}\right)$. Since $(1-v) f=f$, then

$$
\begin{aligned}
& (1-v) f\left(n_{j}^{i}\right)=\left(1-v_{i}\right) f\left(n_{j}^{i}\right)=f\left(n_{j}^{i}\right) \\
& \quad=\left\{\begin{array}{ll}
0 & \text { if } i>1 \\
\left(1-v_{1}\right) f\left(n_{j}^{i}\right) & \text { if } i=1
\end{array}=\left\{\begin{array}{l}
\left(1-v_{1}\right) f\left(n_{j}^{i}\right) \text { if } i>1 \\
\left(1-v_{1}\right) f\left(n_{j}^{i}\right) \text { if } i=1
\end{array}=\left(1-v_{1}\right) f\left(n_{j}^{i}\right),\right.\right.
\end{aligned}
$$

and so $(1-v) f=\left(1-v_{1}\right) f=f$ or $v_{1} f=0$. Then

$$
\left(r_{1}+v_{1}\right) f=s_{1} p s_{1}^{-1} q_{1} f+s_{1}(1-p) s_{1}^{-1} q_{1} f=s_{1}\left((p+1-p) s_{1}^{-1} q_{1} f\right)=q_{1} f=f
$$

since $f \in m_{1}$. Thus $r_{1} f=f$ and since $f \in \bar{m}, r_{1} f=0$. Thus w is $1-1$.
w is onto: Let $f \in m$ and define h by $h\left(n_{j}{ }^{i}\right)=(1-v) f\left(n_{j}{ }^{i-1}\right)$ if $i>1$ and 0 if $i=1$. Then $u h=(1-v) f$ and let $g=h-v h+v f$. Then $r_{1} g=r_{1} h-r_{1} v h$ $+r_{1} v f=0$ as follows: $r_{1} h=s_{1} p s_{1}^{-1} q_{1} h=0$ since $q_{1} h=0$ (h vanishes on a_{1}). $r_{1} v f_{1}(j)=(1-v) v f_{1}(j)=0$ for every f_{1} and j, so $r_{1} v h=r_{1} v f=0$. Finally

$$
\begin{array}{r}
w g=w h-w v h+w v f=v h-v h+v f+(1-v) u h-(1-v) u v h+(1-v) \\
u v h=v f+(1-v) f=f
\end{array}
$$

once it is known that $(1-v) u v=0$ which was shown above. Q.E.D.

3. Separable Banach spaces and property S.

Theorem 7. The following are equivalent if B is separable.
(a) (B, S)
(b) If $X \supset B$ and if X is separable, then there is a continuous projection from X onto B.
(c) $\left(B, S_{t}\right)$ for some t.
(d) For every embedding $u(B)$ of B into $C([0,1])$ there is a continuous projection from $C([0,1])$ onto $u(B)$.

Proof. If (a), $X \supset B$, and X is separable, then the identity map I from B to B has a continuous extension u from x to B which is then a continuous projection of X onto B. If (b) and if u is an isometry from B onto B_{1}, let X_{1} be separable and $X_{1} \supset B_{1}$. Then there is an $X \supset B$ and an isometry u_{1} of X with X_{1} which agrees with u on $B(6, p p .90,91)$. If p is a projection of X onto B, then $u_{1} p u_{1}^{-1}$ is a projection of X_{1} onto B_{1}. Hence (b) is preserved up to isometry. Since B is separable, it can be embedded isometrically in m (2, p. 187), say under u. Suppose there is no t for which (B, S_{t}). Then, for every positive integer n, there is a space X_{n}, a separable space $Y_{n} \supset X_{n}$, and a map u_{n} from X_{n} to B, such that $\left|u_{n}\right|=1$ and if w_{n} is a map from Y_{n} to B, which extends u_{n}, then $\left|w_{n}\right|>n$. The maps $u u_{n}$ from X_{n} to $u B$ are also maps from X_{n} to m and hence have extensions w_{n} from Y_{n} to m with $\left|w_{n}\right|=\left|u u_{n}\right|=1$. Each $w_{n} Y_{n}$ is separable. Hence the sets $u B$ and $\cup_{n} w_{n} Y_{n}$ generate a separable subspace Y of m and, from the above calculation, there is a projection p of Y onto $u B$. The map $u^{-1} p w_{n}$ is an extension to Y_{n} of u_{n} and $\left|u^{-1} p w_{n}\right| \leqslant|p|$. This contradicts the assumption that $\left|u^{-1} p w_{n}\right|$ must be greater than n, for every n. Hence (b) implies (c). Clearly c implies a.

If $u B$ is an embedding of B into $C([0,1])$, then u^{-1} has an extension w. Then $u w$ is a continuous projection of $C([0,1])$ on $u B$. Now assume (d). If $Y \supset B$ and Y is separable we can embed Y in $C([0,1])(\mathbf{2}, \mathrm{p} .185)$, and let u be such an embedding. By (d) there is a continuous projection p from $C([0,1])$ onto $u B, u^{-1} p u$ is a continuous projection of Y onto B. Q.E.D.

The next theorem shows that no infinite dimensional separable Banach space has property S_{1}.

Theorem 8. Let B have the following property. If $Y \supset X$ and if Y / X is one dimensional, then a continuous linear map u from X to B has an extension u_{1} such that $\left|u_{1}\right|=|u|$. Then $\left(B, P_{1}\right)$.

Proof. Suppose $A \supset X$ and $u: X \rightarrow B$ is continuous and linear. Let F denote the set of pairs (Y, w) such that $Y \supset X$ and w is an extension of $u, w: Y \rightarrow X$, such that $|w|=|u|$. Order F by saying $(Y, w) \geqslant\left(Y_{1}, w_{1}\right)$ if $Y \supset Y_{1}$ and $w_{1}=w$ on Y_{1}. One easily shows a simply ordered subset of F has an upper bound; so by Zorn's Lemma choose a maximal element (Y, w). If $Y \neq A$ and if $a \in$ $A-Y$, then there is an extension of w, w_{1}, from Y_{1} to B, with $\left|w_{1}\right|=|w|$ where Y_{1} is the subspace of A generated by Y and a (Y_{1} / Y is one dimensional). This contradicts maximality of (Y, w) so $Y=A$. Since $|w|=|u|$ and since A, X, and u are arbitrary, we have $\left(B, P_{1}\right)$.

Corollary 8.1. If B is separable and $\left(B, S_{1}\right)$, then B is finite dimensional.
Proof. Let u be an isometric embedding of B in m, and suppose that Y / X is one dimensional and $v: X \rightarrow B$. We can write $Y=(y) \oplus X$ for some $y \in Y$, where (y) is the subspace of Y generated by y. Since $\left(m, P_{1}\right)$ uv has an extension $v_{1}: Y \rightarrow m$ such that $\left|v_{1}\right|=|v u| . v_{1} Y$ is contained in the subspace Z of m generated by $u B$ and $v_{1} y$. This subspace is separable. If (B, S_{1}), then ($u B, S_{1}$) and there is a projection p from Z to $u B$ such that $|p|=1$. Then $u^{-1} p v_{1}$ is an extension of v such that $\left|u^{-1} p v_{1}\right|=|v|$. Thus B has the property of Theorem 8. The only separable such B are finite dimensional. Q.E.D.

The space c of convergent sequences has a variant of property S_{1}; if $c \subset X$ and if X is separable, then there is a subspace c_{1} of c, isometric to c, and a projection p of X onto c_{1} with $|p|=1$.

Sobczyk (15) proved that if $c_{0} \subset X \subset m$ where X is separable then there is a projection p from X onto c_{0} such that $|p| \leqslant 2$. McWilliams (11) proved an analogous result for c, the space of convergent sequences with supremum norm, with $|p| \leqslant 3$. In both cases the authors showed $t=2$ and $t=3$ were the best possible t. From Theorem 7 it follows easily that (c_{0}, S_{2}) and (c, S_{3}).

These results are proved below, with the help of Theorem 7, as corollaries to:
Theorem 9. Let $H=[0,1]$ and let K be a closed subset of H. Then there are projections p and r of $C(H)$ onto $C_{K}(H)$ and X respectively, where X is the subspace of $C(H)$ of functions constant on K. Moreover p and r can be chosen so that $|p| \leqslant 2,|r| \leqslant 3$.

Proof. $H-K$ is open and so is a countable union of sets $\left(h_{i} k_{i}\right)$ where h_{i} and k_{i} are in K; and h is in $H-K$ if $h_{i}<h<k_{i}$ for some i. Let

$$
(q f) h= \begin{cases}f(h) & \text { if } h \in K \\ \frac{f\left(k_{i}\right)-f\left(h_{i}\right)}{k_{i}-h_{i}}\left(h-h_{i}\right)+f\left(h_{i}\right) & \text { if } h \in\left(h_{i} k_{i}\right)\end{cases}
$$

Then $|q f| \leqslant \sup \{|f(h)| \mid h \in K\} \leqslant|f|$ and $q^{2} f=q f$. Hence q is a projection of norm 1. If $q f=0$, then $f(h)=0$ if h is in K and if $f=0$ on K, then $q f=0$. Hence $I-q=p$ is a projection of $C(H)$ onto $C_{K}(H)$ of norm at most two.

Let e be the identically one function on H. Then $q e=e$ so $p e=0$. Define a projection p_{1} of $C(H)$ onto (e) by $p_{1} f(h)=f(k) e$, where k is fixed in K. Then $\left|p_{1}\right|=1$ and $p_{1} f=0$ for every $f \in C_{K}(H)$. Since $p f=0$ for every $f \in(e)$ we have that $p p_{1}=p_{1} p=0$ and so $p+p_{1}=r$ is a projection with $|r| \leqslant|p|+\left|p_{1}\right| \leqslant 3$, of $C(H)$ onto X.

Corollary 9.1. $\left(c_{0}, S_{2}\right),\left(c, S_{3}\right)$.
Proof. Let c_{1} be either c_{0} or c and let w embed c_{1} isometrically into $C(H)$. Then w^{\prime} is an isomorphism of $\left(w c_{1}\right)^{\prime}$ with c_{1}^{\prime} and $\left|w^{\prime} x^{\prime}\right|=\left|x^{\prime}\right|$ for every $x^{\prime} \in$ $\left(w c_{1}\right)^{\prime}$. If $d_{i} \in c_{1}^{\prime}$ is defined by $d_{i}(x)=x_{i}$ for every $x \in c_{1}$, let $e_{i} \in\left(w c_{1}\right)^{\prime}$ such that $w^{\prime} e_{i}=d_{i}$. Then $\left|e_{i}\right|=\left|d_{i}\right|=1$ and each e_{i} is an extreme point of the
unit ball of $\left(w c_{1}\right)^{\prime}$. Hence (14, p. 104) e_{i} can be extended to an extreme point f_{i}^{\prime} of the unit ball of $(C(H))^{\prime}$. Then f_{i}^{\prime} is of the form $\pm e_{h_{i}}$ for some h_{i}, where $e_{h_{i}}(f)=f\left(h_{i}\right)$ for every $f \in C(H)\left(4\right.$, p. 85). For $x \in c_{1}$,

$$
w x(h)_{i}=e_{h_{i}}(w x)= \pm f_{i}^{\prime}(w x)= \pm e_{i}(w x)= \pm d_{i}(x)= \pm x_{i} .
$$

Let $K=\overline{\left\{h_{i}\right\}}-\left\{h_{i}\right\}$. Then $K \neq \varnothing$ since a convergent subsequence of h_{i} converges to a point in $H-\left\{h_{i}\right\}$ (if $x_{i}=1 / i$, then $w x\left(h_{i}\right)= \pm 1 / i$ while $w x(h)$ $=0$ if $h \in K)$.

If $c_{1}=c_{0}$ let p be a projection of $C(H)$ onto $C_{K}(H)$ such that $|p| \leqslant 2$. If $f \in C_{K}(H)$ one easily shows that $f_{i}{ }^{\prime}(f) \rightarrow 0$ as $i \rightarrow \infty$ and we define $v: C_{K}(H)$ $\rightarrow c_{0}$ by $(v f)_{i}=f_{i}{ }^{\prime}(f)$. Then wop is the desired projection of $C(H)$ onto $w c_{0}$ and $|w v p| \leqslant|w||v||p|=|p| \leqslant 2$.

If $c_{1}=c$, let r be a projection of $C(H)$ onto X, the subspace of $C(H)$ of functions constant on K, such that $|r| \leqslant 3$. Again one shows $f_{i}{ }^{\prime}(f)$ converges $(i \rightarrow \infty)$ and that if v is defined by $(v f)_{i}=f_{i}^{\prime}(f)$, then $w v r$ is a projection with norm at most three from $C(H)$ onto wc.

From Theorem 7 (d) the corollary follows.
Corollary 9.2. Let Y be separable and let $X \subset Y$. If $\left\{x_{n}{ }^{\prime}\right\} \subset X^{\prime}$ is such that $x_{i}{ }^{\prime}(x) \rightarrow x^{\prime}(x)$ for every $x \in X$, then the sequence $\left\{x_{i}{ }^{\prime}\right\}$ can be extended to a sequence $\left\{y_{i}{ }^{\prime}\right\}$ such that $y_{i}{ }^{\prime}(y) \rightarrow y^{\prime}(y)$ for every $y \in Y$ (and so y^{\prime} is an extension of $\left.x^{\prime}\right)$. Moreover the extensions $y_{i}{ }^{\prime}$ can be chosen so that $\left|y_{i}{ }^{\prime}\right| \leqslant 3\left|x_{i}{ }^{\prime}\right|$.

Proof. The mapping u from X to c defined by $(u x)_{i}=x_{i}{ }^{\prime}(x)$ for every $x \in X$ has an extension u_{1} to Y such that $\left|u_{1}\right| \leqslant 3|u|$. Let $y_{i}{ }^{\prime}=u_{1}{ }^{\prime} d_{1}$. One easily shows the $y_{i}{ }^{\prime}$ have the desired properties and converge pointwise on Y (weak-star) to a $y^{\prime} \in Y^{\prime}$ which extends x^{\prime}.

Remarks. One can reverse the steps of Corollary 9.2 to show (c, S_{3}). McWilliams' result that 3 is the best t possible so that $\left(c, S_{t}\right)$ then shows that the 3 in the corollary is the best possible. Since c is P_{t} for no t one cannot in general extend sequences of pointwise convergent linear functionals so that the extensions are pointwise convergent.

If Y is separable, $X \subset Y$, and $x_{n}{ }^{\prime} \in X^{\prime}$ is a pointwise convergent sequence; choose extensions $y_{n}{ }^{\prime}$ and a subsequence $f_{i}{ }^{\prime}=y_{n_{i}}{ }^{\prime}$ such that $n_{i} \uparrow, f_{i}{ }^{\prime}$ is a pointwise convergent sequence and $\left|y_{i}{ }^{\prime}\right|=\left|x_{i}{ }^{\prime}\right|$ for every i. Using such sequences we can prove

Theorem 10. If $Y \supset c$ and if Y is separable, then there is a subspace c_{1} of c such that c_{1} is isometric to c and a projection p of Y onto c_{1}, such that $|p|=1$.

Proof. Each d_{i} (as in the proof of the above corollary) can be extended to a linear functional $y_{i}{ }^{\prime}$ in Y^{\prime} such that $\left|y_{i}{ }^{\prime}\right|=\left|d_{i}\right|=1$. Since Y is separable choose a subsequence $\left\{y_{n_{i}}{ }^{\prime}\right\}$ of $\left\{y_{i}{ }^{\prime}\right\}$ which is pointwise convergent and so that $n_{i+1}>n_{i}$ for each i. Define $u: Y \rightarrow c$ by $(u y)_{n}=y_{n_{i}}{ }^{\prime}(y)$ if $n_{i} \leqslant n<n_{i+1}$. Let c_{1} be the subspace of c of sequences f for which $f_{n_{i}}=f_{n_{i+1}}=\ldots=f_{n_{i+1}-1}$
for every i. Clearly $u Y \subset c_{1}$. If $f \in c_{1}$, then $(u f)_{n}=y_{n_{i}}{ }^{\prime}(f), n_{i} \leqslant n<n_{i+1}$, $=d_{n i}(f)=f_{n i}=f_{n}$ so that $u f=f$ and u is a projection of Y onto c_{1} with $|u|=1$.

It remains to show c_{1} is isometric to c. Define v from c to c_{1} by $(v f)_{n}=f_{i}$ if $n_{i} \leqslant n<n_{i+1}$. Then $v f \in c_{1}$ and $|v f|=|f|$. If $f \in c_{1}$ let g be that element of c defined by $g(i)=f\left(n_{i}\right)$. Then $(v g)_{n}=g_{i}=f_{n_{i}}=f_{n}$ if $n_{i} \leqslant n \leqslant n_{i+1}$. Thus $v g=f$ and v is onto.
4. Involutions of norm one in $C(K)$ where K is compact and extremally disconnected. Kelley constructs a compact, extremally disconnected H from the extreme points of the unit ball of B^{\prime} if $\left(B, P_{1}\right)$ and shows that B is isometric to $C(H)$. In this section it is shown that if B is "conveniently situated in a $C(K)$ space, with K compact and extremally disconnected, then the representation space H can be taken to be an open and closed subset of K.

The following theorem is due to Stone (4, p. 86). Eilenberg (5) established the theorem for arbitrary topological H.

Theorem (Stone). If u is an isometry from $C(L)$ onto $C(K)$, where L and K are compact, then there is a homeomorphism π of K with L, and an element a of $C(K)$ such that $(u f)(k)=a(k) f(\pi k)$ and a takes only the values ± 1.

If $K=L$, then π is a homeomorphism of K with K. This is the case considered below.

If $\pi^{2}=1$ (the identity mapping), then π induces a linear mapping u of $C(K)$ onto $C(K)$ such that $|u|=1$ and $u^{2}=1$ (such a u is called an involution). The map $p=(1-u) / 2$ is a projection and $|p|=|1-p|=1$. Moreover p $(C(K))=B$, where B is the subspace of $C(K)$ for which $b \in B$ if and only if $u b=b,(1-p) C(H)=X$ is the subspace $x \in X$ if and only if $u x=-x$.

Lemma. With the notation above there are disjoint subsets H and W of K such that $H \cup W=K$ and B, X are isometric to $C_{W}(K)$ and $C_{H}(K)$ respectively.

Before proceeding with the proof an example will show why K is chosen to be extremally disconnected. Let K be the set of rationals of the form $1 / n, n$ a positive integer, and 0 using the relative topology of the reals. Let π be defined by

$$
\pi(0)=0, \pi\left(\frac{1}{2 n}\right)=\frac{1}{2 n-1}, \pi\left(\frac{1}{2 n-1}\right)=\left(\frac{1}{2 n}\right)
$$

for $n \geqslant 1$. Then π is a homeomorphism of K and $\pi^{2}=I$. Let u be the induced involution. Then $(u f) h=f(\pi h)$ and $|u|=1$. Both B and X are infinite dimensional, and so W and H must both be infinite. The space K does not permit such a decomposition though it is a totally disconnected space.

Proof of the Lemma. Let \mathfrak{F} be the set of $U \subset K$ such that U is open and there is an $x \in X$ such that $x(k)>0$ if $k \in U$. Order \mathfrak{F} by inclusion. If F is a simply ordered subset of \mathfrak{F} let $V=\cup_{U \epsilon F} U$.

For each $U \in F$ choose x_{U} such that $x_{U}(k)>0$ if $k \in U,\left|x_{U}\right| \leqslant 1$, and x_{U} $\in X$. The collection $x_{U}, U \in F$ is bounded above in $C(K)$, and since $C(K)$ is a complete lattice, let y be the least upper bound of this collection. Clearly $y(k)>0$ if $k \in V$ so that $y(k) \geqslant 0$ if $k \in \bar{V}$ which is an open set.

Now $\pi V \cap V=\varnothing$ as follows: If $k \in \pi V \cap V$, then $\pi k \in V \cap \pi V$. Let $k \in U_{1}, U_{1} \in F$. Then $\pi k \in U_{2}$ where $U_{2} \in F$ for some U_{2}. So either $U_{2} \supset U_{1}$ or $U_{1} \supset U_{2}$ since F is simply ordered. Suppose $U_{2} \supset U_{1}$. Then $\pi k, k \in U_{2}$ and $x_{U_{2}}(k)=-x_{U_{2}}(\pi k)$ (since $u x_{U_{2}}=-x_{U_{2}}$) which is a contradiction to $x_{U_{2}}\left(k^{\prime}\right)>0$ if $k^{\prime} \in U_{2}$.

Since πV and V are open and disjoint, $\overline{\pi V} \cap \bar{V}=\phi$. One easily checks that $\overline{\pi V}=\pi \bar{V}$. Define f by

$$
f(k)=\left\{\begin{array}{c}
y(k) \text { if } k \in \bar{V} \\
-y(\pi k) \text { if } k \in \pi \bar{V} \\
0 \text { otherwise }
\end{array}\right.
$$

Then it is easily seen that $f \in X$ and $f(k)>0$ if $k \in V$. Thus F has an upper bound and by Zorn's lemma let W be a maximal element of \mathscr{F}.

As above $W \cap \pi W=\phi$ and W and πW are open. Hence $\bar{W} \cap \overline{\pi W}=\phi$ and $\overline{\pi W}=\pi \bar{W}$. Define f by

$$
f(k)=\left\{\begin{array}{r}
1 \text { if } k \in \bar{W} \\
-1 \text { if } k \in \pi \bar{W} \\
0 \text { otherwise, }
\end{array} \quad \text { Then } f \in C(K)\right.
$$

and $f \in X$. Moreover $f(b)>0$ if $k \in \bar{W}$ and since \bar{W} is open and W is maximal, $W=\bar{W}$.

The next step is to show $x(k)=0$ if $k \notin W \cup \pi W(K-(W \cup \pi W)$ is the set of fixed points of π). Assume, by way of contradiction, that $k \in W \cup \pi W$ exists such that $x(k)>0$. Now $K-(W \cup \pi W)$ is open and closed and we choose an open and closed subset L of $K-(W \cup \pi W)$ such that $x(k)>0$ on L. Letting

$$
x_{1}(k)=\left\{\begin{array}{l}
x(k) \text { if } k \in L \cup \pi L \\
0 \text { otherwise }
\end{array}\right.
$$

one checks that $x_{1} \in X$ and $\left(x_{1}+f\right)(k)>0$ if $k \in \bar{W} \cup L$, where f is the function

$$
f(k)=\left\{\begin{array}{r}
1 \text { if } k \in \bar{W} \\
-1 \text { if } k \in \pi \bar{V} \\
0 \text { otherwise. }
\end{array}\right.
$$

Since $x_{1}+f$ is in X, this contradicts the choice of W as maximal. If $x(k)<0$ repeat the above using $-x$. Thus $x(k)=0$ if $k \notin W \cup \pi W$.

Let $H=K-W$ so that H is open and closed. Define v on X by

$$
(v x)(k)=\left\{\begin{array}{l}
x(k) \text { if } k \in W \\
0 \text { if } k \notin W
\end{array}\right.
$$

and let v on B be defined by

$$
v b(k)=\left\{\begin{array}{l}
b(k) \text { if } k \in H \\
0 \text { if } k \notin H .
\end{array}\right.
$$

If $f \in C_{H}(K)$, then let

$$
x(k)=\left\{\begin{array}{c}
f(k) \text { if } k \in W \\
-\mathrm{f}(\pi k) \text { if } k \in \pi W \\
0 \text { otherwise }
\end{array}\right.
$$

Then $x \in X$ and $v x=f$ so v is onto. If $f \in C_{W}(K)$ let

$$
b(k)=\left\{\begin{array}{l}
f(k) \text { if } k \in H \\
f(\pi k) \text { if } k \in W
\end{array}\right.
$$

Then $b \in B$ and $v b=f$. One easily checks that $|v x|=|x|,|v b|=|b|$ if $x \in X$, $b \in B$.

Eilenberg (5, p. 577) showed that for any topological H if $C(H)=B \oplus X$ and if $|f|$ is the maximum of $|b|$ and $|x|$, where b is in B, x is in X, and $f=b+x$, then there are sets K and M such that $K \cap M$ is empty, $\mathrm{K} \cup M=H$, and $b \in C_{K}(H), x \in C_{M}(X)$. In this case the map u defined by $u(b+x)=b-x$, for x in X and b in B, is an involution and $|u|=1$. Not every u with $|u|=1$ yields a decomposition of this type. As an example let H be the set of integers. Define u on $m(H)$ by $(u f) h=f(-h)$. There is a $C(K)$ isometric to $m(H)$ with K compact and extremally disconnected. The decomposition of $C(K)$ induced by the involution of $C(K)$ which corresponds to u is not the above type. From the lemma we can prove the following:

Theorem 11. Let K be compact and extremally disconnected and u an involution of $C(K)$ with $|u|=1$. Let p be the projection $(I+u) / 2, p C(K)=B$ and $(I-p) C(K)=X$. Then there is an H and V with $H \cap V$ empty, $H \cup V$ $=K$, and B is isometric to $C_{V}(K)$ while X is isometric to $C_{H}(K)$.

Proof. Let $u f(k)=a(k) f(\pi k)$ where $a(k)= \pm 1$ for every k (see Stone's theorem above). Let $U=\{k \mid a(k)=1\}, W=\{k \mid a(k)=-1\}$. Then U, W are open and closed, disjoint, and $U \cup W=K$. Also if $k \in U$ and $\pi k \in W$, then $u^{2} f(k)=a(k) u f(\pi k)=a(k) a(\pi k) f(k)$ (since $\left.\pi^{2} k=k\right)=-f(k)$ which is a contradiction to $u^{2}=I$ if we choose f such that $f(k) \neq 0$. Hence $\pi U=U$, $\pi W=W$. Define w_{1} on B by

$$
w_{1} b(k)=\left\{\begin{array}{l}
b(k) \text { if } k \in U \\
0 \text { if } k \in W .
\end{array}\right.
$$

Then $w_{1} b \in B$ (using that $\pi U=U, \pi W=W$) and we denote $w_{1} B$ by B_{1}. Similarly, define w_{1} on X and denote the image $w_{1} X$ by X_{1}. Every $f \in C_{W}(K)$ is clearly of the form $b_{1}+x_{1}$ for some $b_{1} \in B_{1}$ and $x_{1} \in X_{1}$ and u restricted to $C_{W}(K)$ is such that $u^{2}=I$ and $|u|=1$. Identify $C_{W}(K)$ with $C(U)$ by letting $\bar{f}(h)=f(h)$ if $h \in U, \bar{f}(h)=0$ if $h \notin U$, where $f \in C(U)$; there are
subsets V_{1}, H_{1}, of U which are open, closed, disjoint and $V_{1} \cup H_{1}=U$, and such that B_{1} and X_{1} are isometric to $C_{V_{1} \cup W}(K)$ and $C_{H_{1} \cup W}(K)$ respectively.

Defining w_{2} on B by

$$
w_{2} b(k)=\left\{\begin{array}{l}
b(k) \text { if } k \in W \\
0 \text { if } k \in U,
\end{array}\right.
$$

and similarly on X, and denoting $w_{2} B$ by B_{2} and $w_{2} X$ by X_{2}, then u restricted to $C_{U}(K)$ is such that $u^{2}=I$. Here the set of fixed points of u is X_{2} and $B_{2}=\left\{f \in C_{U}(K) \mid u f=-f\right\}$. Reversing the roles of B and X in the lemma there are subsets V_{2} and H_{2} of W which are open, closed, disjoint, and $V_{2} \cup H_{2}$ $=W$ and such that B_{2} is isometric to $C_{V_{2} U U}(K)$ and X_{2} is isometric to $C_{H_{2} U U}(K)$.

Let v_{1} and v_{2} be isometric mappings of B_{1} and B_{2} onto $C_{V_{1} U W}(K)$ and $C_{V_{2} U U}(K)$ respectively. Now $B=B_{1} \oplus B_{2}$ and if $b=b_{1}+b_{2}$ with $b_{1} \in B_{1}$ and $b_{2} \in B_{2}$, then $|b|=\max \left(\left|b_{1}\right|,\left|b_{2}\right|\right)$. Define v on B by $v b=v_{1} b_{1}+v_{2} b_{2}$. Then v is onto $C_{V_{1} U W}(K) \oplus C_{V_{2} U U}(K)=C_{V_{1} U V_{2}}(K)$ and $\left|v_{1} b_{1}+v_{2} b_{2}\right|$ $=\max \left(\left|v b_{1}\right|,\left|v b_{2}\right|\right)=|b|$. Similarly, X is isometric to $C_{H_{1} \cup H_{2}}(K)$. Put $V=V_{1} \cup V_{2}, \mathrm{H}=H_{1} \cup H_{2}$.

References

1. G. P. Akilov, Necessary conditions for the extension of linear operations, Doklady Akad. Nauk SSSR (N.S.), 59 (1948), 417-418 (Russian).
2. S. Banach, Théorie des opérations linéaires (Warsaw, 1932).
3. R. G. Bartle, N. Dunford, and J. Schwartz, Weak compactness and vector measures, Can. J. Math., 7 (1955), 289-305.
4. M. M. Day, Normed linear spaces (Berlin, Göttingen, Heidelberg, 1958).
5. S. Eilenberg, Banach space methods in topology, Ann. Math., 43 (1942), 568-579.
6. D. B. Goodner, Projections in normed linear spaces, Trans. Amer. Math. Soc., 69 (1950), 89-108.
7. A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$, Can. J. Math., 5 (1953), 129-173.
8. R. C. James, Projections in the space (m), Proc. Amer. Math. Soc., 6 (1955), 899-962.
9. S. Karlin, Bases in Banach spaces, Duke Math. J., 15 (1948), 971-985.
10. J. L. Kelley, Banach spaces with the extension property, Trans. Amer. Math. Soc., 72 (1952), 323-326.
11. R. D. McWilliams, On projections of separable subspaces of (m) onto (c), Proc. Amer. Math. Soc., 10 (1959), 872-876.
12. L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc., 48 (1940), 516-541.
13. R. S. Phillips, On linear transformations, Trans. Amer. Math. Soc., 48 (1940).
14. I. Singer, Sur extension des fonctionelles linéaires, Rev. Math. Pure Appl., 1 (1956), 99-105.
15. A. Sobczyk, Projection of the space (m) on its subspace (c_{0}), Bull. Amer. Math. Soc., 47 (1941), 938-947.

Duke University

[^0]: Received February 15, 1961. This paper contains the author's doctoral dissertation written under the direction of Professor M. M. Day (University of Illinois).
 ${ }^{*} C(H)$ is the space of bounded continuous functions on H with $|f|=\sup \{|f(h)| \mid h \in H\}$.

[^1]: * $\left(y_{1}, \ldots, y_{n}\right)$ denotes the subspace of Y generated by y_{1}, \ldots, y_{n}.

